Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 145(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29615464

RESUMO

Embryonic morphogenesis of a complex organism requires proper regulation of patterning and directional growth. Planar cell polarity (PCP) signaling is emerging as a crucial evolutionarily conserved mechanism whereby directional information is conveyed. PCP is thought to be established by global cues, and recent studies have revealed an instructive role of a Wnt signaling gradient in epithelial tissues of both invertebrates and vertebrates. However, it remains unclear whether Wnt/PCP signaling is regulated in a coordinated manner with embryonic patterning during morphogenesis. Here, in mouse developing limbs, we find that apical ectoderm ridge-derived Fgfs required for limb patterning regulate PCP along the proximal-distal axis in a Wnt5a-dependent manner. We demonstrate with genetic evidence that the Wnt5a gradient acts as a global cue that is instructive in establishing PCP in the limb mesenchyme, and that Wnt5a also plays a permissive role to allow Fgf signaling to orient PCP. Our results indicate that limb morphogenesis is regulated by coordination of directional growth and patterning through integration of Wnt5a and Fgf signaling.


Assuntos
Padronização Corporal/fisiologia , Polaridade Celular/fisiologia , Fator 4 de Crescimento de Fibroblastos/fisiologia , Fator 8 de Crescimento de Fibroblasto/fisiologia , Proteína Wnt-5a/fisiologia , Animais , Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Extremidades/embriologia , Fator 4 de Crescimento de Fibroblastos/deficiência , Fator 4 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Proteína Wnt-5a/deficiência , Proteína Wnt-5a/genética
2.
Dev Biol ; 387(1): 37-48, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24424161

RESUMO

Isl1 expression marks progenitor populations in developing embryos. In this study, we investigated the contribution of Isl1-expressing cells that utilize the ß-catenin pathway to skeletal development. Inactivation of ß-catenin in Isl1-expressing cells caused agenesis of the hindlimb skeleton and absence of the lower jaw (agnathia). In the hindlimb, Isl1-lineages broadly contributed to the mesenchyme; however, deletion of ß-catenin in the Isl1-lineage caused cell death only in a discrete posterior domain of nascent hindlimb bud mesenchyme. We found that the loss of posterior mesenchyme, which gives rise to Shh-expressing posterior organizer tissue, caused loss of posterior gene expression and failure to expand chondrogenic precursor cells, leading to severe truncation of the hindlimb. In facial tissues, Isl1-expressing cells broadly contributed to facial epithelium. We found reduced nuclear ß-catenin accumulation and loss of Fgf8 expression in mandibular epithelium of Isl1(-/-) embryos. Inactivating ß-catenin in Isl1-expressing epithelium caused both loss of epithelial Fgf8 expression and death of mesenchymal cells in the mandibular arch without affecting epithelial proliferation and survival. These results suggest a Isl1→ß-catenin→Fgf8 pathway that regulates mesenchymal survival and development of the lower jaw in the mandibular epithelium. By contrast, activating ß-catenin signaling in Isl1-lineages caused activation of Fgf8 broadly in facial epithelium. Our results provide evidence that, despite its broad contribution to hindlimb mesenchyme and facial epithelium, the Isl1-ß-catenin pathway regulates skeletal development of the hindlimb and lower jaw through discrete populations of cells that give rise to Shh-expressing posterior hindlimb mesenchyme and Fgf8-expressing mandibular epithelium.


Assuntos
Membro Posterior/embriologia , Anormalidades Maxilomandibulares/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Osteogênese/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Região Branquial/embriologia , Linhagem da Célula/genética , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Fosfatase 6 de Especificidade Dupla/biossíntese , Embrião de Mamíferos/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Fator 8 de Crescimento de Fibroblasto/biossíntese , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Membro Posterior/anormalidades , Proteínas de Homeodomínio/biossíntese , Anormalidades Maxilomandibulares/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Proteínas com Homeodomínio LIM/genética , Mandíbula/embriologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima , Proteína Gli3 com Dedos de Zinco , beta Catenina/genética
3.
Dev Biol ; 347(1): 92-108, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20727874

RESUMO

The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.


Assuntos
Feto/embriologia , Feto/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrases/metabolismo , Pulmão/anormalidades , Pulmão/irrigação sanguínea , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Mutação/genética
4.
Nature ; 453(7193): 401-5, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18449196

RESUMO

Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.


Assuntos
Padronização Corporal/genética , Padronização Corporal/fisiologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Botões de Extremidades/embriologia , Animais , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Sobrevivência Celular , Feminino , Fator 8 de Crescimento de Fibroblasto/deficiência , Fator 8 de Crescimento de Fibroblasto/genética , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Homeodomínio/genética , Botões de Extremidades/citologia , Botões de Extremidades/metabolismo , Masculino , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/genética , Tamanho do Órgão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA