Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chin Med J (Engl) ; 137(11): 1351-1359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38721807

RESUMO

BACKGROUND: The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD: The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS: Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION: CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.


Assuntos
Fibroblastos , Fator de Transcrição GATA4 , Fator 3-gama Nuclear de Hepatócito , Hepatócitos , Animais , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Fibroblastos/metabolismo , Hepatócitos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reprogramação Celular/fisiologia , Reprogramação Celular/genética , Diferenciação Celular/fisiologia , Diferenciação Celular/genética , Células Cultivadas
2.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805565

RESUMO

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Colesterol , Progressão da Doença , Fator 3-gama Nuclear de Hepatócito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
3.
Exp Mol Med ; 54(6): 848-860, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35764883

RESUMO

Growing evidence has revealed that hypoxia is involved in multiple stages of cancer development. However, there are limited reports on the effects of long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) progression under hypoxia. The main purposes of this study were to analyze the effect of the novel lncRNA DACT3-AS1 on metastasis in HCC and to elucidate the related molecular mechanism. Bioinformatics tools were employed. RT-qPCR or western blot assays were conducted to detect RNA or protein expression. Clinical samples and in vivo assays were utilized to reveal the role of DACT3-AS1 in HCC. Other mechanism and functional analyses were specifically designed and performed as well. Based on the collected data, this study revealed that HIF-1α transcriptionally activates DACT3-AS1 expression under hypoxia. DACT3-AS1 was verified to promote metastasis in HCC. Mechanistically, DACT3-AS1 promotes the interaction between HDAC2 and FOXA3 to stimulate FOXA3 deacetylation, which consequently downregulates the FOXA3 protein. Furthermore, FOXA3 serves as a transcription factor that can bind to the PKM2 promoter region, thus hindering PKM2 expression. To summarize, this study uncovered that HIF-1α-induced DACT3-AS1 promotes metastasis in HCC and can upregulate PKM2 via the HDAC2/FOXA3 pathway in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/metabolismo , Histona Desacetilase 2/genética , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382727

RESUMO

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Lapatinib/farmacologia , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Dasatinibe/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteína Forkhead Box O3/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/efeitos dos fármacos , Análise em Microsséries , Subunidade p50 de NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
5.
J Hepatol ; 75(1): 150-162, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33548387

RESUMO

BACKGROUND & AIMS: Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. METHODS: Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS: FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. CONCLUSION: The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s-FOXA3-PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. LAY SUMMARY: The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.


Assuntos
Estresse do Retículo Endoplasmático , Fator 3-gama Nuclear de Hepatócito/metabolismo , Animais , Descoberta de Drogas , Hepatócitos/metabolismo , Humanos , Lipogênese/genética , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Circadianas Period/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
6.
J Clin Lab Anal ; 35(3): e23686, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33368532

RESUMO

OBJECTIVE: In this research paper, we aimed to study the role of FOXA3 in hepatoblastoma (HB) and the molecular mechanism. METHODS: Immunohistochemistry was applied to determine the expression situation of FOXA3 and AFP in HB tissues and the adjacent normal tissues. FOXA3, HNF1A, and ZFHX3 expressions in HB tissues and the normal tissues were measured by Western blot. HB cell lines were randomly divided into 4 groups: Model, si-NC, si-FOXA3-1, and si-FOXA3-2 group. The HB cell viability and colony formation characteristics in the 4 groups were explored by CCK-8 and cell cloning formation assay, respectively. The expression of FOXA3, AFP, HNF1A, ZFHX3, and MYC in HB cells after knockdown of FOXA3 was measured. RESULTS: FOXA3, AFP, and HNF1A expressions were significantly up-regulated in HB tissues, while ZFHX3 expression was down-regulated. Knockdown of FOXA3 markedly inhibited HB cell viability and cloning formation ability. Knockdown of FOXA3 decreased FOXA3, AFP, and HNF1A/MYC expression, while increased ZFHX3 expression. CONCLUSION: FOXA3 promotes the occurrence and development of HB by up-regulating AFP and HNF1A/MYC expression, and down-regulating ZFHX3 expression.


Assuntos
Hepatoblastoma/patologia , Fator 3-gama Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas/metabolismo , Sobrevivência Celular , Pré-Escolar , Feminino , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino
7.
Signal Transduct Target Ther ; 5(1): 296, 2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361765

RESUMO

Hepatocyte nuclear factor 3γ (HNF3γ) is a hepatocyte nuclear factor, but its role and clinical significance in hepatocellular carcinoma (HCC) remain unclear. Herein, we report that HNF3γ expression is downregulated in patient HCC and inversely correlated with HCC malignancy and patient survival. Moreover, our data suggested that the HNF3γ reduction in HCC could be mediated by METTL14-dependent m6A methylation of HNF3γ mRNA. HNF3γ expression was increased during hepatic differentiation and decreased in dedifferentiated HCC cells. Interestingly, HNF3γ delivery promoted differentiation of not only HCC cells but also liver CSCs, which led to suppression of HCC growth. Mechanistic analysis suggested an HNF3γ-centered regulatory network that includes essential liver differentiation-associated transcription factors and functional molecules, which could synergistically facilitate HCC cell differentiation. More importantly, enforced HNF3γ expression sensitized HCC cells to sorafenib-induced growth inhibition and cell apoptosis through transactivation of OATP1B1 and OATP1B3 expression, which are major membrane transporters for sorafenib uptake. Clinical investigation showed that patient-derived HCC xenografts with high HNF3γ expression exhibited a sorafenib response and patients with high HCC HNF3γ levels benefited from sorafenib therapy. Together, these results suggest that HNF3γ plays an essential role in HCC differentiation and may serve as a therapeutic target and predictor of sorafenib benefit in patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Sorafenibe/farmacologia , Animais , Anticorpos Heterófilos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , RNA Neoplásico/genética
8.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151057

RESUMO

Cholangiocarcinoma (CCA), a malignancy of biliary epithelium, is related to liver stem cell deregulation. FoxAs are a group of transcription factors that play critical roles in liver stem cell differentiation. In this study, the expression levels of FoxAs (i.e., FoxA1, FoxA2 and FoxA3) were detected in intrahepatic CCA tissues and the functions of FoxAs were studied in CCA cell lines. FoxA1 and FoxA2 were mainly localized in the nuclei of normal bile duct (NBD) cells and some of the cancer cells. Low expression of FoxA1 in CCA tissues (72%) was significantly correlated with poor prognosis. FoxA3 expression of CCA cells was localized in the nucleus and cytoplasm, whereas it was slightly detected in NBDs. High expression of FoxA3 in cancer tissues (61%) was significantly related to high metastasis status. These findings suggest the opposing roles of FoxA1 and FoxA3 in CCA. Moreover, the FoxA1-over-expressing CCA cell line exhibited a significant reduction in proliferative and invasive activities compared to control cells. Knockdown of FoxA3 in CCA cells resulted in a significant decrease in proliferative and invasive activities compared with control cells. Taken together, in CCA, FoxA1 is down-regulated and has tumor suppressive roles, whereas FoxA3 is up-regulated and has oncogenic roles.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Progressão da Doença , Feminino , Seguimentos , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
9.
Breast Dis ; 38(2): 57-65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31006655

RESUMO

BACKGROUND: Trastuzumab (Tz) is assumed to prime antibody-dependent cellular cytotoxicity (ADCC); however, it remains unclear whether Tz therapy can clinically induce adaptive cellular immunity. OBJECTIVE: Adaptive Cellular Immune Effect of Tz Therapy. METHODS: This study included 29 surgical invasive breast carcinomas administered neoadjuvant chemotherapy with Tz (15 cases) or without Tz (14 cases). The numbers of immunoreactive cells (CD4, CD8, CD56, and Fox-P3) in three different compartments (intratumoral, adjacent stromal, and distant stromal) were determined. RESULTS: The average number of adjacent stromal CD4-positive, CD8-positive, and Fox-P3-positive cells in the Tz+ group was significantly greater than that in the Tz- group (p = 0.036, 0.0049, and 0.043, respectively). However, the number of Fox-P3-positive cells was much less than that of CD4-positive cells. Moreover, distant stromal CD4-positive and CD8-positive cells in the Tz+ group was also significantly greater than that of the Tz- group (p = 0.029 and 0.032, respectively). Only a small number of CD56-positive natural killer cells, playing a main role in ADCC, accumulated at the tumor site after Tz therapy. CONCLUSIONS: The results suggest that Tz therapy induces adaptive cellular immunity, including infiltration of both CD4-positive helper T cells and CD8-positive cytotoxic T cells into the breast carcinoma lesion.


Assuntos
Imunidade Adaptativa , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Imunidade Celular , Terapia Neoadjuvante , Trastuzumab/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica , Linfócitos T CD4-Positivos/fisiologia , Antígeno CD56/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Feminino , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Pessoa de Meia-Idade
10.
Cell Res ; 29(2): 124-135, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30560924

RESUMO

Normal cells become cancer cells after a malignant transformation, but whether cancer cells can be reversed to normal status remains elusive. Here, we report that the combination of hepatocyte nuclear factor 1A (HNF1A), HNF4A and forkhead box protein A3 (FOXA3) synergistically reprograms hepatocellular carcinoma (HCC) cells to hepatocyte-like cells (reprogrammed hepatocytes, rHeps). Our results show that rHeps lose the malignant phenotypes of cancer cells and retrieve hepatocyte-specific characteristics including hepatocyte-like morphology; global expression pattern of genes and specific biomarkers of hepatocytes; and the unique hepatic functions of albumin (ALB) secretion, glycogen synthesis, low-density lipoprotein (LDL) uptake, urea production, cytochrome P450 enzymes induction and drug metabolism. Intratumoral injection of these three factors efficiently shrank patient-derived tumor xenografts and reprogrammed HCC cells in vivo. Most importantly, transplantation of rHeps in the liver of fumarylacetoacetate hydrolase-deficient (Fah-/-) mice led to the reconstruction of hepatic lobules and the restoration of hepatic function. Mechanistically, exogenous expression of HNF1A, HNF4A and FOXA3 in HCC cells initiated the endogenous expression of numerous hepatocyte nuclear factors, which promoted the conversion of HCC cells to hepatocyte-like cells. Collectively, our results indicate the successful conversion of hepatoma cells to hepatocyte-like cells, not only extending our current knowledge of cell reprogramming but also providing a route towards a novel therapeutic strategy for cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Reprogramação Celular/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Vetores Genéticos , Células HEK293 , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Fenótipo , Albumina Sérica Humana/análise , Transfecção , Carga Tumoral/genética
11.
Methods Mol Biol ; 1905: 93-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30536093

RESUMO

Primary hepatocytes are widely used in regenerative medicine, drug metabolism analysis, and in vitro drug screens. To overcome the shortage of liver donors, several strategies, such as differentiation of pluripotent stem cells and transdifferentiation from somatic cells, were developed to generate hepatocytes from alternative sources. Here, we describe in detail lenti-virus-based procedure for direct conversion of human fibroblasts to hepatocytes (hiHep cells) in vitro. A detailed protocol for preparation of human fibroblasts from scar tissues is also provided. Based on this protocol, FOXA3, HNF1A, and HNF4A are introduced into SV40-large-T-antigen-expressing human scar fibroblasts by lenti-virus. It usually takes about 5-7 days to get epithelial hiHep colonies. SV40-large-T-antigen-expressing hiHep (hiHepLT) cells are proliferative and can be expanded to a large number for potential uses.


Assuntos
Técnicas de Cultura de Células/métodos , Cicatriz/patologia , Fibroblastos/citologia , Hepatócitos/citologia , Lentivirus/genética , Antígenos Transformantes de Poliomavirus/genética , Linhagem da Célula , Proliferação de Células , Transdiferenciação Celular , Reprogramação Celular , Cicatriz/genética , Cicatriz/metabolismo , Fibroblastos/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Vírus 40 dos Símios/genética
12.
Gene ; 685: 202-210, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415009

RESUMO

Despite advances in early diagnosis and treatment, cancer still remains the major reason of mortality worldwide. The forkhead box A (FOXA) family is reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human lung cancer. Herein, we conducted a detailed cancer vs. normal analysis. The mRNA expression levels of FOXA family in numerous kind of cancers, including lung cancer, were analyzed using the Oncomine and GEPIA database. We observed that the mRNA expression levels of FOXA1, and FOXA3 were all increased while FOXA2 were decreased in most cancers compared with normal tissues, especially in lung cancer. Moreover, the expression levels of FOXA1, and FOXA3 are also highly expressed, while FOXA2 were decreased in almost all cancer cell lines, particularly in lung cancer cell lines, analyzing by Cancer Cell Line Encyclopedia (CCLE) and EMBL-EBI databases. Furthermore, the LinkedOmics database was used to evaluate the prognostic values, indicating that higher expression of FOXA1, FOXA3 indicated a poor overall survival (OS), while increased FOXA2 revealed a better OS in lung cancer. To conclusion, FOXA family showed significant expression differences between cancer and normal tissues, especially lung cancer, and FOXA1, FOXA3 could be promising prognostic biomarkers for lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Família Multigênica , Prognóstico , RNA Mensageiro/genética , Transcrição Gênica
13.
Stem Cell Reports ; 10(5): 1522-1536, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29606616

RESUMO

Disorders of the biliary epithelium, known as cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangiocytes with high purity are needed. Previous work has shown that the combination of Hnf1ß and Foxa3 could directly convert mouse fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs to the clinic. Here, we describe that the expression of Hnf1α and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably, prolonged in vitro culture of Hnf1α- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholangiocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors.


Assuntos
Sistema Biliar/citologia , Diferenciação Celular , Fibroblastos/citologia , Células-Tronco/citologia , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Transcrição Gênica
14.
Biochem Biophys Res Commun ; 490(3): 786-793, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28645613

RESUMO

Although both insulin and estrogen receptor α (ERα) are known to exert inhibitory effects on testicular steroidogenesis, it remains unknown whether these pathways regulate testosterone (T) production under certain pathological conditions [e.g., type 2 diabetes mellitus (T2DM)] in a coordinated manner. Here, we found that the expression of forkhead box protein A3 (Foxa3), an essential transcriptional regulator engaged in adipogenesis and energy metabolism, was significantly down-regulated in the Leydig cells (LCs) from T-deficient T2DM mice. Functionally, upon hCG stimulation, Foxa3 recruits to the Esr1 promoter and suppresses the transactivation of Esr1 gene. Disruption of this recruitment by T2DM-elicited hyperinsulinemia led to abnormal activation of ERα pathway, inhibited steroidogenic enzyme genes expression, and thus caused inadequate T production. Therapeutically, insulin-impaired and Foxa3 ablation-compromised steroidogenesis were effectively rescued by a pharmacological inhibitor of the ERα pathway. These findings reveal an obligatory coregulatory role of Foxa3 in the regulation of ERα expression and of the Foxa3/ERα cascade, at least in part, in the pathogenesis of androgen deficiency caused by T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Células Intersticiais do Testículo/metabolismo , Transdução de Sinais , Testosterona/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação para Baixo , Receptor alfa de Estrogênio/genética , Fator 3-gama Nuclear de Hepatócito/genética , Células Intersticiais do Testículo/patologia , Masculino , Camundongos Endogâmicos BALB C , Esteroides/metabolismo , Ativação Transcricional
15.
Cell Death Dis ; 8(3): e2719, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358366

RESUMO

Biliary atresia is a rare, devastating disease of infants where a fibroinflammatory process destroys the bile ducts, leading to fibrosis and biliary cirrhosis, and death if untreated. The cause and pathogenesis remain largely unknown. We tried to investigate factors involved in biliary atresia, especially forkhead box A3 (Foxa3), which might exert a role in the treatment of liver disease. We used RNA sequencing to sequence the whole transcriptomes of livers from six biliary atresia and six choledochal cysts patients. Then, we employed a rat disease model by bile duct ligation (BDL) and adenovirus transduction to address the function of Foxa3 in biliary atresia. We found that tight junction, adherence junction, cell cycle, apoptosis, chemokine singling, VEGF and MAPK signaling pathways were enriched in biliary atresia livers. We showed that Foxa3 expression was notably decreased in liver samples from biliary atresia patients. More importantly, we found that its lower expression predicted a poorer overall survival of biliary atresia patients. Rats that received BDL surgery and Foxa3 expression adenovirus resulted in a significant decrease in the deposition of collagen, and expression of profibrotic cytokines (transforming growth factor-ß and connective tissue growth factor) and fibrosis markers (α-smooth muscle actin, collagen I and collagen III), as compared with rats that received BDL surgery and control adenovirus. Our data suggested a protection role for Foxa3 during the progression of liver fibrosis in biliary atresia, and thereby supported increasing Foxa3 as a targeted treatment strategy.


Assuntos
Atresia Biliar/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Cirrose Hepática/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Atresia Biliar/complicações , Atresia Biliar/genética , Atresia Biliar/terapia , Modelos Animais de Doenças , Feminino , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/terapia , Masculino , Camundongos Endogâmicos BALB C , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Exp Med ; 213(3): 433-49, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26880577

RESUMO

Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp251. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3(-/-) HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host.


Assuntos
Estudos de Associação Genética , Células-Tronco Hematopoéticas/citologia , Motivos de Aminoácidos , Animais , Proliferação de Células , Citoproteção , Elementos Facilitadores Genéticos/genética , Testes Genéticos , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Fator 3-gama Nuclear de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , Reprodutibilidade dos Testes , Transdução de Sinais , Estresse Fisiológico
17.
Genes Dev ; 29(9): 904-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934503

RESUMO

The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah(-/-) mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation.


Assuntos
Fator 3-gama Nuclear de Hepatócito/metabolismo , Regeneração Hepática/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Testes Genéticos , Fator 3-gama Nuclear de Hepatócito/genética , Hepatócitos/citologia , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/genética
18.
Cell Rep ; 10(2): 239-52, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25558064

RESUMO

The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.


Assuntos
Citocinas/farmacologia , Células Caliciformes/efeitos dos fármacos , Pulmão/patologia , Receptor Notch2/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Pulmão/metabolismo , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
19.
Epilepsy Res ; 108(3): 367-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24518891

RESUMO

Status epilepticus (SE) leads to neurodegeneration which likely contributes to the development of chronic temporal lobe epilepsy (TLE). Therefore, neuroprotection following SE is considered as a promising strategy for preventing chronic TLE, but molecular changes that occur following SE still remain unclear. The Forkhead homeobox type O (FoxO) family of Forkhead transcription factors mediates cell death in several pathological conditions, but the role of FoxO in the excitotoxic effects of kainic acid (KA) remains largely unknown. The present study examined how FoxO3a and its interaction with other proteins changed in response to excitotoxic stimuli in the mouse hippocampus after SE. Mice were given intraperitoneal injection of kainate and seizure behavior was monitored for 2h to ensure SE. Western blot analyses, co-immunoprecipitation experiments, sub-cellular fractionation and double immunofluorescence analyses were used to determine changes in levels of FoxO3a, Akt, Bim, cleaved caspase-3 and phospho-FoxO3a or phospho-Akt, and their interactions at 6 or 24h after KA treatment. We found that SE activated FoxO3a and increased levels of Bim or cleaved caspase-3, and decreased levels of phospho-FoxO3a or phospho-Akt in the hippocampus. In addition, we noted extensive hippocampal cell death at 24h after KA treatment, evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL), fluoro-jade B or anti-active caspase-3 staining. Furthermore, co-immunoprecipitation experiments revealed that phospho-Akt interaction with FoxO3a was significantly lowered in the hippocampus at 24h after KA treatment, paralleling enhanced Bim levels and Bim interaction with Bcl-xL. Moreover, double immunofluorescence analyses showed increased co-localization of FoxO3a or Bim and TUNEL in the hippocampi at 24h after KA treatment. Identifying molecular mechanism underlying SE-induced neuronal death can provide a novel strategy to protect against seizure-induced neuronal injury. We found that Akt-FoxO3a signaling relates to seizure-induced neuronal death, providing insight into neuroprotection following SE.


Assuntos
Fator 3-gama Nuclear de Hepatócito/metabolismo , Neurônios/patologia , Proteína Oncogênica v-akt/metabolismo , Convulsões/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ácido Caínico/toxicidade , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Convulsões/induzido quimicamente , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Fatores de Tempo
20.
Am J Respir Crit Care Med ; 189(3): 301-13, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24392884

RESUMO

RATIONALE: Goblet cell metaplasia accompanies common pulmonary disorders that are prone to recurrent viral infections. Mechanisms regulating both goblet cell metaplasia and susceptibility to viral infection associated with chronic lung diseases are incompletely understood. OBJECTIVES: We sought to identify the role of the transcription factor FOXA3 in regulation of goblet cell metaplasia and pulmonary innate immunity. METHODS: FOXA3 was identified in airways from patients with asthma and chronic obstructive pulmonary disease. We produced transgenic mice conditionally expressing Foxa3 in airway epithelial cells and developed human bronchial epithelial cells expressing Foxa3. Foxa3-regulated genes were identified by immunostaining, Western blotting, and RNA analysis. Direct binding of FOXA3 to target genes was identified by chromatin immunoprecipitation sequencing correlated with RNA sequencing. MEASUREMENTS AND MAIN RESULTS: FOXA3 was highly expressed in airway goblet cells from patients with asthma and chronic obstructive pulmonary disease. FOXA3 was induced by either IL-13 or rhinovirus. Foxa3 induced goblet cell metaplasia and enhanced expression of a network of genes mediating mucus production. Paradoxically, FOXA3 inhibited rhinovirus-induced IFN production, IRF-3 phosphorylation, and IKKε expression and inhibited viral clearance and expression of genes required for antiviral defenses, including MDA5, RIG-I, TLR3, IRF7/9, and nuclear factor-κB. CONCLUSIONS: FOXA3 induces goblet cell metaplasia in response to infection or Th2 stimulation. Suppression of IFN signaling by FOXA3 provides a plausible mechanism that may serve to limit ongoing Th1 inflammation during the resolution of acute viral infection; however, inhibition of innate immunity by FOXA3 may contribute to susceptibility to viral infections associated with chronic lung disorders accompanied by chronic goblet cell metaplasia.


Assuntos
Asma/metabolismo , Células Caliciformes/patologia , Fator 3-gama Nuclear de Hepatócito/metabolismo , Imunidade Inata/fisiologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Asma/complicações , Asma/imunologia , Asma/patologia , Biomarcadores/metabolismo , Western Blotting , Imunoprecipitação da Cromatina , Suscetibilidade a Doenças , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Fator 3-gama Nuclear de Hepatócito/imunologia , Humanos , Interferons/metabolismo , Metaplasia , Camundongos , Camundongos Transgênicos , Infecções por Picornaviridae/etiologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Rhinovirus , Análise de Sequência de RNA , Equilíbrio Th1-Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA