Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(31): 19379-86, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26109069

RESUMO

Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to ß-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by ß-factor C, in an LPS-dependent manner and that ß-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.


Assuntos
Proteínas de Artrópodes/química , Fator B do Complemento/química , Precursores Enzimáticos/química , Caranguejos Ferradura/enzimologia , Lipopolissacarídeos/química , Animais , Sítios de Ligação , Células HEK293 , Humanos , Ligação Proteica , Proteólise
2.
Fish Shellfish Immunol ; 33(3): 504-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22728118

RESUMO

In this study, a homologue of complement B factor (AjBf-2, GenBank ID: JN634069.1) was cloned and characterized from Apostichopus japonicus by using bioinformatics methods and molecular biotechnologies including homology cloning and RACE. The full-length cDNA of AjBf-2 was composed of 3261bp. The sequence shows 268bp in the 5'UT region, 395bp in the 3'UT region, and 2595 bp in the open reading frame. AjBf-2 gene encodes 865 amino acids. The deduced amino acids sequence and domain structure of AjBf-2 gene show significant similarity to the vertebrate Bf/C2 family protein. AjBf-2 is a mosaic protein. It has a deduced molecular mass of 96.8 kDa, with a conserved site for a D factor. AjBf-2 is composed of five short consensus repeats, a von Willebrand Factor domain, a serine protease domain and an Mg2+ binding site. It has eight consensus recognition sites for N-linked glycosylation and four cAMP- and cGMP-dependent protein kinase phosphorylation sites. Phylogenetic analysis of AjBf-2 compared with other species Bf shows that A. japonicus has a close evolutionary relationship with Strongylocentrotus purpuratus and Carcinoscorpius rotundicaud. It can be speculated that Bf in invertebrate is the ancestor of Bf in vertebrate. The result of RT-PCR shows that the AjBf-2 gene is expressed in every tested tissue of A. japonicus, and is especially high in the coelomocyte and the body wall. The expression tendency in coelomocyte and the body wall are approximately the same. After LPS induction, the expression of AjBf-2 gene peaks at 12 h in coelomocyte and 3 h in the body wall.


Assuntos
Fator B do Complemento/genética , Fator B do Complemento/imunologia , Regulação da Expressão Gênica , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Fator B do Complemento/química , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Stichopus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA