Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Int Heart J ; 63(1): 113-121, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35034915

RESUMO

Sulfiredoxin1 (Srxn1), an endogenous antioxidant protein, is involved in cardiovascular diseases. In this study, we aimed to investigate the role of Srxn1 in VSMCs and its molecular mechanism. The murine vascular smooth muscle cells MOVAS were treated with different doses of platelet-derived growth factor-BB (PDGF-BB); then, Srxn1 expression was detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. MTT and wound healing assay were used to examine the effect of Srxn1 on MOVAS cell proliferation and migration. Reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in MOVAS cells were detected using corresponding commercial kits. Moreover, the expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP-2), and nuclear factor erythroid-2-related factor 2 (Nrf2) /antioxidant response element (ARE) signaling-related proteins was detected using western blot analysis. In our study, PDGF-BB dose-dependently increased Srxn1 expression in MOVAS cells, and Srxn1 expression was increased with time dependence in PDGF-BB-treated MOVAS cells. The knockdown of Srxn1 increased PDGF-BB-induced the proliferation, migration, ROS production, MDA level, and the protein expression of PCNA and MMP-2, as well as decreased SOD activity and the expression of Nrf2/ARE signaling-related proteins in PDGF-BB-stimulated MOVAS cells. However, the overexpression of Srxn1 showed the opposite results to those of knockdown of Srxn1. Moreover, the inhibitory effects of Srxn1 overexpression on PDGF-BB induced proliferation, migration, ROS production, and MDA level and the promotion of Srxn1 overexpression on PDGF-BB induced SOD activity were partially reversed by the knockdown of Nrf2. Srxn1 inhibited PDGF-BB-induced proliferation, migration, and oxidative stress through activating Nrf2/ARE signaling.


Assuntos
Indutores da Angiogênese/farmacologia , Becaplermina/farmacologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Elementos de Resposta Antioxidante/fisiologia , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/terapia , Técnicas de Cultura de Células , Movimento Celular , Proliferação de Células , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Transdução de Sinais
2.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751412

RESUMO

Vitiligo is a depigmentation disease commonly seen in clinical practice, mainly involving loss of functional epidermal pigment cells and hair follicle melanocytes. Narrow­band ultraviolet B (NB­UVB) has emerged as the first choice of treatment for vitiligo, but long­term exposure may have serious consequences. Recently, it was reported that adipose­derived stem cells (ADSCs) improve melanocyte growth and the efficacy of melanocyte transplantation. The present study aimed to examine the efficacy of NB­UVB/ADSC­transplantation combined therapy on a mouse vitiligo model and explore the underlying mechanisms by focusing on endoplasmic reticulum stress and cellular calcium (Ca2+) homeostasis. Vitiligo mice models were established by applying 40% monobenzone (MBZ) cream twice daily and treated with NB­UVB/ADSC combination therapy. Some treated mice were also given ML385, a nuclear factor erythroid 2 like 2 (Nr2) inhibitor. Histopathological changes were evaluated using a depigmentation evaluation score and observed with hematoxylin and eosin staining on skin tissues. ELISA was used to measure diagnostic markers in plasma. Flow cytometric assay was performed to quantify CD3+, CD4+ and CD8+ levels. Expression levels of associated proteins were detected with western blot and immunofluorescence. Treatment of mice with MBZ­induced depigmentation patches on the skin was accompanied with loss of redox balance and disruption of cellular Ca2+ homeostasis. Oxidative stress and Ca2+ unbalancing were improved after the mice were treated by NB­UVB/ADSCs transplantation combination therapy. ML385, strongly negated the protective effect of NB­UVB/ADSC transplantation combination therapy, indicating the critical role of Nr2 signaling. The findings improved the understanding of the pathogenesis of vitiligo and will guide future development of therapeutic strategies against it.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Pigmentação da Pele/fisiologia , Vitiligo/terapia , Animais , Cálcio/metabolismo , China , Estresse do Retículo Endoplasmático/fisiologia , Epiderme/metabolismo , Feminino , Folículo Piloso/metabolismo , Homeostase , Hidroquinonas/efeitos adversos , Hidroquinonas/farmacologia , Melanócitos/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Pele/patologia , Pigmentação da Pele/genética , Raios Ultravioleta , Terapia Ultravioleta/métodos , Vitiligo/metabolismo , Vitiligo/fisiopatologia
3.
Shock ; 57(2): 221-229, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559743

RESUMO

ABSTRACT: Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Sulfóxidos/farmacologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Lesão Pulmonar Aguda/etiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ressuscitação , Choque Hemorrágico/complicações , Síndrome de Resposta Inflamatória Sistêmica/etiologia
4.
Front Immunol ; 12: 774807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925345

RESUMO

Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.


Assuntos
Inibidores de Checkpoint Imunológico/efeitos adversos , Lesão Pulmonar/etiologia , Fibrose Pulmonar/etiologia , Pneumonite por Radiação/etiologia , Proteína HMGB1/fisiologia , Humanos , Fator 2 Relacionado a NF-E2/fisiologia , Piroptose , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia
5.
Mediators Inflamm ; 2021: 7681252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887701

RESUMO

Garlic organic sulfides are dietary bioactive components with multiple biofunctions to prevent chronic diseases/inflammation and promote human health. DADS (diallyl disulfide), DATS (diallyl trisulfide), and DTS (diallyl tetrasulfide) are typical organic sulfides with similar structures from garlic. However, the structure-activity relationship of garlic organic sulfides remained unknown. The aim of the present study was to investigate the effect of DADS, DATS, and DTS on the gene expression profiling of human hepatocellular carcinoma cells (HepG2) by application of microarray and specialized analysis software, GO, Bio-Plex-based cytokines assay and IPA and analyze their structure-activity relationship according to antioxidant, anti-inflammatory, and metabolic-related properties. According to the microarray data, with the increase of S atom in garlic organic sulfides, its biological activity was gradually enhanced. In the general catalog of GO, garlic organic sulfides mainly affect biological process, molecular function, and cellular component. RT-qPCR results indicated that the microarray data is trustworthy, and the structure-activity analysis data found that more sulfur atoms have more powerful properties; thus, microarray data of DTS was preceded to the subsequent IPA analysis. The results of IPA analysis showed that the top 5 signaling pathways and molecular functions were disturbed by DTS; the molecular functions with the highest scores affected by DTS are cancer, cell apoptosis, and cell proliferation, which imply that the occurrence or metabolism of these diseases is related to the differential expression of the above-mentioned related genes and the activation of signaling channels, and the core of the most significant molecular network is inflammation. Finally, the results found that the secretions of 6 cytokines in macrophages were significantly inhibited by DTS treatment. This is the first study that analyzed the structure-activity relationship of garlic organic sulfides, which will provide useful genetic information for its multi-biofunction and promote their clinical application in the near future.


Assuntos
Compostos Alílicos/farmacologia , Dissulfetos/farmacologia , Alho/química , Perfilação da Expressão Gênica , Sulfetos/farmacologia , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Fator 2 Relacionado a NF-E2/fisiologia , Transdução de Sinais/efeitos dos fármacos
6.
Front Immunol ; 12: 763760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917083

RESUMO

Cardiomyocyte apoptosis in response to inflammation is a primary cause of myocardial ischemia-reperfusion injury (IRI). Nuclear factor erythroid 2 like 2 (Nrf2) reportedly plays an important role in myocardial IRI, but the underlying mechanism remains obscure. Expression data from the normal heart tissues of mice or heart tissues treated with reperfusion for 6 h after ischemia (IR6h) were acquired from the GEO database; changes in biological function and infiltrating immune cells were analyzed. The binding between the molecules was verified by chromatin immunoprecipitation sequencing. Based on confirmation that early myocardial ischemia-reperfusion (myocardial ischemia/reperfusion for 6 hours, IR6h) promoted myocardial apoptosis and inflammatory response, we found that Nrf2, cooperating with Programmed Cell Death 4, promoted transcription initiation of C-C Motif Chemokine Ligand 3 (Ccl3) in myocardial tissues of mice treated with IR6h. Moreover, Ccl3 contributed to the high signature score of C-C motif chemokine receptor 1 (Ccr1)-positive macrophages. The high signature score of Ccr1-positive macrophages leads to the release of pro-inflammatory factors interleukin 1 beta and interleukin 6. This study is the first to elucidate the damaging effect of Nrf2 via remodeling of the immune microenvironment in early myocardial ischemia-reperfusion, which provides us with new perspectives and treatment strategies for myocardial ischemia-reperfusion.


Assuntos
Inflamação/etiologia , Macrófagos/fisiologia , Traumatismo por Reperfusão Miocárdica/complicações , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/fisiologia , Quimiocinas/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/fisiologia
7.
Oxid Med Cell Longev ; 2021: 8028427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917233

RESUMO

Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.


Assuntos
Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Doenças Retinianas/prevenção & controle , Estilbenos/farmacologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Knockout , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
8.
Front Immunol ; 12: 753681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819934

RESUMO

The mall heterodimer partner (SHP) plays an important regulatory role in mammal inflammation. The main objective of this study was to investigate the response of SHP to inflammatory stimulation and its underlying mechanism. The shp gene from large yellow croakers, was cloned, and this gene is mainly expressed in the liver and intestine. Lipopolysaccharide (LPS) stimulation induced the mRNA expression and protein level of SHP in macrophages of large yellow croakers. Overexpression of SHP significantly decreased mRNA expression of tnfα, il-1ß, il-6 and cox2 induced by LPS treatment in macrophages. LPS stimulation increased the phosphorylation level of Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in macrophages. AMPK inhibitor treatment significantly decreased the expression of SHP induced by LPS while AMPK activator significantly increased the expression of SHP. The nuclear factor-erythroid 2-related factor 2 (NRF2) increased the promoter activity of SHP in large yellow croakers and the level of nuclear NRF2 was increased by LPS stimulation and AMPK activation. NRF2 inhibitor treatment significantly decreased mRNA expression of shp induced by LPS and AMPK activator. In conclusion, LPS can induce SHP expression by activating the AMPK-NRF2 pathway while SHP could negatively regulate LPS-induced inflammation in large yellow croakers. This study may be benefit to the development of immunology of marine fish and provide new ideas for inflammation-related diseases.


Assuntos
Adenilato Quinase/fisiologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Perciformes/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Especificidade de Órgãos , Perciformes/genética , Filogenia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vertebrados/genética
9.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502501

RESUMO

Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/genética , Elementos de Resposta Antioxidante/genética , Antioxidantes/metabolismo , Humanos , Doença de Huntington/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
10.
Immunol Lett ; 237: 58-65, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246712

RESUMO

Type 2 Diabetes is a chronic disease resulting from insulin dysfunction that triggers a low-grade inflammatory state and immune impairment. Leishmaniasis is an infectious disease characterized by chronic inflammation resulted from the parasite's immunomodulation ability. Thus, due to the delicate immune balance required in the combat and resistance to Leishmania infection and the chronic deregulation of the inflammatory response observed in type 2 diabetes, we evaluated the response of PBMC from diabetic patients to in vitro Leishmania amazonensis infection. For that, peripheral blood was collected from 25 diabetic patients and 25 healthy controls matched for age for cells extraction and subsequent experimental infection for 2 or 24 h and analyzed for phagocytic and leishmanicidal capacity by optical microscopy, oxidative stress by GSSG generation, labeling of intracellular mediators by enzyme-Linked immunosorbent assay, and cytokines measurement with cytometric beads array technique. We found that the diabetic group had a higher percentage of infected cells and a greater number of amastigotes per cell. Also, even inducing NF-kB phosphorylation and increasing TNF production after infection, cells from diabetic patients were unable to downregulate NRF2 and generate oxidative stress, which may be associated with the exacerbated levels of IL-6 observed. PBMC of diabetic individuals are more susceptible to infection by L. amazonensis and fail to control the infection over time due to the inability to generate effector microbicidal molecules.


Assuntos
Citocinas/fisiologia , Diabetes Mellitus Tipo 2/imunologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/etiologia , Leucócitos Mononucleares/parasitologia , Fator 2 Relacionado a NF-E2/deficiência , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Suscetibilidade a Doenças , Feminino , Glutationa/sangue , Hemoglobinas Glicadas/análise , Humanos , Imunocompetência , Técnicas In Vitro , Inflamação , Interleucina-6/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Explosão Respiratória , Fator de Necrose Tumoral alfa/fisiologia
11.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070502

RESUMO

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a specific transcription factor with potent effects on the regulation of antioxidant gene expression that modulates cell hemostasis under various conditions in tissues. However, the effects of Nrf2 on gastric cancer (GC) are not fully elucidated and understood. Evidence suggests that uncontrolled Nrf2 expression and activation has been observed more frequently in malignant tumors, including GC cells, which is then associated with increased antioxidant capacity, chemoresistance, and poor clinical prognosis. Moreover, Nrf2 inhibitors and the associated modulation of tumor cell redox balance have shown that Nrf2 also has beneficial effects on the therapy of various cancers, including GC. Based on previous findings on the important role of Nrf2 in GC therapy, it is of great interest to scientists in basic and clinical tumor research that Nrf2 can be active as both an oncogene and a tumor suppressor depending on different background situations.


Assuntos
Fator 2 Relacionado a NF-E2/fisiologia , Neoplasias Gástricas/fisiopatologia , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia
12.
Drug Dev Res ; 82(8): 1247-1257, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34105172

RESUMO

Dasatinib, a tyrosine kinase inhibitor, has a protective effect on experimental acute respiratory distress syndrome (ARDS). This study investigated the effect and mechanism of dasatinib in ARDS. C57BL/6 mice were administered with dasatinib (1 and 10 mg/kg) after lipopolysaccharide (LPS) treatment to evaluate the effect of dasatinib on white blood cells (WBC), neutrophils, lymphocytes and macrophages in bronchoalveolar lavage fluid (BALF). The levels and mRNA expressions of inflammation-related cytokines in lung tissues and RAW 264.7 cells were detected by enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. The protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO1) were determined by Western blot. MTT assay was performed to detect the viability of RAW 264.7 cell. Rescue experiments were used to assess the effect of Nrf2 silencing on the LPS- and dasatinib-treated mice. Under LPS treatment, levels of the WBC, neutrophils, lymphocytes and macrophages in BALF and mRNA expressions of IL-6, TNF-α and IL-10 as well as expression of iNOS were increased, but the expression of arginase-1 was inhibited, while no obvious changes of the protein expressions of Nrf2 and HO1 were observed. Dasatinib partially reversed the effects of LPS above, and further promoted the mRNA expression of IL-10 and the protein expressions of Nrf2 and HO1, while Nrf2 silencing counteracted the effect of dasatinib. Dasatinib induced the polarization of M2 subtype of macrophages and alleviated LPS-induced ARDS through activating Nrf2 signaling pathway, which may provide a new strategy for the treatment of ARDS.


Assuntos
Dasatinibe/farmacologia , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Polaridade Celular , Citocinas/genética , Dasatinibe/uso terapêutico , Heme Oxigenase-1/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Síndrome do Desconforto Respiratório/imunologia
13.
Shock ; 56(3): 440-449, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091586

RESUMO

BACKGROUND: Ferroptosis has been found to play an important role in myocardial ischemia reperfusion (MIR) injury (MIRI). This study aimed to explore whether the improvement effect of Etomidate (Eto) on MIRI was related to ferroptosis. METHODS: The MIRI rats were constructed using left anterior descending artery occlusion for 30 min followed by reperfusion for 3 h. The Eto post-conditioning was performed by Eto administration at the beginning of the reperfusion. For rescue experiments, MIRI rats were pretreated with ferroptosis inducer erastin or Nrf2 inhibitor ML385 intraperitoneally 1 h prior to MIR surgery. RESULTS: Eto mitigated cardiac dysfunction and myocardium damage, as well as the release of creatine kinase and lactate dehydrogenase caused by ischemia/reperfusion (IR). Additionally, Eto reduced the expression of myocardial fibrosis-related proteins (collagen II and α-smooth muscle actin) and the secretion of inflammatory factors (IL-6, IL-1ß, and TNF-α) in MIRI rats. Also, Eto inhibited IR-induced ferroptosis in myocardium, including reducing superoxide dismutase content, glutathione activity, and glutathione peroxidase 4 expression, while increasing the levels of malondialdehyde and iron and Acyl-CoA synthetase long-chain family member 4. Moreover, the inhibition of Eto on IR-induced myocardial fibrosis and inflammation could be eliminated by erastin. The up-regulation of Nrf2 and HO-1 protein expression, and the nuclear translocation of Nrf2 induced by Eto in the myocardial tissues of MIRI rats, could be prevented by erastin. Besides, ML385 eliminated the inhibition of Eto on ferroptosis induced by MIR. CONCLUSIONS: Eto attenuated the myocardial injury by inhibiting IR-induced ferroptosis via Nrf2 pathway, which may provide a new idea for clinical reperfusion therapy.


Assuntos
Etomidato/farmacologia , Ferroptose/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/fisiologia , Hipnóticos e Sedativos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley
14.
J Invest Dermatol ; 141(10): 2344-2353.e7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836179

RESUMO

With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFß in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Colágeno/biossíntese , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Envelhecimento da Pele , Superóxido Dismutase/fisiologia , Animais , Di-Hidrotestosterona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Nucleic Acids Res ; 49(7): 3748-3763, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764436

RESUMO

Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63- a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2-p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2-p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia.


Assuntos
Queratinócitos , Fator 2 Relacionado a NF-E2/fisiologia , Pele , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Pele/metabolismo
17.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491671

RESUMO

Nrf2, a transcription factor that regulates the response to oxidative stress, has been shown to rescue cone photoreceptors and slow vision loss in mouse models of retinal degeneration (rd). The retinal pigment epithelium (RPE) is damaged in these models, but whether it also could be rescued by Nrf2 has not been previously examined. We used an adeno-associated virus (AAV) with an RPE-specific (Best1) promoter to overexpress Nrf2 in the RPE of rd mice. Control rd mice showed disruption of the regular array of the RPE, as well as loss of RPE cells. Cones were lost in circumscribed regions within the cone photoreceptor layer. Overexpression of Nrf2 specifically in the RPE was sufficient to rescue the RPE, as well as the disruptions in the cone photoreceptor layer. Electron microscopy showed compromised apical microvilli in control rd mice but showed preserved microvilli in Best1-Nrf2-treated mice. The rd mice treated with Best1-Nrf2 had slightly better visual acuity. Transcriptome profiling showed that Nrf2 upregulates multiple oxidative defense pathways, reversing declines seen in the glutathione pathway in control rd mice. In summary, Nrf2 overexpression in the RPE preserves RPE morphology and survival in rd mice, and it is a potential therapeutic for diseases involving RPE degeneration, including age-related macular degeneration (AMD).


Assuntos
Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/fisiologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Retinose Pigmentar/terapia , Animais , Modelos Animais de Doenças , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Degeneração Macular/terapia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Regulação para Cima , Acuidade Visual/genética , Acuidade Visual/fisiologia
18.
Oxid Med Cell Longev ; 2021: 8821833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505589

RESUMO

The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.


Assuntos
Elementos de Resposta Antioxidante , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Neoplasias Mamárias Experimentais/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Organelas/patologia , Estresse Oxidativo , Animais , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organelas/metabolismo
19.
J Mol Neurosci ; 71(1): 19-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32627121

RESUMO

Alzheimer's disease (AD) is considered a prevalent neurological disorder with a neurodegenerative nature in elderly people. Oxidative stress and neuroinflammation due to amyloid ß (Aß) peptides are strongly involved in AD pathogenesis. Klotho is an anti-aging protein with multiple protective effects that its deficiency is involved in development of age-related disorders. In this study, we investigated the beneficial effect of Klotho pretreatment at different concentrations of 0.5, 1, and 2 nM against Aß1-42 toxicity at a concentration of 20 µM in human SH-SY5Y neuroblastoma cells. Our findings showed that Klotho could significantly and partially restore cell viability and decrease reactive oxygen species (known as ROS) and improve superoxide dismutase activity (SOD) in addition to reduction of caspase 3 activity and DNA fragmentation following Aß1-42 challenge. In addition, exogenous Klotho also reduced inflammatory biomarkers consisting of nuclear factor-kB (NF-kB), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in Aß-exposed cells. Besides, Klotho caused downregulation of Wnt1 level, upregulation of phosphorylated cyclic AMP response element binding (pCREB), and mRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) with no significant alteration of epsilon isoform of protein kinase C (PKCε) after Aß toxicity. In summary, Klotho could alleviate apoptosis, oxidative stress, and inflammation in human neuroblastoma cells after Aß challenge and its beneficial effect is partially exerted through appropriate modulation of Wnt1/pCREB/Nrf2/HO-1 signaling.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Glucuronidase/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Via de Sinalização Wnt/fisiologia , Peptídeos beta-Amiloides/toxicidade , Apoptose , Proteína de Ligação a CREB/fisiologia , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Fragmentação do DNA , Glucuronidase/fisiologia , Heme Oxigenase-1/fisiologia , Humanos , Inflamação , Proteínas Klotho , Fator 2 Relacionado a NF-E2/fisiologia , Neuroblastoma , Estresse Oxidativo , Fragmentos de Peptídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Superóxido Dismutase/metabolismo , Proteína Wnt1/biossíntese , Proteína Wnt1/genética
20.
Biomed Pharmacother ; 131: 110713, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920515

RESUMO

Arsenic trioxide (ATO) is an excellent therapy for acute promyelocytic leukemia; however, its use is limited due to its cardiotoxicity. Crocin (CRO) possesses abundant pharmacological and biological properties, including antioxidant, anti-inflammatory, and anti-apoptotic. This study examined the cardioprotective effects of crocin and explored their mechanistic involvement in ATO-induced cardiotoxicity. Forty-eight male rats were treated with ATO to induce cardiotoxicity. In combination with ATO, CRO were given to evaluate its cardioprotection. The results demonstrated that CRO administration not only diminished QTc prolongation, myocardial enzymes and Troponin T levels but also improved histopathological results. CRO administration reduced reactive oxygen species generation. However, the CRO administration caused an increase in glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase and total sulphydryl levels and a decrease in malondialdehyde content, gamma glutamyl transferase and lipid hydroperoxides levels and proinflammatory cytokines. Importantly, immunohistochemical analysis, real time PCR and western blotting showed a reduction in Caspase-3 and Bcl-2-associated X protein expressions and enhancement of B cell lymphoma-2 expression. Real time PCR and western blotting showed a reduction in proinflammatory cytokines. Moreover, CRO caused an activation in nuclear factor erythroid-2 related factor 2, leading to enhanced Kelch-like ECH-associated protein 1, heme oxygenase-1 and nicotinamide adenine dinucleotide quinone dehydrogenase 1 expressions involved in Nrf2 signaling during ATO-induced cardiotoxicity. CRO was shown to ameliorate ATO-induced cardiotoxicity. The mechanisms for CRO amelioration of cardiotoxicity due to inflammation, oxidative damage, and apoptosis may occur via an up-regulated Keap1-Nrf2/HO-1 signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/toxicidade , Cardiotoxicidade/tratamento farmacológico , Carotenoides/farmacologia , Heme Oxigenase (Desciclizante)/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Eletrocardiografia/efeitos dos fármacos , Masculino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA