Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805565

RESUMO

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Colesterol , Progressão da Doença , Fator 3-gama Nuclear de Hepatócito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
2.
Chin Med J (Engl) ; 137(11): 1351-1359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38721807

RESUMO

BACKGROUND: The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD: The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS: Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION: CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.


Assuntos
Fibroblastos , Fator de Transcrição GATA4 , Fator 3-gama Nuclear de Hepatócito , Hepatócitos , Animais , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Fibroblastos/metabolismo , Hepatócitos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reprogramação Celular/fisiologia , Reprogramação Celular/genética , Diferenciação Celular/fisiologia , Diferenciação Celular/genética , Células Cultivadas
3.
Exp Mol Med ; 54(6): 848-860, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35764883

RESUMO

Growing evidence has revealed that hypoxia is involved in multiple stages of cancer development. However, there are limited reports on the effects of long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) progression under hypoxia. The main purposes of this study were to analyze the effect of the novel lncRNA DACT3-AS1 on metastasis in HCC and to elucidate the related molecular mechanism. Bioinformatics tools were employed. RT-qPCR or western blot assays were conducted to detect RNA or protein expression. Clinical samples and in vivo assays were utilized to reveal the role of DACT3-AS1 in HCC. Other mechanism and functional analyses were specifically designed and performed as well. Based on the collected data, this study revealed that HIF-1α transcriptionally activates DACT3-AS1 expression under hypoxia. DACT3-AS1 was verified to promote metastasis in HCC. Mechanistically, DACT3-AS1 promotes the interaction between HDAC2 and FOXA3 to stimulate FOXA3 deacetylation, which consequently downregulates the FOXA3 protein. Furthermore, FOXA3 serves as a transcription factor that can bind to the PKM2 promoter region, thus hindering PKM2 expression. To summarize, this study uncovered that HIF-1α-induced DACT3-AS1 promotes metastasis in HCC and can upregulate PKM2 via the HDAC2/FOXA3 pathway in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/metabolismo , Histona Desacetilase 2/genética , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
J Clin Lab Anal ; 35(3): e23686, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33368532

RESUMO

OBJECTIVE: In this research paper, we aimed to study the role of FOXA3 in hepatoblastoma (HB) and the molecular mechanism. METHODS: Immunohistochemistry was applied to determine the expression situation of FOXA3 and AFP in HB tissues and the adjacent normal tissues. FOXA3, HNF1A, and ZFHX3 expressions in HB tissues and the normal tissues were measured by Western blot. HB cell lines were randomly divided into 4 groups: Model, si-NC, si-FOXA3-1, and si-FOXA3-2 group. The HB cell viability and colony formation characteristics in the 4 groups were explored by CCK-8 and cell cloning formation assay, respectively. The expression of FOXA3, AFP, HNF1A, ZFHX3, and MYC in HB cells after knockdown of FOXA3 was measured. RESULTS: FOXA3, AFP, and HNF1A expressions were significantly up-regulated in HB tissues, while ZFHX3 expression was down-regulated. Knockdown of FOXA3 markedly inhibited HB cell viability and cloning formation ability. Knockdown of FOXA3 decreased FOXA3, AFP, and HNF1A/MYC expression, while increased ZFHX3 expression. CONCLUSION: FOXA3 promotes the occurrence and development of HB by up-regulating AFP and HNF1A/MYC expression, and down-regulating ZFHX3 expression.


Assuntos
Hepatoblastoma/patologia , Fator 3-gama Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas/metabolismo , Sobrevivência Celular , Pré-Escolar , Feminino , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino
5.
Nat Commun ; 11(1): 5292, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087715

RESUMO

Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células Endoteliais/citologia , Hepatócitos/citologia , Células-Tronco/citologia , Animais , Ductos Biliares/citologia , Ductos Biliares/fisiologia , Agregação Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células Endoteliais/fisiologia , Feminino , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/fisiologia , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/fisiologia , Hepatócitos/fisiologia , Hepatócitos/transplante , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/fisiologia
6.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151057

RESUMO

Cholangiocarcinoma (CCA), a malignancy of biliary epithelium, is related to liver stem cell deregulation. FoxAs are a group of transcription factors that play critical roles in liver stem cell differentiation. In this study, the expression levels of FoxAs (i.e., FoxA1, FoxA2 and FoxA3) were detected in intrahepatic CCA tissues and the functions of FoxAs were studied in CCA cell lines. FoxA1 and FoxA2 were mainly localized in the nuclei of normal bile duct (NBD) cells and some of the cancer cells. Low expression of FoxA1 in CCA tissues (72%) was significantly correlated with poor prognosis. FoxA3 expression of CCA cells was localized in the nucleus and cytoplasm, whereas it was slightly detected in NBDs. High expression of FoxA3 in cancer tissues (61%) was significantly related to high metastasis status. These findings suggest the opposing roles of FoxA1 and FoxA3 in CCA. Moreover, the FoxA1-over-expressing CCA cell line exhibited a significant reduction in proliferative and invasive activities compared to control cells. Knockdown of FoxA3 in CCA cells resulted in a significant decrease in proliferative and invasive activities compared with control cells. Taken together, in CCA, FoxA1 is down-regulated and has tumor suppressive roles, whereas FoxA3 is up-regulated and has oncogenic roles.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Progressão da Doença , Feminino , Seguimentos , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
7.
Dig Dis Sci ; 65(7): 2009-2023, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31722057

RESUMO

BACKGROUND AND AIMS: Bioartificial livers (BALs) have attracted much attention as potential supportive therapies for liver diseases. A serum-free microcarrier culture strategy for the in vitro high-density expansion of human-induced hepatocyte-like cells (hiHeps) suitable for BALs was studied in this article. METHODS: hiHeps were transdifferentiated from human fibroblasts by the lentiviral overexpression of FOXA3, HNF1A, and HNF4A. Cells were cultured on microcarriers, their proliferation was evaluated by cell count and CCK-8 assays, and their function was evaluated by detecting liver function parameters in the supernatant, including urea secretion, albumin synthesis, and lactate dehydrogenase levels. The expressions of hepatocyte function-associated genes of hiHeps were measured by qRT-PCR in 2D and 3D conditions. The expression of related proteins during fibronectin promotes cell adhesion, and proliferation on microcarrier was detected by western blotting. RESULTS: During microcarrier culture, the optimal culture conditions during the adherence period were the use of half-volume high-density inoculation, Cytodex 3 at a concentration of 3 mg/mL, a cell seeding density of 2.0 × 105 cells/mL, and a stirring speed of 45 rpm. The final cell density in self-developed, chemically defined serum-free medium (SFM) reached 2.53 × 106 cells/mL, and the maximum increase in expansion was 12.61-fold. In addition, we found that fibronectin (FN) can promote hiHep attachment and proliferation on Cytodex 3 microcarriers and that this pro-proliferative effect was mediated by the integrin-ß1/FAK/ERK/CyclinD1 signaling pathway. Finally, the growth and function of hiHeps on Cytodex 3 in SFM were close to those of hiHeps on Cytodex 3 in hepatocyte maintenance medium (HMM), and cells maintained their morphology and function after harvest on microcarriers. CONCLUSIONS: Serum-free microcarrier culture has important implications for the expansion of a sufficient number of hiHeps prior to the clinical application of BALs.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Transdiferenciação Celular , Hepatócitos/citologia , Fígado Artificial , Albuminas/biossíntese , Adesão Celular , Técnicas de Reprogramação Celular/métodos , Meios de Cultura Livres de Soro , Ciclina D1/metabolismo , Dextranos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Integrina beta1/metabolismo , L-Lactato Desidrogenase/metabolismo , Sistema de Sinalização das MAP Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ureia/metabolismo
8.
Thorax ; 74(1): 18-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29991510

RESUMO

RATIONALE: Goblet cell hyperplasia (GCH) is one of the cardinal features of chronic obstructive pulmonary disease (COPD) and contributes to airways obstruction. Rhinovirus (RV), which causes acute exacerbations in patients with COPD, also causes prolonged airways obstruction. Previously, we showed that RV enhances mucin gene expression and increases goblet cell number in a COPD mouse model. This study examines whether RV causes sustained GCH in relevant models of COPD. METHODS: Mucociliary-differentiated COPD and normal airway epithelial cell cultures and mice with normal or COPD phenotype were infected with RV or sham and examined for GCH by immunofluorescence and/or mucin gene expression. In some experiments, RV-infected COPD cells and mice with COPD phenotype were treated with γ-secretase inhibitor or interleukin-13 neutralising antibody and assessed for GCH. To determine the contribution of NOTCH1/3 in RV-induced GCH, COPD cells transduced with NOTCH1/3 shRNA were used. RESULTS: RV-infected COPD, but not normal cell cultures, showed sustained GCH and increased mucin genes expression. Microarray analysis indicated increased expression of NOTCH1, NOTCH3 and HEY1 only in RV-infected COPD cells. Blocking NOTCH3, but not NOTCH1, attenuated RV-induced GCH in vitro. Inhibition of NOTCH signalling by γ-secretase inhibitor, but not neutralising antibody to IL-13, abrogated RV-induced GCH and mucin gene expression. CONCLUSIONS: RV induces sustained GCH via NOTCH3 particularly in COPD cells or mice with COPD phenotype. This may be one of the mechanisms that may contribute to RV-induced prolonged airways obstruction in COPD.


Assuntos
Células Caliciformes/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptor Notch3/genética , Mucosa Respiratória/patologia , Rhinovirus , Actinas/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células Caliciformes/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Hiperplasia/metabolismo , Hiperplasia/virologia , Interleucina-13/imunologia , Camundongos , Mucina-5AC/genética , Mucina-5B/genética , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch3/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Gene ; 685: 202-210, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415009

RESUMO

Despite advances in early diagnosis and treatment, cancer still remains the major reason of mortality worldwide. The forkhead box A (FOXA) family is reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human lung cancer. Herein, we conducted a detailed cancer vs. normal analysis. The mRNA expression levels of FOXA family in numerous kind of cancers, including lung cancer, were analyzed using the Oncomine and GEPIA database. We observed that the mRNA expression levels of FOXA1, and FOXA3 were all increased while FOXA2 were decreased in most cancers compared with normal tissues, especially in lung cancer. Moreover, the expression levels of FOXA1, and FOXA3 are also highly expressed, while FOXA2 were decreased in almost all cancer cell lines, particularly in lung cancer cell lines, analyzing by Cancer Cell Line Encyclopedia (CCLE) and EMBL-EBI databases. Furthermore, the LinkedOmics database was used to evaluate the prognostic values, indicating that higher expression of FOXA1, FOXA3 indicated a poor overall survival (OS), while increased FOXA2 revealed a better OS in lung cancer. To conclusion, FOXA family showed significant expression differences between cancer and normal tissues, especially lung cancer, and FOXA1, FOXA3 could be promising prognostic biomarkers for lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Família Multigênica , Prognóstico , RNA Mensageiro/genética , Transcrição Gênica
10.
Acta Pharmacol Sin ; 40(5): 620-629, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30315254

RESUMO

Human liver or hepatocyte transplantation is limited by a severe shortage of donor organs. Direct reprogramming of other adult cells into hepatic cells may offer a solution to this problem. In a previous study, we have generated hepatocyte-like cells from mouse fibroblasts using only one transcription factor (TF) plus a chemical cocktail. Here, we show that human urine-derived epithelial-like cells (hUCs) can also be transdifferentiated into human hepatocyte-like cells (hiHeps) using one TF (Foxa3, Hnf1α, or Hnf4α) plus the same chemical cocktail CRVPTD (C, CHIR99021; R, RepSox; V, VPA; P, Parnate; T, TTNPB; and D, Dznep). These hiHeps express multiple hepatocyte-specific genes and display functions characteristic of mature hepatocytes. With the introduction of the large T antigen, these hiHeps can be expanded in vitro and can restore liver function in mice with concanavalin-A-induced acute liver failure. Our study provides a strategy to generate functional hepatocyte-like cells from hUCs by using a single TF plus a chemical cocktail.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Células Epiteliais/citologia , Hepatócitos/citologia , Falência Hepática Aguda/terapia , Urina/citologia , Animais , Concanavalina A , Células Epiteliais/metabolismo , Células HEK293 , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/transplante , Humanos , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos , Transfecção , Adulto Jovem
11.
Methods Mol Biol ; 1905: 93-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30536093

RESUMO

Primary hepatocytes are widely used in regenerative medicine, drug metabolism analysis, and in vitro drug screens. To overcome the shortage of liver donors, several strategies, such as differentiation of pluripotent stem cells and transdifferentiation from somatic cells, were developed to generate hepatocytes from alternative sources. Here, we describe in detail lenti-virus-based procedure for direct conversion of human fibroblasts to hepatocytes (hiHep cells) in vitro. A detailed protocol for preparation of human fibroblasts from scar tissues is also provided. Based on this protocol, FOXA3, HNF1A, and HNF4A are introduced into SV40-large-T-antigen-expressing human scar fibroblasts by lenti-virus. It usually takes about 5-7 days to get epithelial hiHep colonies. SV40-large-T-antigen-expressing hiHep (hiHepLT) cells are proliferative and can be expanded to a large number for potential uses.


Assuntos
Técnicas de Cultura de Células/métodos , Cicatriz/patologia , Fibroblastos/citologia , Hepatócitos/citologia , Lentivirus/genética , Antígenos Transformantes de Poliomavirus/genética , Linhagem da Célula , Proliferação de Células , Transdiferenciação Celular , Reprogramação Celular , Cicatriz/genética , Cicatriz/metabolismo , Fibroblastos/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Vírus 40 dos Símios/genética
12.
Methods Mol Biol ; 1905: 103-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30536094

RESUMO

In vivo conversion of fibroblasts into hepatocyte-like cells provides one potential approach for the treatment of liver fibrosis. In our previous study, we showed in vivo conversion of myofibroblasts into induced hepatocytes (iHeps) by forced expression of four transcription factors in genetic fate-tracing mouse model of chronic liver disease. These in vivo-generated iHeps showed similar expression profile with endogenous hepatocytes (eHeps) and also exhibited similar functional characteristics, such as albumin secretion, urea synthesis, cytochrome activity, and drug responsiveness. Furthermore, the targeted expression of our reprogramming factors in myofibroblasts attenuated liver fibrosis. Our study suggests that in vivo reprogramming may open new perspectives for the treatment of diseases such as liver fibrosis.


Assuntos
Dependovirus/genética , Fibroblastos/citologia , Hepatócitos/citologia , Cirrose Hepática/terapia , Fatores de Transcrição/genética , Animais , Tetracloreto de Carbono/efeitos adversos , Linhagem da Célula , Reprogramação Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Vetores Genéticos/administração & dosagem , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Piridinas/efeitos adversos
13.
Cell Res ; 29(2): 124-135, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30560924

RESUMO

Normal cells become cancer cells after a malignant transformation, but whether cancer cells can be reversed to normal status remains elusive. Here, we report that the combination of hepatocyte nuclear factor 1A (HNF1A), HNF4A and forkhead box protein A3 (FOXA3) synergistically reprograms hepatocellular carcinoma (HCC) cells to hepatocyte-like cells (reprogrammed hepatocytes, rHeps). Our results show that rHeps lose the malignant phenotypes of cancer cells and retrieve hepatocyte-specific characteristics including hepatocyte-like morphology; global expression pattern of genes and specific biomarkers of hepatocytes; and the unique hepatic functions of albumin (ALB) secretion, glycogen synthesis, low-density lipoprotein (LDL) uptake, urea production, cytochrome P450 enzymes induction and drug metabolism. Intratumoral injection of these three factors efficiently shrank patient-derived tumor xenografts and reprogrammed HCC cells in vivo. Most importantly, transplantation of rHeps in the liver of fumarylacetoacetate hydrolase-deficient (Fah-/-) mice led to the reconstruction of hepatic lobules and the restoration of hepatic function. Mechanistically, exogenous expression of HNF1A, HNF4A and FOXA3 in HCC cells initiated the endogenous expression of numerous hepatocyte nuclear factors, which promoted the conversion of HCC cells to hepatocyte-like cells. Collectively, our results indicate the successful conversion of hepatoma cells to hepatocyte-like cells, not only extending our current knowledge of cell reprogramming but also providing a route towards a novel therapeutic strategy for cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Reprogramação Celular/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Vetores Genéticos , Células HEK293 , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Fenótipo , Albumina Sérica Humana/análise , Transfecção , Carga Tumoral/genética
14.
Biomed Res Int ; 2018: 8240567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327781

RESUMO

Recently, several researchers have reported that direct reprogramming techniques can be used to differentiate fibroblasts into hepatocyte-like cells without a pluripotent intermediate step. However, the use of viral vectors for conversion continues to pose important challenges in terms of genome integration. Herein, we propose a new method of direct conversion without genome integration with potential clinical applications. To generate hepatocyte-like cells, mRNA coding for the hepatic transcription factors Foxa3 and HNF4α was transfected into mouse embryonic fibroblasts. After 10-12 days, the fibroblasts converted to an epithelial morphology and generated colonies of hepatocyte-like cells (R-iHeps). The generated R-iHeps expressed hepatocyte-specific marker genes and proteins, including albumin, alpha-fetoprotein, HNF4α, CK18, and CYP1A2. To evaluate hepatic function, indocyanine green uptake, periodic acid-Schiff staining, and albumin secretion were assessed. Furthermore, mCherry-positive R-iHeps were engrafted in the liver of Alb-TRECK/SCID mice, and we confirmed FAH enzyme expression in Fah1RTyrc/RJ models. In conclusion, our data suggest that the nonintegrating method using mRNA has potential for cell therapy.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Fator 3-gama Nuclear de Hepatócito , Fator 4 Nuclear de Hepatócito , Hepatócitos/metabolismo , RNA Mensageiro , Transfecção , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fator 3-gama Nuclear de Hepatócito/biossíntese , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Camundongos , Camundongos SCID , RNA Mensageiro/química , RNA Mensageiro/genética
15.
Cancer Sci ; 109(11): 3543-3553, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30220099

RESUMO

Hepatocellular carcinoma (HCC) accounts for a large proportion of liver cancer cases and has an extremely poor prognosis. Therefore, novel innovative therapies for HCC are strongly desired. As gene therapy tools for HCC, 2 hepatic transcription factors (TF), HNF4A and HNF1A, have been used to suppress proliferation and to extinguish cancer-specific characteristics of target cells. However, our present data demonstrated that single transduction of HNF4A or HNF1A had only a limited effect on suppression of HCC cell proliferation. Thus, in this study, we examined whether combinations of TF could show more effective antitumor activity, and found that combinatorial transduction of 3 hepatic TF, HNF4A, HNF1A and FOXA3, suppressed HCC cell proliferation more stably than single transduction of these TF. The combinatorial transduction also suppressed cancer-specific phenotypes, such as anchorage-independent growth in culture and tumorigenicity after transplantation into mice. HCC cell lines transduced with the 3 TF did not recover their proliferative property after withdrawal of anticancer drugs, indicating that combinatorial expression of the 3 TF suppressed the growth of all cell subtypes within the HCC cell lines, including cancer stem-like cells. Transcriptome analyses revealed that the expression levels of a specific gene set involved in cell proliferation were only decreased in HCC cells overexpressing all 3 TF. Moreover, combined transduction of the 3 TF could facilitate hepatic differentiation of HCC cell lines. Our strategy for inducing stable inhibition and functional differentiation of tumor cells using a defined set of TF will become an effective therapeutic strategy for various types of cancers.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Vetores Genéticos/administração & dosagem , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Vetores Genéticos/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Immunol Res ; 6(9): 1069-1081, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018045

RESUMO

Immunotherapy is widely accepted as a powerful new treatment modality for the treatment of cancer. The most successful form of immunotherapy to date has been the blockade of the immune checkpoints PD-1 and CTLA-4. Combining inhibitors of both PD-1 and CTLA-4 increases the proportion of patients who respond to immunotherapy. However, most patients still do not respond to checkpoint inhibitors, and prognostic biomarkers are currently lacking. Therefore, a better understanding of the mechanism by which these checkpoint inhibitors enhance antitumor immune responses is required to more accurately predict which patients are likely to respond and further enhance this treatment modality. Our current study of two mouse tumor models revealed that CD4+Foxp3- cells activated by dual PD-1/CTLA-4 blockade modulated the myeloid compartment, including activation of conventional CD103+ dendritic cells (DC) and expansion of a myeloid subset that produces TNFα and iNOS (TIP-DCs). CD4+Foxp3- T cell-mediated activation of CD103+ DCs resulted in enhanced IL12 production by these cells and IL12 enhanced the therapeutic effect of dual PD-1/CTLA-4 blockade. Given the importance of these myeloid subsets in the antitumor immune response, our data point to a previously underappreciated role of CD4+Foxp3- cells in modulating this arm of the antitumor immune response. Cancer Immunol Res; 6(9); 1069-81. ©2018 AACR.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Células Dendríticas/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígenos CD/genética , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Fator 3-gama Nuclear de Hepatócito/genética , Imunoterapia , Cadeias alfa de Integrinas/genética , Interleucina-12/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia
17.
Biochem Biophys Res Commun ; 490(3): 786-793, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28645613

RESUMO

Although both insulin and estrogen receptor α (ERα) are known to exert inhibitory effects on testicular steroidogenesis, it remains unknown whether these pathways regulate testosterone (T) production under certain pathological conditions [e.g., type 2 diabetes mellitus (T2DM)] in a coordinated manner. Here, we found that the expression of forkhead box protein A3 (Foxa3), an essential transcriptional regulator engaged in adipogenesis and energy metabolism, was significantly down-regulated in the Leydig cells (LCs) from T-deficient T2DM mice. Functionally, upon hCG stimulation, Foxa3 recruits to the Esr1 promoter and suppresses the transactivation of Esr1 gene. Disruption of this recruitment by T2DM-elicited hyperinsulinemia led to abnormal activation of ERα pathway, inhibited steroidogenic enzyme genes expression, and thus caused inadequate T production. Therapeutically, insulin-impaired and Foxa3 ablation-compromised steroidogenesis were effectively rescued by a pharmacological inhibitor of the ERα pathway. These findings reveal an obligatory coregulatory role of Foxa3 in the regulation of ERα expression and of the Foxa3/ERα cascade, at least in part, in the pathogenesis of androgen deficiency caused by T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Células Intersticiais do Testículo/metabolismo , Transdução de Sinais , Testosterona/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação para Baixo , Receptor alfa de Estrogênio/genética , Fator 3-gama Nuclear de Hepatócito/genética , Células Intersticiais do Testículo/patologia , Masculino , Camundongos Endogâmicos BALB C , Esteroides/metabolismo , Ativação Transcricional
18.
Sci Signal ; 10(475)2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420758

RESUMO

Goblet cell metaplasia and excessive mucus secretion associated with asthma, cystic fibrosis, and chronic obstructive pulmonary disease contribute to morbidity and mortality worldwide. We performed a high-throughput screen to identify small molecules targeting a transcriptional network critical for the differentiation of goblet cells in response to allergens. We identified RCM-1, a nontoxic small molecule that inhibited goblet cell metaplasia and excessive mucus production in mice after exposure to allergens. RCM-1 blocked the nuclear localization and increased the proteasomal degradation of Forkhead box M1 (FOXM1), a transcription factor critical for the differentiation of goblet cells from airway progenitor cells. RCM-1 reduced airway resistance, increased lung compliance, and decreased proinflammatory cytokine production in mice exposed to the house dust mite and interleukin-13 (IL-13), which triggers goblet cell metaplasia. In cultured airway epithelial cells and in mice, RCM-1 reduced IL-13 and STAT6 (signal transducer and activator of transcription 6) signaling and prevented the expression of the STAT6 target genes Spdef and Foxa3, which are key transcriptional regulators of goblet cell differentiation. These results suggest that RCM-1 is an inhibitor of goblet cell metaplasia and IL-13 signaling, providing a new therapeutic candidate to treat patients with asthma and other chronic airway diseases.


Assuntos
Alérgenos/toxicidade , Proteína Forkhead Box M1/antagonistas & inibidores , Células Caliciformes/imunologia , Interleucina-13/imunologia , Fator de Transcrição STAT6/imunologia , Animais , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/imunologia , Células Caliciformes/patologia , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/imunologia , Interleucina-13/genética , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/imunologia , Fator de Transcrição STAT6/genética
19.
Cell Death Dis ; 8(3): e2719, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358366

RESUMO

Biliary atresia is a rare, devastating disease of infants where a fibroinflammatory process destroys the bile ducts, leading to fibrosis and biliary cirrhosis, and death if untreated. The cause and pathogenesis remain largely unknown. We tried to investigate factors involved in biliary atresia, especially forkhead box A3 (Foxa3), which might exert a role in the treatment of liver disease. We used RNA sequencing to sequence the whole transcriptomes of livers from six biliary atresia and six choledochal cysts patients. Then, we employed a rat disease model by bile duct ligation (BDL) and adenovirus transduction to address the function of Foxa3 in biliary atresia. We found that tight junction, adherence junction, cell cycle, apoptosis, chemokine singling, VEGF and MAPK signaling pathways were enriched in biliary atresia livers. We showed that Foxa3 expression was notably decreased in liver samples from biliary atresia patients. More importantly, we found that its lower expression predicted a poorer overall survival of biliary atresia patients. Rats that received BDL surgery and Foxa3 expression adenovirus resulted in a significant decrease in the deposition of collagen, and expression of profibrotic cytokines (transforming growth factor-ß and connective tissue growth factor) and fibrosis markers (α-smooth muscle actin, collagen I and collagen III), as compared with rats that received BDL surgery and control adenovirus. Our data suggested a protection role for Foxa3 during the progression of liver fibrosis in biliary atresia, and thereby supported increasing Foxa3 as a targeted treatment strategy.


Assuntos
Atresia Biliar/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Cirrose Hepática/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Atresia Biliar/complicações , Atresia Biliar/genética , Atresia Biliar/terapia , Modelos Animais de Doenças , Feminino , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/terapia , Masculino , Camundongos Endogâmicos BALB C , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909576

RESUMO

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Histona Desmetilases/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores Citoplasmáticos e Nucleares/genética , Análise de Sobrevida , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA