Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Haematologica ; 108(11): 2933-2945, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317880

RESUMO

Treating patients with refractory acute myeloid leukemia (AML) remains challenging. Currently there is no effective treatment for refractory AML. Increasing evidence has demonstrated that refractory/relapsed AML is associated with leukemic blasts which can confer resistance to anticancer drugs. We have previously reported that high expression of Fms-related tyrosine kinase 4 (FLT4) is associated with increased cancer activity in AML. However, the functional role of FLT4 in leukemic blasts remains unknown. Here, we explored the significance of FLT4 expression in leukemic blasts of refractory patients and mechanisms involved in the survival of AML blasts. Inhibition or absence of FLT4 in AML blasts suppressed homing to bone marrow of immunocompromised mice and blocked engraftment of AML blasts. Moreover, FLT4 inhibition by MAZ51, an antagonist, effectively reduced the number of leukemic cell-derived colony-forming units and increased apoptosis of blasts derived from refractory patients when it was co-treated with cytosine arabinoside under vascular endothelial growth factor C, its ligand. AML patients who expressed high cytosolic FLT4 were linked to an AML-refractory status by internalization mechanism. In conclusion, FLT4 has a biological function in leukemogenesis and refractoriness. This novel insight will be useful for targeted therapy and prognostic stratification of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo , Antineoplásicos/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico
2.
Ophthalmology ; 130(6): 588-597, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36754174

RESUMO

PURPOSE: Neovascular (wet) age-related macular degeneration (nAMD) is driven by VEGFs A, C, and D, which promote angiogenesis and vascular permeability. Intravitreal injections of anti-VEGF-A drugs are the standard of care, but these do not inhibit VEGF-C and D, which may explain why many patients fail to respond fully. This trial aimed to test the safety and efficacy of OPT-302, a biologic inhibitor of VEGF-C and D, in combination with the anti-VEGF-A inhibitor ranibizumab. DESIGN: Dose-ranging, phase 2b, randomized, double-masked, sham-controlled trial. PARTICIPANTS: Participants with treatment-naive nAMD were enrolled from 109 sites across Europe, Israel, and the United States. METHODS: Participants were randomized to 6, 4-weekly, intravitreal injections of 0.5 mg OPT-302, 2.0 mg OPT-302, or sham, plus intravitreal 0.5 mg ranibizumab. MAIN OUTCOME MEASURES: The primary outcome was mean change in ETDRS best-corrected visual acuity (BCVA) at 24 weeks. Secondary outcomes (comparing baseline with week 24) were the proportion of participants gaining or losing ≥ 15 ETDRS BCVA letters; area under the ETDRS BCVA over time curve; change in spectral-domain OCT (SD-OCT) central subfield thickness; and change in intraretinal fluid and subretinal fluid on SD-OCT. RESULTS: Of 366 participants recruited from December 1, 2017, to November 30, 2018, 122, 123, and 121 were randomized to 0.5 mg OPT-302, 2.0 mg OPT-302, and sham, respectively. Mean (± standard deviation) visual acuity gain in the 2.0 mg OPT-302 group was significantly superior to sham (+14.2 ± 11.61 vs. +10.8 ± 11.52 letters; P = 0.01). The 0.5 mg OPT-302 group was not significantly different than the sham group (+9.44 ± 11.32 letters; P = 0.83). Compared with sham, the secondary BCVA outcomes favored the 2.0 mg OPT-302 group, with structural outcomes favoring both OPT-302 dosage groups. Adverse events (AEs) were similar across groups, with 16 (13.3%), 7 (5.6%), and 10 (8.3%) participants in the lower-dose, higher-dose, and sham groups, respectively, developing at least 1 serious AE. Two unrelated deaths both occurred in the sham arm. CONCLUSIONS: Significantly superior vision gain was observed with OPT-302 2.0 mg combination therapy, versus standard of care, with favorable safety (ClinicalTrials.gov identifier: NCT03345082). FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Ranibizumab , Degeneração Macular Exsudativa , Humanos , Ranibizumab/uso terapêutico , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Degeneração Macular Exsudativa/diagnóstico , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/induzido quimicamente , Injeções Intravítreas , Resultado do Tratamento
3.
Microcirculation ; 30(2-3): e12792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36369987

RESUMO

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Assuntos
Vasos Linfáticos , Linfedema , Células-Tronco Mesenquimais , Animais , Camundongos , Linfangiogênese , Vasos Linfáticos/fisiologia , Linfedema/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Lentivirus/genética
4.
Exp Dermatol ; 32(1): 50-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168721

RESUMO

Plasminogen activating inhibitor-1 (PAI-1) is associated with poor clinical outcomes, and elevated levels of PAI-1 in both tissue and serum are correlated with poor response to therapy in various cancers, including skin cancer. Cutaneous angiosarcoma (CAS) is a vascular tumor histologically characterized by detachment of endothelial cell-derived tumor cells. Since CAS expresses multiple angiogenic growth factors and has increased expressions of angiogenic receptor tyrosine kinase transcripts including VEGFR1/2/3, angiogenesis-promoting factors are potential drug targets in CAS. In this study, the expression of PAI-1 was examined in 31 cases of CAS, and the immunomodulatory effects of PAI-1 on a human CAS cell line, ISO-HAS-B, were evaluated. We found that, of the angiogenesis-promoting factors, PAI-1 was expressed in almost all cases of CAS, and PAI-1 increased the mRNA expressions of IL-23p19, VEGF-C, CXCL5 and CCL20 on ISO-HAS-B. Moreover, PAI-1 stimulated ISO-HAS-B culture supernatant promoted favourable tube networks, suggesting that these tumor-derived factors promote the pro-angiogenic effect on tumor development. In addition, IL-23p19 was expressed in 61.3% of cases, whereas VEGF-C was expressed in 41% of cases. The results of the present study suggest that PAI-1 promotes angiogenesis that results in tumor progression in CAS.


Assuntos
Hemangiossarcoma , Neoplasias Cutâneas , Humanos , Hemangiossarcoma/tratamento farmacológico , Hemangiossarcoma/patologia , Subunidade p19 da Interleucina-23 , Plasminogênio/uso terapêutico , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serina Proteases , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
5.
BJU Int ; 130(2): 244-253, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34549873

RESUMO

OBJECTIVE: To explore translational biological and imaging biomarkers for sunitinib treatment before and after debulking nephrectomy in the NeoSun (European Union Drug Regulating Authorities Clinical Trials Database [EudraCT] number: 2005-004502-82) single-centre, single-arm, single-agent, Phase II trial. PATIENTS AND METHODS: Treatment-naïve patients with metastatic renal cell carcinoma (mRCC) received 50 mg once daily sunitinib for 12 days pre-surgically, then post-surgery on 4 week-on, 2 week-off, repeating 6-week cycles until disease progression in a single arm phase II trial. Structural and dynamic contrast-enhanced magnet resonance imaging (DCE-MRI) and research blood sampling were performed at baseline and after 12 days. Computed tomography imaging was performed at baseline and post-surgery then every two cycles. The primary endpoint was objective response rate (Response Evaluation Criteria In Solid Tumors [RECIST]) excluding the resected kidney. Secondary endpoints included changes in DCE-MRI of the tumour following pre-surgery sunitinib, overall survival (OS), progression-free survival (PFS), response duration, surgical morbidity/mortality, and toxicity. Translational and imaging endpoints were exploratory. RESULTS: A total of 14 patients received pre-surgery sunitinib, 71% (10/14) took the planned 12 doses. All underwent nephrectomy, and 13 recommenced sunitinib postoperatively. In all, 58.3% (seven of 12) of patients achieved partial or complete response (PR or CR) (95% confidence interval 27.7-84.8%). The median OS was 33.7 months and median PFS was 15.7 months. Amongst those achieving a PR or CR, the median response duration was 8.7 months. No unexpected surgical complications, sunitinib-related toxicities, or surgical delays occurred. Within the translational endpoints, pre-surgical sunitinib significantly increased necrosis, and reduced cluster of differentiation-31 (CD31), Ki67, circulating vascular endothelial growth factor-C (VEGF-C), and transfer constant (KTrans , measured using DCE-MRI; all P < 0.05). There was a trend for improved OS in patients with high baseline plasma VEGF-C expression (P = 0.02). Reduction in radiological tumour volume after pre-surgical sunitinib correlated with high percentage of solid tumour components at baseline (Spearman's coefficient ρ = 0.69, P = 0.02). Conversely, the percentage tumour volume reduction correlated with lower baseline percentage necrosis (coefficient = -0.51, P = 0.03). CONCLUSION: Neoadjuvant studies such as the NeoSun can safely and effectively explore translational biological and imaging endpoints.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Antineoplásicos/uso terapêutico , Biomarcadores , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/cirurgia , Humanos , Indóis/uso terapêutico , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/cirurgia , Necrose/tratamento farmacológico , Pirróis/uso terapêutico , Sunitinibe/uso terapêutico , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
6.
Nat Commun ; 11(1): 4524, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913280

RESUMO

Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.


Assuntos
Lesões Encefálicas/fisiopatologia , Gliose/fisiopatologia , Sistema Glinfático/fisiologia , Meninges/fisiopatologia , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Gliose/etiologia , Gliose/patologia , Gliose/prevenção & controle , Sistema Glinfático/patologia , Humanos , Masculino , Meninges/patologia , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
7.
Nature ; 577(7792): 689-694, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942068

RESUMO

Immune surveillance against pathogens and tumours in the central nervous system is thought to be limited owing to the lack of lymphatic drainage. However, the characterization of the meningeal lymphatic network has shed light on previously unappreciated ways that an immune response can be elicited to antigens that are expressed in the brain1-3. Despite progress in our understanding of the development and structure of the meningeal lymphatic system, the contribution of this network in evoking a protective antigen-specific immune response in the brain remains unclear. Here, using a mouse model of glioblastoma, we show that the meningeal lymphatic vasculature can be manipulated to mount better immune responses against brain tumours. The immunity that is mediated by CD8 T cells to the glioblastoma antigen is very limited when the tumour is confined to the central nervous system, resulting in uncontrolled tumour growth. However, ectopic expression of vascular endothelial growth factor C (VEGF-C) promotes enhanced priming of CD8 T cells in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumour, rapid clearance of the glioblastoma and a long-lasting antitumour memory response. Furthermore, transfection of an mRNA construct that expresses VEGF-C works synergistically with checkpoint blockade therapy to eradicate existing glioblastoma. These results reveal the capacity of VEGF-C to promote immune surveillance of tumours, and suggest a new therapeutic approach to treat brain tumours.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Vigilância Imunológica/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Apresentação Cruzada , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células HEK293 , Humanos , Memória Imunológica/imunologia , Linfangiogênese , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Meninges/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
8.
Basic Res Cardiol ; 114(6): 43, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31587086

RESUMO

Impairment of cardiac lymphatic vessels leads to cardiac lymphedema. Recent studies have suggested that stimulation of lymphangiogenesis may reduce cardiac lymphedema. However, effects of lymphatic endothelial progenitor cells (LEPCs) on cardiac lymphangiogenesis are poorly understood. Therefore, this study investigated effectiveness of LEPC transplantation and VEGF-C release with self-assembling peptide (SAP) on cardiac lymphangiogenesis after myocardial infarction (MI). CD34+VEGFR-3+ EPCs isolated from rat bone marrow differentiated into lymphatic endothelial cells after VEGF-C induction. VEGF-C also stimulated the cells to incorporate into the lymphatic capillary-like structures. The functionalized SAP could adhere with the cells and released VEGF-C sustainedly. In the condition of hypoxia and serum deprivation or abdominal pouch assay, the SAP hydrogel protected the cells from apoptosis and necrosis. At 4 weeks after intramyocardial transplantation of the cells and VEGF-C loaded with SAP hydrogel in rat MI models, cardiac lymphangiogenesis was increased, cardiac edema and reverse remodeling were reduced, and cardiac function was improved significantly. Delivery with SAP hydrogel favored survival of the engrafted cells. VEGF-C released from the hydrogel promoted differentiation and incorporation of the cells as well as growth of pre-existed lymphatic vessels. Cardiac lymphangiogenesis was beneficial for elimination of the inflammatory cells in the infarcted myocardium. Moreover, angiogenesis and myocardial regeneration were enhanced after reduction of lymphedema. These results demonstrate that the combined delivery of LEPCs and VEGF-C with the functionalized SAP promotes cardiac lymphangiogenesis and repair of the infarcted myocardium effectively. This study represents a novel therapy for relieving myocardial edema in cardiovascular diseases.


Assuntos
Edema Cardíaco/terapia , Células Progenitoras Endoteliais/transplante , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Antígenos CD34/metabolismo , Células Progenitoras Endoteliais/metabolismo , Masculino , Miocárdio/metabolismo , Neovascularização Fisiológica , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/sangue , Fator C de Crescimento do Endotélio Vascular/sangue , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Annu Rev Med ; 69: 263-276, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28877002

RESUMO

Lymphedema affects up to 1 in 6 patients who undergo treatment for a solid tumor in the United States. Its prevalence has increased as more effective oncologic therapies have improved patient survival, but there remains no definitive cure. Recent research has elucidated new details in the pathogenesis of the disease and has demonstrated that it is fundamentally an immunologic process that ultimately results in inflammation, fibroadipose deposition, impaired lymphangiogenesis, and dysfunctional lymphatic pumping. These findings have allowed for the development of novel medical and surgical therapies that may potentially alter the standard of care for a disease that has largely been treated by compression. This review seeks to provide an overview of the emerging therapies and how they can be utilized for effective management of lymphedema.


Assuntos
Terapia por Exercício , Linfonodos/transplante , Linfedema/terapia , Drenagem Linfática Manual , Transplante de Células-Tronco , Procedimentos Cirúrgicos Vasculares , Programas de Redução de Peso , Linfedema Relacionado a Câncer de Mama/fisiopatologia , Linfedema Relacionado a Câncer de Mama/terapia , Progressão da Doença , Terapia Genética , Humanos , Dispositivos de Compressão Pneumática Intermitente , Lipectomia , Terapia com Luz de Baixa Intensidade , Vasos Linfáticos/cirurgia , Linfedema/fisiopatologia , Índice de Gravidade de Doença , Meias de Compressão , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Veias/cirurgia
10.
Circulation ; 133(15): 1484-97; discussion 1497, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26933083

RESUMO

BACKGROUND: The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI. METHODS AND RESULTS: We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated. CONCLUSIONS: We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.


Assuntos
Edema/prevenção & controle , Linfangiogênese/efeitos dos fármacos , Infarto do Miocárdio/terapia , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fibrose , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Imageamento Tridimensional , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiopatologia , Linfografia , Masculino , Infarto do Miocárdio/complicações , Miocárdio/química , Miocárdio/patologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/análise , Fator C de Crescimento do Endotélio Vascular/análise , Fator C de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/análise
11.
J Am Soc Nephrol ; 27(1): 69-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26038530

RESUMO

Polycystic kidney diseases (PKD) are genetic disorders characterized by progressive epithelial cyst growth leading to destruction of normally functioning renal tissue. Current therapies have focused on the cyst epithelium, and little is known about how the blood and lymphatic microvasculature modulates cystogenesis. Hypomorphic Pkd1(nl/nl) mice were examined, showing that cystogenesis was associated with a disorganized pericystic network of vessels expressing platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor receptor 3 (VEGFR3). The major ligand for VEGFR3 is VEGFC, and there were lower levels of Vegfc mRNA within the kidneys during the early stages of cystogenesis in 7-day-old Pkd1(nl/nl) mice. Seven-day-old mice were treated with exogenous VEGFC for 2 weeks on the premise that this would remodel both the VEGFR3(+) pericystic vascular network and larger renal lymphatics that may also affect the severity of PKD. Treatment with VEGFC enhanced VEGFR3 phosphorylation in the kidney, normalized the pattern of the pericystic network of vessels, and widened the large lymphatics in Pkd1(nl/nl) mice. These effects were associated with significant reductions in cystic disease, BUN and serum creatinine levels. Furthermore, VEGFC administration reduced M2 macrophage pericystic infiltrate, which has been implicated in the progression of PKD. VEGFC administration also improved cystic disease in Cys1(cpk/cpk) mice, a model of autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the possibility for synergy with current epithelially targeted approaches.


Assuntos
Doenças Renais Policísticas/tratamento farmacológico , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Camundongos , Doenças Renais Policísticas/etiologia , Fator C de Crescimento do Endotélio Vascular/fisiologia
13.
J Clin Invest ; 125(11): 4255-68, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26485284

RESUMO

Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes.


Assuntos
Rejeição de Enxerto/terapia , Ácido Hialurônico/metabolismo , Transplante de Pulmão , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Doença Aguda , Aloenxertos , Animais , Células Endoteliais/metabolismo , Volume Expiratório Forçado , Glicoproteínas/metabolismo , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/fisiopatologia , Proteínas de Homeodomínio/análise , Humanos , Ácido Hialurônico/química , Imunossupressores/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/patologia , Vasos Linfáticos/cirurgia , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peso Molecular , Mutação , Prednisona/uso terapêutico , Ligação Proteica , Proteínas Supressoras de Tumor/análise , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Stem Cells Dev ; 24(3): 271-83, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25329370

RESUMO

Lymphedema is a medically irreversible condition for which currently conservative and surgical therapies are either ineffective or impractical. The potential use of progenitor and stem cell-based therapies has offered a paradigm that may provide alternative treatment options for lymphatic disorders. Moreover, basic research, preclinical studies, as well as clinical trials have evaluated the therapeutic potential of various cell therapies in the field of lymphatic regeneration medicine. Among the available cell approaches, mesenchymal stem cells (MSCs) seem to be the most promising candidate mainly due to their abundant sources and easy availability as well as evitable ethical and immunological issues confronted with embryonic stem cells and induced pluripotent stem cells. In this context, the purpose of this review is to summarize various cell-based therapies for lymphedema, along with strengths and weaknesses of these therapies in the clinical application for lymphedema treatment. Particularly, we will highlight the use of MSCs for lymphatic regeneration medicine. In addition, the future perspectives of MSCs in the field of lymphatic regeneration will be discussed.


Assuntos
Linfangiogênese , Linfedema/cirurgia , Transplante de Células-Tronco Mesenquimais , Animais , Ensaios Clínicos Fase I como Assunto , Células-Tronco Embrionárias/transplante , Previsões , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Linfangiogênese/efeitos dos fármacos , Linfangiogênese/genética , Sistema Linfático/fisiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Camundongos , Camundongos Knockout , Complicações Pós-Operatórias/cirurgia , Regeneração , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fator C de Crescimento do Endotélio Vascular/farmacologia , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/deficiência
15.
Ann Surg ; 257(5): 961-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23013803

RESUMO

OBJECTIVE: Our objective was to define the optimal growth factor treatment to be used in combination with lymph node transfer to normalize lymphatic vascular anatomy. BACKGROUND: In the lymph node transfer method, lymphatic anastomoses are expected to form spontaneously. However, lymphangiogenic growth factor therapies have shown promising results in preclinical models of lymphedema. METHODS: The inguinal lymphatic vasculature of pigs was surgically destroyed around the inguinal lymph node. To enhance the regrowth of the lymphatic network in the defected area, adenoviral vascular endothelial growth factor C (VEGF-C) was administered intranodally or perinodally. Control animals received injections of saline or control vector. The lymphangiogenic effect of the growth factor therapy and any potential adverse effects associated with the 2 alternative delivery routes were examined 2 months postoperatively. RESULTS: Both routes of growth factor administration induced robust growth of lymphatic vessels and helped to preserve the structure of the transferred lymph nodes in comparison with the controls. The lymph nodes of the control treated animals regressed in size and their nodal structure was partly replaced by fibro-fatty scar tissue. Intranodally injected adenoviral VEGF-C and adenoviral vector encoding control gene LacZ induced macrophage accumulation inside the node, whereas perinodal administration of VEGF-C did not have this adverse effect. CONCLUSIONS: Lymphangiogenic growth factors improve lymphatic vessel regeneration and lymph node function after lymph node transfer. The perinodal route of delivery provides a basis for future clinical trials in lymphedema patients.


Assuntos
Terapia Genética/métodos , Regeneração Tecidual Guiada/métodos , Linfonodos/transplante , Linfedema/terapia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Adenoviridae , Animais , Terapia Combinada , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Vetores Genéticos , Regeneração Tecidual Guiada/efeitos adversos , Injeções Intralinfáticas , Modelos Lineares , Linfangiogênese/efeitos dos fármacos , Sus scrofa , Resultado do Tratamento , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/farmacologia , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
16.
Arthritis Rheum ; 63(8): 2318-28, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538325

RESUMO

OBJECTIVE: To investigate whether the enhancement of joint lymphangiogenesis by injection of vascular endothelial growth factor C (VEGF-C) adeno-associated virus (AAV) into the affected joints has therapeutic efficacy in chronic inflammatory arthritis in mice. METHODS: Tumor necrosis factor-transgenic (TNF-Tg) mice were used as a model of chronic inflammatory arthritis. Human VEGF-C was cloned into an AAV expression vector to generate AAV-VEGF-C. The joints of TNF-Tg mice were injected with AAV-VEGF-C or AAV-luciferase (AAV-Luc) as a control. During the 4 months following injection, magnetic resonance imaging of the joints and lymphatic imaging were performed to assess changes in synovial volume and lymph flow from the joint tissues to local draining lymph nodes. Joint inflammation, bone erosion, and cartilage loss were examined by histologic analyses. Lymphatic vessel formation was assessed using immunohistochemistry. RESULTS: Intraarticular administration of AAV-VEGF-C virus significantly attenuated the increase in synovial volume and increased lymphatic vessel number in the joint sections, as compared with that in control AAV-Luc-injected joints, during the 4-month period. This was accompanied by a reduction in the area of inflammation, bone erosion, cartilage loss, and osteoclast numbers. Lymph flow from the joints to local draining lymph nodes was slower in TNF-Tg mice than in wild-type littermates, and was significantly improved with AAV-VEGF-C treatment. CONCLUSION: Intraarticular injection of AAV-VEGF-C increased lymphangiogenesis and improved lymphatic drainage from the inflamed joints of mice, resulting in attenuation of joint tissue damage. Thus, improvement of joint lymphatic function by local administration of lymphatic growth factors represents a new therapeutic approach for chronic inflammatory arthritis.


Assuntos
Artrite/terapia , Articulações/patologia , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Artrite/patologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Articulações/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Camundongos , Camundongos Transgênicos , Fator C de Crescimento do Endotélio Vascular/metabolismo
17.
Ann N Y Acad Sci ; 1131: 215-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18519974

RESUMO

The presence of lymphatic vessels has been known for centuries, but the key players regulating the lymphatic vessel growth and function have only been discovered during the recent decade. The lymphatic vasculature is essential for maintenance of normal fluid balance and for the immune response. Hypoplasia or dysfunction of the lymphatic vessels can lead to lymphedema. Currently, lymphedema is treated primarily by physiotherapy, compression garments, and occasionally by surgery, but the means to reconstitute the collecting lymphatic vessels and cure the condition are limited. Specific growth factor therapy has been used in experimental models to regenerate lymphatic capillaries and collecting vessels after surgical damage. Recent results provide a new concept of combining growth factor therapy with lymph node transplantation as a rationale for treating secondary lymphedema. Lymphatic vessels are also involved in lymph node and systemic metastasis of cancer cells; our understanding of mechanisms of lymphatic metastasis has increased remarkably.


Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Linfedema/terapia , Humanos , Metástase Linfática/patologia , Modelos Biológicos , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
18.
Am J Pathol ; 169(3): 1080-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16936280

RESUMO

Diabetes impairs numerous aspects of tissue repair. Failure of wound angiogenesis is known to delay diabetic wound healing, whereas the importance of lymphangiogenesis for wound healing is unclear. We have examined whether overexpression of vascular endothelial growth factor (VEGF)-C via an adenoviral vector could improve the healing of full-thickness punch biopsy wounds in genetically diabetic (db/db) mice. We found that VEGF-C enhanced angiogenesis and lymphangiogenesis in the wound and significantly accelerated wound healing in comparison to the control wounds. VEGF-C also recruited inflammatory cells, some of which expressed VEGFR-3. On the other hand, when the function of endogenous VEGF-C/VEGF-D was blocked with a specific inhibitor, wound closure was delayed even further. These results suggest a function for VEGF-C in wound healing and demonstrate the therapeutic potential of VEGF-C in the treatment of diabetic wounds.


Assuntos
Complicações do Diabetes/metabolismo , Neovascularização Fisiológica , Fator C de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo , Animais , Complicações do Diabetes/complicações , Complicações do Diabetes/genética , Complicações do Diabetes/terapia , Expressão Gênica , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Ferimentos e Lesões/etiologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA