Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mar Drugs ; 22(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921571

RESUMO

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fator 6 Associado a Receptor de TNF , Humanos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Organismos Aquáticos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Farmacóforo , Peptídeos e Proteínas de Sinalização Intracelular
2.
Sci Rep ; 13(1): 4646, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944688

RESUMO

TRAF6 has emerged as a key regulator of breast cancer (BCa). However, the TRAF family constitutes of seven members that exhibit distinct and overlapping functions. To explore which TRAF represents a potential druggable target for BCa treatment, we searched Medline, Web of Science and Scopus for relevant studies from inception to June 27, 2021. We identified 14 in vitro, 11 in vivo and 4 human articles. A meta-analysis of pharmacological studies showed that in vitro inhibition of TRAF2/4 (mean difference (MD): - 57.49, 95% CI: - 66.95, - 48.02, P < 0.00001) or TRAF6 (standard(Std.)MD: - 4.01, 95% CI: - 5.75, - 2.27, P < 0.00001) is associated with reduction in BCa cell migration. Consistently, inhibition of TRAF2/4 (MD: - 51.08, 95% CI: - 64.23, - 37.94, P < 0.00001) and TRAF6 (Std.MD: - 2.80, 95% CI: - 4.26, - 1.34, P = 0.0002) is associated with reduced BCa cell invasion, whereas TRAF2/4 inhibition (MD: - 40.54, 95% CI: - 52.83, - 28.26, P < 0.00001) is associated with reduced BCa cell adhesion. Interestingly, only inhibition of TRAF6 (MD: - 21.46, 95% CI: - 30.40, - 12.51, P < 0.00001) is associated with reduced cell growth. In animal models of BCa, administration of pharmacological inhibitors of TRAF2/4 (Std.MD: - 3.36, 95% CI: - 4.53, - 2.18, P < 0.00001) or TRAF6 (Std.MD: - 4.15, 95% CI: - 6.06, - 2.24, P < 0.0001) in mice is associated with reduction in tumour burden. In contrast, TRAF6 inhibitors (MD: - 2.42, 95% CI: - 3.70, - 1.14, P = 0.0002) reduced BCa metastasis. In BCa patients, high expression of TRAF6 (Hazard Ratio: 1.01, CI: 1.01, 1.01, P < 0.00001) is associated with poor survival rate. Bioinformatics validation of clinical and pathway and process enrichment analysis in BCa patients confirmed that gain/amplification of TRAF6 is associated with secondary BCa in bone (P = 0.0079), and poor survival rate (P < 0.05). Overall, TRAF6 inhibitors show promise in the treatment of metastatic BCa. However, low study number and scarcity of evidence from animal and human studies may limit the translation of present findings into clinical practice.


Assuntos
Neoplasias da Mama , Fator 6 Associado a Receptor de TNF , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética
3.
Tissue Cell ; 76: 101792, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405432

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of tumor necrosis factor receptor-related factor 6 (TRAF6) in acute pancreatitis (AP)-induced intestinal barrier injury via the Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signal pathway. METHODS: Rat models of acute edematous pancreatitis (AEP) and acute necrotizing pancreatitis (ANP) were established by intraperitoneal injection of caerulein and retrograde infusion of sodium taurocholate solution into the biliopancreatic duct, respectively. Separate groups of model rats were pretreated with the TRAF6 inhibitor, MG-132. Rats were sacrificed at 12 h after the last injection for inducing AP. Histopathological changes, inflammatory response, intestinal barrier function, and protein expression levels were assessed by pathological score, ELISA, TUNEL, qRT-PCR, immunohistochemistry and western blotting. RESULTS: Rat models of AEP and ANP were successfully established as evidenced by the pathological changes in the pancreas and intestine. Pre-treatment with MG-132 significantly alleviated pancreatic and intestinal pathological scores, reduced serum levels of amylase, IL-1ß, and IL-6, and ameliorated apoptosis of mucosal cells. MG-132 reduced intestinal barrier injury, including serum levels of diamine oxidase and lipopolysaccharide, and intestinal expressions of ZO-1 and occludin. Moreover, it significantly suppressed the activation of the intestinal TLR4/NF-κB signaling pathway. CONCLUSIONS: TRAF6 inhibitor alleviated pancreatic and intestinal injury in AEP and ANP. This effect may be mediated through inhibition of the TLR4/NF-κB signaling pathway, which in turn regulates the inflammatory response and intestinal barrier injury.


Assuntos
Intestinos , NF-kappa B , Pancreatite Necrosante Aguda , Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Intestinos/metabolismo , Intestinos/patologia , NF-kappa B/metabolismo , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Necrosante Aguda/patologia , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164330

RESUMO

Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR (0, 15, or 30 mg/kg) to rats. We conducted RNA sequencing and Western blot analyses to identify differences in mRNA expression in the blood and in protein expression in the brain tissues, respectively, of the rats. AQP4 transient transfection was performed to identify potential associations with protein regulation. The rats treated with 30 mg/kg ACR exhibited hind-limb muscle weakness. Matrix metalloproteinase (MMP9) expression was higher in the ACR-treated group than in the control group. ACR induced MMP-9 and AQP4 protein expression in the brain tissues of the rats, which subsequently presented with neurotoxicity. In the in vitro study, Neuro-2a cells were transiently transfected with AQP4, which inhibited MMP-9 and TNF receptor-associated factor 6 (TRAF6) expression, and inhibited ACR induced expression of TRAF6, IκBα, and nuclear factor κB (NFκB). Using a combination of in vivo and in vitro experiments, this study revealed that depressive symptoms associated with ACR-induced neurotoxicity are associated with downregulation of AQP4 and induction of the TRAF6 pathway.


Assuntos
Acrilamida/toxicidade , Aquaporina 4/metabolismo , NF-kappa B/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Aquaporina 4/genética , Masculino , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Biochem Pharmacol ; 195: 114869, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896056

RESUMO

NFκB plays a key role in inflammation and skeletal disorders. Previously, we reported that pharmacological inhibition of NFκB at the level of TRAF6 suppressed RANKL, CD40L and IL1ß-induced osteoclastogenesis and attenuated cancer-induced bone disease. TNFα is also known to regulate TRAF6/NFκB signalling, however the anti-inflammatory and osteoprotective effects associated with inhibition of the TNFα/TRAF6/NFκB axis have not been investigated. Here, we show that in vitro and ex vivo exposure to the verified small-molecule inhibitor of TRAF6, 6877002 prevented TNFα-induced NFκB activation, osteoclastogenesis and calvarial osteolysis, but it had no effects on TNFα-induced apoptosis or growth inhibition in osteoblasts. Additionally, 6877002 disrupted T-cells support for osteoclast formation and synoviocyte motility, without affecting the viability of osteoblasts in the presence of T-cells derived factors. Using the collagen-induced arthritis model, we show that oral and intraperitoneal administration of 6877002 in mice reduced joint inflammation and arthritis score. Unexpectedly, no difference in trabecular and cortical bone parameters were detected between vehicle and 6877002 treated mice, indicating lack of osteoprotection by 6877002 in the arthritis model described. Using two independent rodent models of osteolysis, we confirmed that 6877002 had no effect on trabecular and cortical bone loss in both osteoporotic rats or RANKL- treated mice. In contrast, the classic anti-osteolytic alendronate offered complete osteoprotection in RANKL- treated mice. In conclusion, TRAF6 inhibitors may be of value in the management of the inflammatory component of bone disorders, but may not offer protection against local or systemic bone loss, unless combined with anti-resorptive therapy such as bisphosphonates.


Assuntos
Anti-Inflamatórios/farmacologia , Antígenos CD40/antagonistas & inibidores , Osteólise/prevenção & controle , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Artrite Experimental/metabolismo , Artrite Experimental/prevenção & controle , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteólise/metabolismo , Células RAW 264.7 , Roedores/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
6.
Int Immunopharmacol ; 96: 107774, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020396

RESUMO

In ventilation-induced lung injury (VILI), prolonged nonpathogen-mediated inflammation is triggered as a result of alveolar hyperinflation. In our previous study, we suggested that endoplasmic reticulum (ER) stress-mediated inflammation was involved in VILI, but how ER stress is triggered remains unknown. Toll-like receptor 4 (TLR4) activation plays an important role in mechanical ventilation (MV)-induced lung inflammation, however, it is unknown whether ER stress is activated by TLR4 to participate in VILI. In this study, C57BL/6 mice were exposed to MV with high tidal volumes (HTV 20 ml/kg). Mice were pretreated with TAK-242 the TLR4 inhibitor, C25-140, the TRAF6 inhibitor, or GSK2795039, the NOX2 inhibitor. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to measure lung injury, inflammatory responses and mRNA/protein expression associated with ER stress and the TLR4/TRAF6/NOX2 signaling pathway. Our results indicate that MV with HTV caused the TLR4/TRAF6/NOX2 signaling pathway activation and production of large amounts of ROS, which led to ER stress and NF-κB mediated inflammation in VILI. Furthermore, TLR4/TRAF6/NOX2 signaling pathway inhibition attenuated ER stress response and alleviate lung injury in mice.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação/patologia , NADPH Oxidase 2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/antagonistas & inibidores , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
7.
J Ethnopharmacol ; 268: 113553, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33152432

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia rhizome is a famous traditional herbal medical in tropical and subtropical areas. Kaempferol (KPF) is one of the main bioactive compounds in Kaempferia rhizome, with anti-oxidant/anti-inflammatory effects demonstrated in various disease models, including cancers, obesity and diabetes. AIM OF THE STUDY: Inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). TRAF6 functions as a signal transducer in toll-like receptor 4 and NF-κB pro-inflammatory signaling pathway. We aimed at investigate whether KPF is able to mitigate inflammatory responses by regulating TRAF6 in DN. MATERIAL AND METHODS: C57BL/6 mice were injected with streptozotocin to induce type 1 DN. NRK-52E, a tubular epithelial cell line, was used for in vitro analysis. TRAF6 was knockdown using siRNA in vitro and AAV2/2-shRNA in vivo. The anti-DN and inflammatory effects of KPF or knockdown of TRAF6 were evaluated by investigating renal filtration index, pathological changes of kidney tissue. Proinflammatory cytokine levels were detected using ELISA. NF-κB pathway and protein levels of related pathways were detected through Western blot. RESULTS: KPF significantly reduced renal inflammation, fibrosis, and kidney dysfunction in diabetic mice. These effects were associated with a downregulation of TRAF6 in diabetic mouse kidneys, indicating the potential role of TRAF6. Knockdown of TRAF6 in mice through AAV2-shTRAF6 confirmed the importance of TRAF6 in DN. In vitro, treatment of KPF in NRK-52E cells attenuated high glucose (HG)-induced inflammatory and fibrogenic responses, associated with downregulated TRAF6 expression. The conclusion was further confirmed in NRK-52E cells by knocking down the expression and by overexpression of TRAF6. CONCLUSION: Our findings provide direct evidence that TRAF6 mediates diabetes-induced inflammation leading to renal dysfunction. We also show that KPF is a potential therapeutic agent to reduce inflammatory responses in DN. Also, TRAF6 may represent an interesting target to combat DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Quempferóis/uso terapêutico , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Nefropatias Diabéticas/induzido quimicamente , Regulação para Baixo/fisiologia , Células HEK293 , Humanos , Quempferóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina , Fator 6 Associado a Receptor de TNF/biossíntese , Fator 6 Associado a Receptor de TNF/genética
8.
Cancer Lett ; 488: 27-39, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32474152

RESUMO

Tumour necrosis factor receptor-associated factor 6 (TRAF6) has been implicated in breast cancer and osteoclastic bone destruction. Here, we report that 6877002, a verified small-molecule inhibitor of TRAF6, reduced metastasis, osteolysis and osteoclastogenesis in models of osteotropic human and mouse breast cancer. First, we observed that TRAF6 is highly expressed in osteotropic breast cancer cells and its level of expression was higher in patients with bone metastasis. Pre-exposure of osteoclasts and osteoblasts to non-cytotoxic concentrations of 6877002 inhibited cytokine-induced NFκB activation and osteoclastogenesis, and reduced the ability of osteotropic human MDA-MB-231 and mouse 4T1 breast cancer cells to support bone cell activity. 6877002 inhibited human MDA-MB-231-induced osteolysis in the mouse calvaria organ system, and reduced soft tissue and bone metastases in immuno-competent mice following intra-cardiac injection of mouse 4T1-Luc2 cells. Of clinical relevance, combined administration of 6877002 with Docetaxel reduced metastasis and inhibited osteolytic bone damage in mice bearing 4T1-Luc2 cells. Thus, TRAF6 inhibitors such as 6877002 - alone or in combination with conventional chemotherapy - show promise for the treatment of metastatic breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Docetaxel/farmacologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Osteólise/patologia
9.
Biochem Pharmacol ; 177: 113992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335141

RESUMO

IL-17A combined with TNF-α plays a vital role in inflammatory response and interference of the synergistic effect is an effective strategy for treating inflammatory diseases. Ellipticine, a natural alkaloid, has biological activities on anti-tumor and anti-HIV. However, it is still unknown whether ellipticine can inhibit IL-17A and TNF-α-mediated signaling and has treatment effect on PALI. Here, we reported that ellipticine significantly inhibited the production of pro-inflammatory cytokines and chemokines in pulmonary epithelial cell BEAS-2B treated with IL-17A and TNF-α, but not IL-17A or TNF-α alone. Meanwhile, ellipticine attenuated NF-κB and MAPKs activation in response to IL-17A and TNF-α treatment, inhibited Act1 and TRAF6-mediated NF-κB activation, and blocked the interaction of Act1 with TRAF6. Furthermore, we found that ellipticine significantly alleviated CAE and LPS-induced SAP/PALI. Ellipticine treatment dramatically reduced inflammatory cells infiltration, MPO activity, serum amylase and lipase activity and the protein concentration of BALF. Collectively, our findings indicate that ellipticine inhibits the synergistic effect of IL-17A and TNF-α by targeting on Act1 and TRAF6 interaction and is a potential therapeutic agent for the treatment of SAP/PALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Elipticinas/farmacologia , Interleucina-17/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amilases/antagonistas & inibidores , Amilases/genética , Amilases/metabolismo , Animais , Linhagem Celular Transformada , Ceruletídeo/administração & dosagem , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interleucina-17/farmacologia , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/genética , Peroxidase/antagonistas & inibidores , Peroxidase/genética , Peroxidase/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
BMC Musculoskelet Disord ; 21(1): 112, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075617

RESUMO

BACKGROUND: Osteoporosis is a worldwide severe bone disease. This study aimed to evaluate the effect of polyphyllin VII on the genesis of osteoclasts from bone marrow macrophages (BMMs) and its potentiality as a therapeutic drug for osteoporosis. METHODS: BMMs were induced to differentiate into osteoclasts by RANKL and M-CSF. The cells were then treated with various concentrations of polyphyllin VII. Intracellular reactive oxygen species (ROS) measurement assay, resorption pit formation assay, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity assessment, cell viability assay, active GTPase pull-down assay, immunofluorescent staining, immunoblotting, and RT-PCR were performed. RESULTS: RANKL + M-CSF significantly increased TRAP activity, number of osteoclasts, number and area of lacunae, intracellular content of ROS, protein levels of Nox1, TRAF6, c-Src and p-PI3K, as well as the content of activated GTP-Rac1, which were significantly blocked by polyphyllin VII in a concentration-dependent manner. CONCLUSION: These findings suggested that polyphyllin VII inhibited differentiation of BMMs into osteoclasts through suppressing ROS synthesis, which was modulated by TRAF6-cSrc-PI3k signal transduction pathway including GTP-Rac1 and Nox1. Polyphyllin VII could be a therapeutic drug for osteoporosis.


Assuntos
Genes src/fisiologia , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/toxicidade , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Genes src/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores
11.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32035036

RESUMO

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Assuntos
Dopamina/fisiologia , Inflamação/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores de Dopamina D5/metabolismo , Transdução de Sinais , beta-Arrestina 2/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Receptores de Dopamina D5/química , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , beta-Arrestina 2/fisiologia
12.
Nature ; 577(7792): 682-688, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942069

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/química , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lisina/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição AP-1/metabolismo , Tuberculose/microbiologia , Virulência/imunologia
13.
Med Sci Monit ; 26: e919698, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31929494

RESUMO

BACKGROUND Inflammation and oxidative stress play important roles in the pathogenesis of acute kidney injury (AKI). TRAF6 functions as a signal transducer in the Toll-like receptor 4 signaling pathway. Several reports have previously implicated TRAF6 signaling in kidney pathology. Here, we investigated whether TRAF6 blockade can mitigate inflammatory responses and oxidative stress in AKI. MATERIAL AND METHODS C57BL/6 mice were injected with lipopolysaccharide (LPS, 15 mg/kg) to induce AKI. Double immunofluorescence staining of kidney tissues showed that TRAF6 was localized to renal tubular epithelial cells, and then a tubular epithelial cell line (NRK-52E) was used for in vitro analysis. TRAF6 was blocked in vitro using siRNA and in vivo using AAV2/2 shRNA. RESULTS The knockdown of TRAF6 in mice by AAV2-shTRAF6 significantly reduced renal inflammation, oxidative stress, apoptosis and kidney dysfunction in AKI. In vitro, silencing the expression of TRAF6 attenuated LPS(0.5 µg/mL)-induced inflammatory responses and oxidative stress and upregulated proapoptotic factors. Furthermore, the beneficial actions of TRAF6 blockade were closely associated with its ability to increase IkappaB-alpha and Nrf2. CONCLUSIONS Our findings provide direct evidence that TRAF6 mediates LPS-induced inflammation and oxidative stress, leading to renal dysfunction. We also show that TRAF6 inhibition is a potential therapeutic option to prevent AKI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Inflamação/patologia , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Injúria Renal Aguda/sangue , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose , Técnicas de Silenciamento de Genes , Inativação Gênica , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
J Cell Mol Med ; 24(1): 785-798, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725199

RESUMO

Bone homeostasis is delicately orchestrated by osteoblasts and osteoclasts. Various pathological bone loss situations result from the overactivated osteoclastogenesis. Receptor activator of nuclear factor κB ligand (RANKL)-activated NF-κB and MAPK pathways is vital for osteoclastogenesis. Here, we for the first time explored the effects of l-tetrahydropalmatine (l-THP), an active alkaloid derived from corydalis, on the formation and function of osteoclasts in vitro and in vivo. In RAW264.7 cells and bone marrow monocytes cells (BMMCs), l-THP inhibited osteoclastic differentiation at the early stage, down-regulated transcription level of osteoclastogenesis-related genes and impaired osteoclasts functions. Mechanically, Western blot showed that l-THP inhibited the phosphorylation of P50, P65, IκB, ERK, JNK and P38, and the electrophoretic mobility shift assay (EMSA) revealed that DNA binding activity of NF-κB was suppressed, ultimately inhibiting the expression of nuclear factor of activated T cells (NFATc1). Besides, Co-immunoprecipitation indicated that l-THP blocked the interactions of RANK and TNF receptor associated factor 6 (TRAF6) at an upstream site. In vivo, l-THP significantly inhibited ovariectomy-induced bone loss and osteoclastogenesis in mice. Collectively, our study demonstrated that l-THP suppressed osteoclastogenesis by blocking RANK-TRAF6 interactions and inhibiting NF-κB and MAPK pathways. l-THP is a promising agent for treating osteoclastogenesis-related diseases such as post-menopausal osteoporosis.


Assuntos
Alcaloides de Berberina/farmacologia , Reabsorção Óssea/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Osteogênese , Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Antiarrítmicos/farmacologia , Diferenciação Celular , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
15.
Life Sci ; 235: 116831, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31487530

RESUMO

AIMS: TRAF6 is an intracellular signal adapter molecule plays a significant role in tumor development. However, the specific mechanism causes and promotes of colorectal cancer keep largely unknown. Therefore, we sought to investigate the roles and the molecular mechanisms of TRAF6 in regulation colorectal cancer. MATERIAL AND METHODS: The immunohistochemistry analyzed the expression of TRAF6 in colorectal cancer samples and analyzed the effects of expression of TRAF6 on the prognosis in colorectal cancer. The roles of TRAF6 in regulating colorectal cancer cell proliferation, colony formation, cell migration, cell wound healing and cell invasion were evaluated in vitro. Animal studies were performed to investigate the effects of TRAF6 on tumor growth. mRNA abundance of key genes was analyzed via qPCR. Protein level of TRAF6 and NF-κB/AP-1 signaling pathways was examined by Western blot. Luciferase reporter and Immunofluorescence assays were used to identify the activities NF-κB/AP-1 signaling pathways. KEY FINDINGS: TRAF6 high expression in colorectal cancer tissues. And colorectal cancer patients with high expression of TRAF6 had a poor survival rate. TRAF6 knockdown can inhibit proliferation, migration, and invasion of colorectal cancer cells in vitro and in vivo experiments. TRAF6 activates the TRAF6-NF-κB/AP-1 signaling pathway by entering the nucleus, causing biobehavioral changes in colorectal cancer cells. SIGNIFICANCE: TRAF6 plays a vital role in the progression of colorectal cancer. What's more, research elucidating the biological mechanisms of TRAF6 can treated as potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Neoplasias Colorretais/fisiopatologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/fisiopatologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/fisiologia , Ensaio Tumoral de Célula-Tronco , Cicatrização/fisiologia
16.
PLoS Pathog ; 15(8): e1008002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31404116

RESUMO

The galectin 3 binding protein (LGALS3BP, also known as 90K) is a ubiquitous multifunctional secreted glycoprotein originally identified in cancer progression. It remains unclear how 90K functions in innate immunity during viral infections. In this study, we found that viral infections resulted in elevated levels of 90K. Further studies demonstrated that 90K expression suppressed virus replication by inducing IFN and pro-inflammatory cytokine production. Upon investigating the mechanisms behind this event, we found that 90K functions as a scaffold/adaptor protein to interact with TRAF6, TRAF3, TAK1 and TBK1. Furthermore, 90K enhanced TRAF6 and TRAF3 ubiquitination and served as a specific ubiquitination substrate of TRAF6, leading to transcription factor NF-κB, IRF3 and IRF7 translocation from the cytoplasm to the nucleus. Conclusions: 90K is a virus-induced protein capable of binding with the TRAF6 and TRAF3 complex, leading to IFN and pro-inflammatory production.


Assuntos
Antígenos de Neoplasias/fisiologia , Biomarcadores Tumorais/fisiologia , Glicoproteínas/fisiologia , Fator 3 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Viroses/imunologia , Replicação Viral , Vírus/imunologia , Animais , Células Cultivadas , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Viroses/metabolismo , Viroses/virologia
17.
Bioorg Med Chem Lett ; 29(16): 2162-2167, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272791

RESUMO

Zinc fingers have rarely been regarded as drug targets. On the contrary, the zinc-binding site of enzymes has often been considered a target of inhibitors. We previously developed a dithiol compound called SN-1 that binds to the zinc finger protein tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppresses downstream nuclear factor-κB (NF-κB) signaling. To determine the minimal structure requirements of TRAF6 inhibitors based on SN-1, NF-κB inhibitory activity and cytotoxicity of its derivatives including new compounds were examined. SN-2, an oxidative type of prodrug of SN-1 with 2-nitrophenylthio groups via disulfide, has the minimum structure for an inhibitor of TRAF6, as seen with cellular experiments. The importance of two side chains with a thiol group was shown with molecular modelling. This study may lead to development of selective TRAF6 inhibitors in the near future.


Assuntos
Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Dedos de Zinco/genética , Humanos , Estrutura Molecular
18.
Int J Cardiol ; 279: 141-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30612848

RESUMO

BACKGROUND: CD40 signalling is involved in chronic inflammation, a condition that plays an important role in non-ischemic heart failure (HF). Small molecule inhibitors of CD40-TRAF6 have shown to be effective in multiple animal-models of chronic inflammatory disease, such as obesity and atherosclerosis. METHODS & RESULTS: Mice were subjected to transverse aortic constriction (TAC) and randomized to small molecule inhibition of CD40-TRAF6 or placebo. CD40-TRAF6 inhibition resulted in less cardiac remodelling 10 weeks after TAC with a reduced end systolic volume (TAC-placebo group: 71.9 ±â€¯8.8 vs TAC-CD40-TRAF6 inhibitor: 53.7 ±â€¯6.1 µl, p = 0.03) and improved ejection fraction (EF) compared to placebo (TAC-placebo group: 25.6 ±â€¯2.8 vs TAC-CD40-TRAF6 inhibitor: 35.5 ±â€¯3.3%, p = 0.02). Within the myocardium, CD40-TRAF6 inhibition resulted in decreased macrophage and T-cell infiltration 10 weeks after TAC compared to placebo. In addition, a decrease in fibrosis and cardiomyocyte hypertrophy was observed in the CD40-TRAF6 inhibitor group compared to placebo. CONCLUSION: CD40-TRAF6 inhibition improves cardiac function in non-ischemic HF in mice. This effect is mediated by a reduction in macrophage and T-cell influx in the myocardium, accompanied by a reduction in cardiac fibrosis and hypertrophy.


Assuntos
Antígenos CD40/antagonistas & inibidores , Antígenos CD40/metabolismo , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/metabolismo , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Fármacos Cardiovasculares/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
19.
Inflammation ; 42(2): 637-649, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30392071

RESUMO

Previous studies have been indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6)-induced inflammation leads to acute kidney injury (AKI). How microRNA (miR) contributes to this process is poorly defined. The aim of this study was to investigate whether miR-590-3p regulated lipopolysaccharide (LPS)-induced inflammatory response by inhibiting TRAF6. LPS-induced septic mice were treated with adenovirus expressing miR-590-3p (ad-miR-590-3p) via tail-vein injection. AKI was evaluated by examining serum cystatin C (CysC), serum ß2-microglobulin (ß2-MG), and blood urea nitrogen (BUN). The mRNA and protein levels were assayed by RT-qPCR and western blotting, respectively. The proliferation of podocytes was monitored using the MTT assay. Cell apoptosis was analyzed by flow cytometry. Survival outcomes in ad-miR-590-3p-transfected septic mice were markedly improved compared with mice with LPS-induced sepsis. Ad-miR-590-3p transfection significantly attenuated LPS-induced AKI, which was reflected by an improved glomerular filtration rate (GFR) as determined by measuring CysC, ß2-MG, and BUN. Moreover, we observed that miR-590-3p was a novel regulator of TRAF6, binding to its 3'-untranslated regions (3'-UTRs). In vitro, a miR-590-3p gain-of-function mutation blocked LPS-induced podocyte growth inhibition and apoptosis, as well as overactivation of the inflammatory response. miR-590-3p has the ability to suppress LPS-induced AKI and podocyte apoptosis by targeting TRAF6. This might provide a novel strategy for the treatment of LPS-induced renal injuries.


Assuntos
Injúria Renal Aguda/prevenção & controle , MicroRNAs/genética , Sepse/patologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Injúria Renal Aguda/tratamento farmacológico , Animais , Apoptose , Inflamação/induzido quimicamente , Lipopolissacarídeos , Camundongos , Podócitos/patologia , Sepse/complicações , Taxa de Sobrevida
20.
Biochem Biophys Res Commun ; 503(4): 2742-2748, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30103950

RESUMO

Choroidal neovascularization (CNV) is a type of wet age-related macular degeneration (AMD) which is a major cause of blindness in elder patients. Tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes tumor angiogenesis via upregulating the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Additionally, TRAF6 facilitates the inflammatory response in macrophages and microglia. Here, using mouse laser-induced CNV model and TRAF6 siRNA, the study shows that TRAF6 is a critical player in CNV. The expression of TRAF6, HIF-1α, and VEGF increased in the model. TFAF6 siRNA intravitreal (IVT) injection inhibited CNV formation, as well as expression of HIF-1α and VEGF, activation of macrophages and microglia. Together, our data suggest that TFAF6 inhibition reduces CNV formation via down-regulating expression of HIF-1α and VEGF and activation of macrophages and microglia, demonstrating the unique advantages of TRAF6 inhibition in the alleviation of AMD.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ranibizumab/farmacologia , Fator 6 Associado a Receptor de TNF/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lasers , Fotocoagulação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA