Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.635
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Transplant ; 33: 9636897241248942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712762

RESUMO

Recently, we and others generated induced tissue-specific stem/progenitor (iTS/iTP) cells. The advantages of iTS/iTP cells compared with induced pluripotent stem (iPS) cells are (1) easier generation, (2) efficient differentiation, and (3) no teratomas formation. In this study, we generated mouse induced pancreatic stem cells (iTS-P cells) by the plasmid vector expressing Yes-associated protein 1 (YAP). The iTS-P YAP9 cells expressed Foxa2 (endoderm marker) and Pdx1 (pancreatic marker) while the expressions of Oct3/4 and Nanog (marker of embryonic stem [ES] cells) in iTS-P YAP9 cells was significantly lower compared with those in ES cells. The iTS-P YAP9 cells efficiently differentiated into insulin-expressing cells compared with ES cells. The ability to generate autologous iTS cells may be applied to diverse applications of regenerative medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Proteínas de Sinalização YAP , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética
2.
Genes Dev ; 38(7-8): 308-321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719541

RESUMO

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Assuntos
Diferenciação Celular , Reprogramação Celular , Fator 3 de Transcrição de Octâmero , Oxirredução , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos
3.
Cell Commun Signal ; 22(1): 60, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254118

RESUMO

BACKGROUND: Increasing evidence has indicated that long non-coding RNAs (lncRNAs) have been proven to regulate esophageal cancer progression. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) has been shown to promote cancer stem cell properties; however, its mechanism of action remains unclear. In this study, we investigated the regulation of esophageal cancer stem cell properties by the interaction of PDIA3P1 with proteins. METHODS: The GEPIA2 and Gene Expression Omnibus databases were used to analyze gene expression. PDIA3P1 expression in human esophageal squamous cell carcinoma (ESCC) tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to determine the effects of PDIA3P1 on ESCC cell proliferation, migration, and invasion. The sphere formation assay, number of side population cells, and CD271 + /CD44 + cells were detected by flow cytometry to identify the cancer stem cell properties. RNA immunoprecipitation (RIP), RNA pull-down, co-immunoprecipitation (co-IP), dual luciferase reporter, and cleavage under targets and tagmentation (CUT&Tag) assays were performed to elucidate the underlying molecular mechanisms. RESULTS: PDIA3P1 expression was upregulated in ESCC cell lines and tissues. Functionally, higher PDIA3P1 expression promoted cell proliferation, invasion, and metastasis and inhibited apoptosis in esophageal cancer. Importantly, PDIA3P1 promoted cancer stem cell properties in ESCC. Mechanistically, PDIA3P1 interacted with and stabilized octamer-binding transcription factor 4 (OCT4) by eliminating its ubiquitination by the ubiquitinating enzyme WW domain-containing protein 2 (WWP2). Moreover, as a transcription factor, OCT4 bound to the PDIA3P1 promoter and promoted its transcription. CONCLUSIONS: Our research revealed a novel mechanism by which a positive feedback loop exists between PDIA3P1 and OCT4. It also demonstrated that the PDIA3P1-WWP2-OCT4 loop is beneficial for promoting the cancer stem cell properties of ESCC. Owing to this regulatory relationship, the PDIA3P1-WWP2-OCT4-positive feedback loop might be used in the diagnosis and prognosis, as well as in the development of novel therapeutics for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Neoplásicas , Fator 3 de Transcrição de Octâmero , RNA Longo não Codificante , Humanos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , RNA , Ubiquitina-Proteína Ligases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores de Fator de Crescimento Neural
4.
Trends Cell Biol ; 34(3): 255-267, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37648593

RESUMO

The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Plasticidade Celular , Rejuvenescimento , Fatores de Transcrição/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
5.
Cell Death Dis ; 14(12): 802, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062041

RESUMO

POU5F1 plays an important role in maintaining the cancer stem cell (CSC) -like properties of gastric cancer (GC) cells. The impact of POU5F1 on the proliferation and metastasis of GC was examined, along with the potential of ATRA as a specific therapeutic agent for GC. The dysregulation of POU5F1 expression in GC tissues was analyzed using public databases and bioinformatics techniques, and the disparity in POU5F1 expression between normal gastric tissues and GC tissues was further assessed through western blot, RT-qPCR, and immunohistochemistry. The present study aimed to investigate the impact of POU5F1 on the proliferation, migration, and invasion of GC cells through both in vivo and in vitro experiments. Additionally, the effects of ATRA on the proliferation, migration, and invasion of GC cells were examined using in vivo and in vitro approaches. Our findings revealed a significant upregulation of POU5F1 in GC tissues, which was found to be associated with a poorer prognosis in patients with GC. Moreover, POU5F1 was observed to enhance the proliferation, migration, and invasion of GC cells in vitro, as well as promote subcutaneous tumor growth and lung metastasis of GC cells in vivo. The overexpression of POU5F1 mechanistically triggers the process of Epithelial-mesenchymal transition (EMT) by down-regulating E-Cadherin and up-regulating N-Cadherin and VIM. POU5F1 hinders the ubiquitination of TRAF6 through negative regulation of TRIM59, thereby facilitating the activation of the NF-κB pathway. Furthermore, the administration of ATRA effectively impedes the proliferation, migration, and invasion of GC cells by suppressing the expression of POU5F1. The upregulation of POU5F1 elicits EMT, fosters the initiation of the NF-κB signaling pathway in GC cells, and stimulates the proliferation, invasion, and metastasis of GC cells. All-trans retinoic acid (ATRA) can impede these POU5F1-induced effects, thereby potentially serving as an adjunctive therapeutic approach for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica/genética , Proliferação de Células , Movimento Celular , Transição Epitelial-Mesenquimal , Ubiquitinação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
J Med Virol ; 95(12): e29264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054553

RESUMO

The Octamer-binding transcription factor-4 (Oct4) is upregulated in different malignancies, yet a paradigm for mechanisms of Oct4 post-embryonic re-expression is inadequately understood. In cervical cancer, Oct4 expression is higher in human papillomavirus (HPV)-related than HPV-unrelated cervical cancers and this upregulation correlates with the expression of the E7 oncogene. We have reported that E7 affects the Oct4-transcriptional output and Oct4-related phenotypes in cervical cancer, however, the underlying mechanism remains elusive. Here, we characterize the Oct4-protein interactions in cervical cancer cells via computational analyses and Mass Spectrometry and reveal that Methyl-binding proteins (MBD2 and MBD3), are determinants of Oct4-driven transcription. E7 triggers MBD2 downregulation and TET1 upregulation, thereby disrupting the methylation status of the Oct4 gene. This coincides with an increase in the total DNA hydroxymethylation leading to the re-expression of Oct4 in cervical cancer and likely affecting broader transcriptional patterns. Our findings reveal a previously unreported mechanism by which the E7 oncogene can regulate Oct4 re-expression and global transcriptional patterns by increasing DNA hydroxymethylation and lowering the barrier to cellular plasticity during carcinogenesis.


Assuntos
Fator 3 de Transcrição de Octâmero , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Oxigenases de Função Mista , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Proto-Oncogênicas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Fator 3 de Transcrição de Octâmero/genética
7.
Medicine (Baltimore) ; 102(48): e36433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050242

RESUMO

The dedifferentiation process of tumorigenesis and somatic cell reprogramming has some commonness and differences, which is the key question to cancer therapeutic strategy and stem cell applications. To further explore the commonalities and variance between carcinogenesis and induced pluripotent stem cell reprogramming, we investigated the role of stemness factors OSKM (OCT4, SOX2, KLF4, and MYC) in the pan-cancer process using public clinical data. Expression of OSKM in human pan-cancer was analyzed via the Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) database based on the RNA-seq data of tissues. The correlation of expression between OSKM genes was analyzed via the Tumor Immune Evaluation Resource (TIMER) database, while the STRING tool was used to construct the protein-protein interaction network for OSKM. Prognostic impact of OSKM in pan-cancer was analyzed by Cox proportional hazards regression model. The relationships between OSKM and tumor stemness, tumor microenvironment and immune checkpoint and were performed by Sangerbox platform using Pearson correlation analysis. Our results showed that OSKM were universally expressed and significantly altered in tumors compared with adjacent normal tissues in most tumor types. In addition, correlation analysis revealed the relevance of OSKM genes to patient prognosis, cancer cell stemness, tumor microenvironment or immune checkpoint. However, there is little similarity between these genes in terms of how they function in each cancer type. This study elucidates the different roles of core stemness factors OSKM in pan-cancer, offering potential therapeutic targets for novel anti-cancer strategies and knowledge to minimize the potential carcinogenic effects during stem cell transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Neoplasias , Fator 3 de Transcrição de Octâmero , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição SOXB1 , Humanos , Reprogramação Celular , Fator 4 Semelhante a Kruppel/genética , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOXB1/genética , Microambiente Tumoral/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética
8.
BMC Res Notes ; 16(1): 309, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919788

RESUMO

AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Animais , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Homeodomínio/genética
9.
J Reprod Dev ; 69(6): 317-327, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880086

RESUMO

Induced pluripotent stem (iPS) cells are generated from somatic cells and can differentiate into various cell types. Therefore, these cells are expected to be a powerful tool for modeling diseases and transplantation therapy. Generation of domestic cat iPS cells depending on leukemia inhibitory factor has been reported; however, this strategy may not be optimized. Considering that domestic cats are excellent models for studying spontaneous diseases, iPS cell generation is crucial. In this study, we aimed to derive iPS cells from cat embryonic fibroblasts retrovirally transfected with mouse Oct3/4, Klf4, Sox2, and c-Myc. After transfection, embryonic fibroblasts were reseeded onto inactivated SNL 76/7 and cultured in a medium supplemented with basic fibroblast growth factor. Flat, compact, primary colonies resembling human iPS colonies were observed. Additionally, primary colonies were more frequently observed in the KnockOut Serum Replacement medium than in the fetal bovine serum (FBS) medium. However, enhanced maintenance and proliferation of iPS-like cells occurred in the FBS medium. These iPS-like cells expressed embryonic stem cell markers, had normal karyotypes, proliferated beyond 45 passages, and differentiated into all three germ layers in vitro. Notably, expression of exogenous Oct3/4, Klf4, and Sox2 was silenced in these cells. However, the iPS-like cells failed to form teratomas. In conclusion, this is the first study to establish and characterize cat iPS-like cells, which can differentiate into different cell types depending on the basic fibroblast growth factor.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gatos , Camundongos , Humanos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
10.
Genes (Basel) ; 14(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37761837

RESUMO

The transcription factors Oct4, Sox2, Klf4, and c-Myc enable the reprogramming of somatic cells into induced pluripotent cells. Reprogramming generates newly differentiated cells for potential therapies in cancer, neurodegenerative diseases, and rejuvenation processes. In cancer therapies, these transcription factors lead to a reduction in the size and aggressiveness of certain tumors, such as sarcomas, and in neurodegenerative diseases, they enable the production of dopaminergic cells in Parkinson's disease, the replacement of affected neuronal cells in olivopontocerebellar atrophy, and the regeneration of the optic nerve. However, there are limitations, such as an increased risk of cancer development when using Klf4 and c-Myc and the occurrence of abnormal dyskinesias in the medium term, possibly generated by the uncontrolled growth of differentiated dopaminergic cells and the impairment of the survival of the new cells. Therefore, the Yamanaka transcription factors have shown therapeutic potential through cell reprogramming for some carcinomas, neurodegenerative diseases, and rejuvenation. However, the limitations found in the studies require further investigation before the use of these transcription factors in humans.


Assuntos
Carcinoma , Sarcoma , Humanos , Agressão , Diferenciação Celular/genética , Laboratórios , Fator 3 de Transcrição de Octâmero/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição SOXB1 , Proteínas Proto-Oncogênicas c-myc
11.
Cell Reprogram ; 25(5): 224-237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769039

RESUMO

Hepatitis B virus x (HBx) is a multifunctional protein coded by the Hepatitis B virus that is involved in various cellular processes such as proliferation, cell survival/apoptosis, and histone methylation. HBx was reported to be associated with liver "cancer stem cells." The stemness inducing properties of HBx could also facilitate the generation of pluripotent stem cells from somatic cells. It is well established that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using a cocktail of transcription factors called Yamanaka's factors (YFs) (OCT4, SOX2, KLF4, and MYC). The reprogramming process proceeds step-by-step with reprogramming factor chromatin interactions, transcription, and chromatin states changing during transitions. HBx is a "broad spectrum trans-activator" and therefore could facilitate these transitions. We electroporated low passage and high passage (difficult to reprogram) fibroblasts using YFs with and without HBx and evaluated the reprogramming efficiency. We also investigated the tri-lineage and terminal differentiation potential of iPSC derived using HBx. We found that the addition of HBx to YF improves iPSC derivation, and it increases the efficiency of iPSC generation from "difficult or hard-to-reprogram samples" such as high passage/senescent fibroblasts. Further, we show that HBx can substitute the key transcription factor MYC in the YF cocktail to generate iPSC. The cellular levels of OCT3/4 and MYC were increased in HBx expressing cells. Our results have practical value in improving the efficiency of pluripotent stem cell derivation from "difficult to reprogram" somatic cells, in addition to providing some insights into the mechanisms of liver carcinogenesis in chronic hepatitis B. To conclude, HBx improves the reprogramming efficiency of YFs. HBx increases the cellular levels of OCT3/4 and MYC.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Proteínas Virais Reguladoras e Acessórias , Diferenciação Celular , Cromatina/metabolismo , Fator 4 Semelhante a Kruppel , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Proteínas Virais Reguladoras e Acessórias/metabolismo
12.
BMC Biol ; 21(1): 167, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542287

RESUMO

BACKGROUND: The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS: To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS: We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.


Assuntos
Células-Tronco Embrionárias , Histonas , Animais , Camundongos , Histonas/genética , Células-Tronco Embrionárias/metabolismo , Cromatina/metabolismo , Nucleossomos , Regulação da Expressão Gênica , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Mamíferos/genética
13.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040346

RESUMO

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cavalos , Animais , Reprogramação Celular , Equidae , Células Cultivadas , Diferenciação Celular/genética , Fibroblastos , Fator 3 de Transcrição de Octâmero/genética
14.
Commun Biol ; 6(1): 393, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041280

RESUMO

Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.


Assuntos
Leucócitos Mononucleares , Células-Tronco Mesenquimais , Humanos , Diferenciação Celular/genética , Leucócitos Mononucleares/metabolismo , Plasmídeos , Células-Tronco Mesenquimais/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
15.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835597

RESUMO

Bone marrow is an abundant source of both hematopoietic as well as non-hematopoietic stem cells. Embryonic, fetal and stem cells located in tissues (adipose tissue, skin, myocardium and dental pulp) express core transcription factors, including the SOX2, POU5F1 and NANOG gene responsible for regeneration, proliferation and differentiation into daughter cells. The aim of the study was to examine the expression of SOX2 and POU5F1 genes in CD34-positive peripheral blood stem cells (CD34+ PBSCs) and to analyze the influence of cell culture on the expression of SOX2 and POU5F1 genes. The study material consisted of bone marrow-derived stem cells isolated by using leukapheresis from 40 hematooncology patients. Cells obtained in this process were subject to cytometric analysis to determine the content of CD34+ cells. CD34-positive cell separation was conducted using MACS separation. Cell cultures were set, and RNA was isolated. Real-time PCR was conducted in order to evaluate the expression of SOX2 and POU5F1 genes and the obtained data were subject to statistical analysis. We identified the expression of SOX2 and POU5F1 genes in the examined cells and demonstrated a statistically significant (p < 0.05) change in their expression in cell cultures. Short-term cell cultures (<6 days) were associated with an increase in the expression of SOX2 and POU5F1 genes. Thus, short-term cultivation of transplanted stem cells could be used to induce pluripotency, leading to better therapeutic effects.


Assuntos
Leucaférese , Fatores de Transcrição SOXB1 , Humanos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células , Expressão Gênica , Antígenos CD34 , Fator 3 de Transcrição de Octâmero/genética
16.
PeerJ ; 11: e14349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655039

RESUMO

Background: Ameloblastoma (AME) is characterized by a locally invasive growth pattern. In an attempt to justify the aggressiveness of neoplasms, the investigation of the role of stem cells has gained prominence. The SOX-2, NANOG and OCT4 proteins are important stem cell biomarkers. Methodology: To verify the expression of these proteins in tissue samples of AME, dentigerous cyst (DC) and dental follicle (DF), immunohistochemistry was performed and indirect immunofluorescence were performed on the human AME (AME-hTERT) cell line. Results: Revealed expression of SOX-2, NANOG and OCT4 in the tissue samples and AME-hTERT lineage. Greater immunostaining of the studied proteins was observed in AME compared to DC and DF (p < 0.001). Conclusions: The presence of biomarkers indicates a probable role of stem cells in the genesis and progression of AME.


Assuntos
Ameloblastoma , Células-Tronco Neoplásicas , Humanos , Ameloblastoma/genética , Ameloblastoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Imuno-Histoquímica , Proteína Homeobox Nanog/genética , Células-Tronco/metabolismo , Biomarcadores/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
17.
J Gastrointest Cancer ; 54(4): 1231-1239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36705780

RESUMO

BACKGROUND: Oct4 has critical role in maintaining pluripotency, proliferative potential, and self-renewal capacity in embryonic stem and germ cells. Although Oct4 has been shown to be upregulated in many cancers, its clinical significance in gallbladder carcinoma is poorly understood. METHODS: We studied the expression profile of Oct4 in 61 GBC and 30 chronic cholecystitis (as control) using real time RT-PCR, western blotting, and immunohistochemistry. The expression data was correlated with clinico-pathological parameters. The diagnostic utility was assessed through ROC curve, and prognostic value was analyzed by Kaplan-Meier method. RESULTS: Oct4 was significantly upregulated at mRNA as well as protein levels. The higher mRNA expression shows significant association with late stage, late T stage, and higher grade of tumor. A significant positive correlation was also observed with stage, T stage, and tumor grade. Sum score analysis of protein expression shows positive correlation with stage and the presence or absence of gallstone in tumor samples. The ROC curve analysis revealed the moderate diagnostic potential of Oct4. Kaplan-Meier analysis showed that patients having higher expression of Oct4 were having low mean survival compared with the patients with lower Oct4 expression. CONCLUSION: In conclusion, our data suggests that higher expression of Oct4 may serve as potential biological indicator for tumor aggressiveness and poor prognosis of GBC.


Assuntos
Neoplasias da Vesícula Biliar , Fator 3 de Transcrição de Octâmero , Humanos , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Fator 3 de Transcrição de Octâmero/genética , Colecistite/genética , Biomarcadores Tumorais/genética , Prognóstico , Índia , Análise de Sobrevida
18.
Taiwan J Obstet Gynecol ; 62(1): 16-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36720532

RESUMO

OBJECTIVE: Research has suggested that tumor-initiating tumor stem cells are derived from normal stem cells and that tumor cells undergo progressive de-differentiation to achieve a stem cell-like state. Tumor stem cells are characterized by high proliferation ability, high plasticity, expression of multi-drug resistance proteins, and the ability to seed new tumors. Octamer-binding transcription factor 4 (Oct-4) and its activation targets are overexpressed in the tumor stem cells of various types of tumors, and this expression is associated with the pathogenesis, development, and poor prognosis of tumors. The primary objective of this study was to test if a stably transfected with Oct-4 gene cell line, RL95-2/Oct-4, has the characteristics of tumor stem cells. MATERIALS AND METHODS: Human endometrial carcinoma cells (RL95-2) were transfected with a plasmid carrying genes for Oct-4 and green fluorescent protein (GFP). The stably transfected cells, RL95-2/Oct-4, were selected using G418 and observed to express the GFP reporter gene under the control of the Oct-4 promoter. GFP expression levels of RL95-2/Oct-4 cells were measured using flow cytometry. The proliferation potential of cells was determined according to cumulative population doubling and colony-formation efficiency. Gene expression was analyzed using reverse transcription-polymerase chain reaction. RESULTS: RL95-2/Oct-4 cells not only exhibited increased expression of the three most important stem cell genes, Oct-4, Nanog, and Sox2, but also had increased expression of the endometrial tumor stem cell genes CD133 and ALDH1. Furthermore, enhanced expression of these genes in the RL95-2/Oct-4 cells was associated with higher colony-forming ability and growth rate than in parental RL95-2 cells. We also observed that cisplatin induced less cell death in RL95-2/Oct-4 cells than in RL95-2 cells, indicating that RL95-2/Oct-4 cells were more resistant to chemotherapeutic agents. CONCLUSION: The study findings contribute to investigate the effects of Oct-4 on tumor stem cell origins.


Assuntos
Cisplatino , Neoplasias do Endométrio , Fator 3 de Transcrição de Octâmero , Feminino , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Resistencia a Medicamentos Antineoplásicos
19.
Mol Biol Rep ; 50(2): 981-991, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378419

RESUMO

PURPOSE: Oct3/4 a transcription factor is involved in maintaining the characteristics of cancer stem cells. Oct3/4 can be expressed differentially with respect to the progression of cervical cancer (CC). In addition, Oct3/4 can give rise to three isoforms by alternative splicing of the mRNA Oct3/4A, Oct3/4B and Oct3/4B1. The aim of this study was to evaluate the mRNA expression from Oct3/4A, Oct3/4B and Oct3/4B1 in low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), CC samples, and measure the effect of the HPV16 E7 oncoprotein on the mRNA expression from Oct3/4 isoforms in the C-33A cell line. METHODS: The expression levels of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with LSILs, HSILs and CC. Additionally, C-33A cells that expressed the HPV16 E7 oncoprotein were established to evaluate the effect of E7 on the expression of Oct3/4 mRNA isoforms. RESULTS: Oct3/4A (p = 0.02), Oct3/4B (p = 0. 001) and Oct3/4B1 (p < 0. 0001) expression is significantly higher in patients with LSIL, HSIL and CC than in woman with non-IL. In the C-33A cell line, the expression of Oct3/4A mRNA in the presence of the E7 oncoprotein increased compared to that in nontransfected C-33A cells. CONCLUSION: Oct3/4B and Oct3/4B1 mRNA were expressed at similar levels among the different groups. These data indicate that only the mRNA of Oct3/4A is upregulated by the HPV16 E7 oncoprotein.


Assuntos
Papillomavirus Humano 16 , Fator 3 de Transcrição de Octâmero , Neoplasias do Colo do Útero , Feminino , Humanos , Processamento Alternativo/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
20.
Mol Med ; 28(1): 162, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581839

RESUMO

BACKGROUND: Randall's plaques (RP) are identified as anchored sites for kidney calcium oxalate stones, but the mechanism remains unclear. Given the importance of osteogenic-like cells in RP formation and OCT4 in reprogramming differentiated cells to osteoblasts, the current study explored the potential role of OCT4 in RP formation. METHODS: OCT4 and biomineralization were evaluated in RP, and immunofluorescence co-staining was performed to identify these cells with alteration of OCT4 and osteogenic markers. Based on the analysis of tissue, we further investigated the mechanism of OCT4 in regulating osteogenic-like differentiation of primary human renal interstitial fibroblasts (hRIFs) in vitro and vivo. RESULTS: We identified the upregulated OCT4 in RP, with a positive correlation to osteogenic markers. Interestingly, fibroblast marker Vimentin was partially co-localized with upregulated OCT4 and osteogenic markers in RP. Further investigations revealed that OCT4 significantly enhanced the osteogenic-like phenotype of hRIFs in vitro and in vivo. Mechanically, OCT4 directly bound to BMP2 promoter and facilitated its CpG island demethylation to transcriptionally promote BMP2 expression. Furthermore, combination of RIP and RNA profiling uncovered that lncRNA OLMALINC physically interacted with OCT4 to promote its stabilization via disrupting the ubiquitination. Additionally, OLMALINC was upregulated in fibroblasts in RP visualized by FISH, and a positive correlation was revealed between OLMALINC and OCT4 in RP. CONCLUSIONS: The upregulation of OCT4 in hRIFs was a pathological feature of RP formation, and OLMALINC/OCT4/BMP2 axis facilitated hRIFs to acquire osteogenic-like phenotype under osteogenic conditions, through which the pathway might participate in RP formation. Our findings opened up a new avenue to better understand RP formation in which osteogenic-like process was partially triggered by lncRNAs and pluripotency maintenance related genes.


Assuntos
Proteína Morfogenética Óssea 2 , Cálculos Renais , Fator 3 de Transcrição de Octâmero , RNA Longo não Codificante , Humanos , Proteína Morfogenética Óssea 2/genética , Oxalato de Cálcio/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Cálculos Renais/metabolismo , Medula Renal/patologia , Fenótipo , RNA Longo não Codificante/genética , Fator 3 de Transcrição de Octâmero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA