Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Transl Vis Sci Technol ; 13(7): 7, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980261

RESUMO

Purpose: Lipid nanoparticles (LNPs) show promise in their ability to introduce mRNA to drive protein expression in specific cell types of the mammalian eye. Here, we examined the ability of mRNA encapsulated in LNPs with two distinct formulations to drive gene expression in mouse and human retina and other ocular tissues. Methods: We introduced mRNA-carrying LNPs into two biological systems. Intravitreal injections were tested to deliver LNPs into the mouse eye. Human retinal pigment epithelium (RPE) and retinal explants were used to assess mRNA expression in human tissue. We analyzed specificity of expression using histology, immunofluorescence, and imaging. Results: In mice, mRNAs encoding GFP and ciliary neurotrophic factor (CNTF) were specifically expressed by Müller glia and RPE. Acute inflammatory changes measured by microglia distribution (Iba-1) or interleukin-6 (IL-6) expression were not observed 6 hours post-injection. Human RPE also expressed high levels of GFP. Human retinal explants expressed GFP in cells with apical and basal processes consistent with Müller glia and in perivascular cells consistent with macrophages. Conclusions: We demonstrated the ability to reliably transfect subpopulations of retinal cells in mouse eye tissues in vivo and in human ocular tissues. Of significance, intravitreal injections were sufficient to transfect the RPE in mice. To our knowledge, we demonstrate delivery of mRNA using LNPs in human ocular tissues for the first time. Translational Relevance: Ocular gene-replacement therapies using non-viral vector methods are a promising alternative to adeno-associated virus (AAV) vectors. Our studies show that mRNA LNP delivery can be used to transfect retinal cells in both mouse and human tissues without inducing significant inflammation. This methodology could be used to transfect retinal cell lines, tissue explants, mice, or potentially as gene-replacement therapy in a clinical setting in the future.


Assuntos
Injeções Intravítreas , Nanopartículas , RNA Mensageiro , Epitélio Pigmentado da Retina , Animais , Humanos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Nanopartículas/química , Camundongos Endogâmicos C57BL , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/administração & dosagem , Retina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Ependimogliais/metabolismo , Técnicas de Transferência de Genes , Lipossomos
2.
J Biol Chem ; 300(5): 107251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569939

RESUMO

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Assuntos
Fator Neurotrófico Ciliar , Receptor gp130 de Citocina , Interleucina-6 , Transdução de Sinais , Animais , Humanos , Camundongos , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Modelos Moleculares , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de OSM-LIF/metabolismo , Receptores de OSM-LIF/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos C57BL
3.
J Ethnopharmacol ; 327: 118062, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38492790

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY: More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS: After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS: The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 µg/mL and 0.03 µg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION: A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.


Assuntos
Isquemia Encefálica , Canfanos , Ligusticum , Camundongos , Animais , Astrócitos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Fator Neurotrófico Ciliar/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neurogênese , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral
4.
Cell Prolif ; 56(2): e13354, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36266504

RESUMO

OBJECTIVES: Spina bifida aperta (SBA) is one of the most common neural tube defects. Neural injury in SBA occurs in two stages involving failed neural tube closure and progressive degeneration through contact with the amniotic fluid. We previously suggested that intra-amniotic bone marrow-derived mesenchymal stem cell (BMSC) therapy for fetal rat SBA could achieve beneficial functional recovery through lesion-specific differentiation. The aim of this study is to examine whether the amniotic fluid microenvironment can be improved by intra-amniotic BMSC transplantation. METHODS: The intra-amniotic BMSC injection was performed using in vivo rat fetal SBA models. The various cytokine expressions in rat amniotic fluid were screened by protein microassays. Intervention experiments were used to study the function of differentially expressed cytokines. RESULTS: A total of 32 cytokines showed significant upregulated expression in the BMSC-injected amniotic fluid. We focused on Activin A, NGF, BDNF, CNTF, and CXCR4. Intervention experiments showed that the upregulated Activin A, NGF, BDNF, and CNTF could inhibit apoptosis and promote synaptic development in fetal spinal cords. Inhibiting the activity of these factors weakened the anti-apoptotic and pro-differentiation effects of transplanted BMSCs. Inhibition of CXCR4 activity reduced the engraftment rate of BMSCs in SBA fetuses. CONCLUSION: BMSC transplantation can improve the amniotic fluid environment, and this is beneficial for SBA repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Espinha Bífida Cística , Ratos , Animais , Espinha Bífida Cística/terapia , Espinha Bífida Cística/metabolismo , Líquido Amniótico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Citocinas/metabolismo
5.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458801

RESUMO

Aberrant angiogenesis is a hallmark of cardiovascular and retinal neovascular disease. The STAT3 signaling pathway represents a potential pharmacological target for these diseases due to its impact on angiogenesis. Surprisingly, some STAT3 activators, such as the IL-6 cytokine family member oncostatin M (OSM), enhance angiogenesis, whereas others, such as ciliary neurotropic factor (CNTF), reduce it. This study aimed to clarify these conflicting effects. In contrast to the anti-angiogenic cytokine CNTF, the pro-angiogenic cytokine OSM was able to activate intracellular signaling pathways beyond the STAT3 pathway, including the ERK and AKT pathways. These differences translated into transcriptomic and metabolic shifts. siRNA-mediated STAT3 knockdown experiments showed a decrease in VEGF-induced endothelial migration and sprouting, enhancing the pro-angiogenic drive of OSM and switching the CNTF response from anti-angiogenic to pro-angiogenic. These effects correlated with a transcriptomic shift representing enhanced STAT1 and ERK activity following STAT3 knockdown, including a compensatory prolonged phosphorylated STAT1 activity. In conclusion, the angiogenic effect of STAT3 appears to be determined by cytokine-induced STAT3 specificity and simultaneous activity of other intracellular signaling pathways, whereas the STAT3 pathway, predominantly recognized for its pro-angiogenic phenotypes, reveals novel anti-angiogenic potential.


Assuntos
Citocinas , Interleucina-6 , Citocinas/metabolismo , Interleucina-6/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo
6.
Invest Ophthalmol Vis Sci ; 63(9): 4, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35925584

RESUMO

Purpose: The purpose of this study was to investigate the roles of ciliary neurotrophic factor (CNTF) on the protective effects of astrocytes on retinal ganglion cells (RGCs). Methods: Primary RGCs were isolated from neonatal rats. Oxidative stress was induced, and the effects of co-culture with astrocytes and CNTF treatment on RGCs were evaluated. The pathways commonly altered by astrocytes and CNTF were investigated. Effects of each pathway were investigated using pathway inhibitors against PI3K/AKT, JAK/STAT, and MAPK/ERK. RNA sequencing was performed to identify the genes upregulated and downregulated by CNTF treatment. Results: Astrocytes improved the viability and increased ß3-tubulin expression in RGCs. The concentration of CNTF increased in the RGC-astrocyte co-culture medium. The protective effects of astrocytes were abolished by neutralization with the anti-CNTF antibody; thus, CNTF may play an important role in the effects mediated by astrocytes. Furthermore, CNTF treatment alone enhanced the viability and ß3-tubulin expression of RGCs and increased the population of viable RGCs under oxidative stress. The PI3K/AKT pathway was associated with both RGC viability and ß3-tubulin expression. However, the JAK/STAT pathway increased the viability of RGCs, whereas the MAPK/ERK pathway was associated with ß3-tubulin expression. RNA sequencing revealed the CNTF-upregulated genes associated with response to DNA damage and downregulated genes associated with photoreceptor cell differentiation. Conclusions: Our data revealed protective effects of astrocyte-derived CNTF on RGCs. In addition, we showed that multiple pathways exert these protective effects and identified the novel genes involved. These results may be helpful in developing treatments for RGC injury.


Assuntos
Fator Neurotrófico Ciliar , Células Ganglionares da Retina , Animais , Astrócitos/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição STAT , Transdução de Sinais/fisiologia , Tubulina (Proteína)/metabolismo
7.
Cancer Lett ; 540: 215726, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35589002

RESUMO

Mechanisms underlying breast cancer brain metastasis (BCBM) are still unclear. In this study, we observed that extracellular vesicles (EVs) secreted from breast cancer cells with increased expression of tGLI1, a BCBM-promoting transcription factor, strongly activated astrocytes. EV-derived microRNA/miRNA microarray revealed tGLI1-positive breast cancer cells highly secreted miR-1290 and miR-1246 encapsulated in EVs. Genetic knockin/knockout studies established a direct link between tGLI1 and both miRNAs. Datamining and analysis of patient samples revealed that BCBM patients had more circulating EV-miRs-1290/1246 than those without metastasis. Ectopic expression of miR-1290 or miR-1246 strongly activated astrocytes whereas their inhibitors abrogated the effect. Conditioned media from miR-1290- or miR-1246-overexpressing astrocytes promoted mammospheres. Furthermore, miRs-1290/1246 suppressed expression of FOXA2 transcription repressor, leading to CNTF cytokine secretion and subsequent activation of astrocytes. Finally, we conducted a mouse study to demonstrate that astrocytes overexpressing miR-1290, but not miR-1246, enhanced intracranial colonization and growth of breast cancer cells. Collectively, our findings demonstrate, for the first time, that breast cancer EV-derived miR-1290 and miR-1246 activate astrocytes in the brain metastatic microenvironment and that EV-derived miR-1290 promotes progression of brain metastases through the novel EV-miR-1290→FOXA2→CNTF signaling axis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Fator Neurotrófico Ciliar , Vesículas Extracelulares , Fator 3-beta Nuclear de Hepatócito , MicroRNAs , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator Neurotrófico Ciliar/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral
8.
Cardiovasc Toxicol ; 22(1): 88-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674150

RESUMO

Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene delivery could prevent cardiac remodeling in diabetes mellitus remains unknown. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene delivery to test the effects of CNTF overexpression on adverse ventricular remodeling in streptozotocin-induced type 1 diabetic mice models. Postnatal (P3-P10) mice were peritoneally injected with AAV9 recombinant virus carrying the CNTF gene or EGFP gene. Then, type 1 diabetic models were established by peritoneal injection of streptozotocin (200 mg/kg) in 7-week-old female mice injected with AAV9. 4 weeks later after the establishment of type 1 diabetes mellitus, mouse hearts were removed to assess the degree of cardiac remodeling. We found that CNTF overexpression in mouse cardiomyocytes exacerbated cell apoptosis and cardiac fibrosis coupled with an increased inflammatory response in the heart tissue of diabetic female mice. Taken together, our results suggested that cardiac CNTF gene delivery may not be beneficial in alleviating adverse cardiac remodeling in type 1 diabetes female mice.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Dependovirus/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Animais , Apoptose , Fator Neurotrófico Ciliar/genética , Citocinas/genética , Citocinas/metabolismo , Dependovirus/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Feminino , Fibrose , Mediadores da Inflamação , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Estreptozocina , Regulação para Cima
9.
Exp Eye Res ; 210: 108708, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34332990

RESUMO

Elevated intraocular pressure (IOP) is a significant risk factor for vision loss due to glaucoma, which is a major cause of blindness worldwide. Glaucoma filtration surgery (GFS) is an important method to reduce IOP by guidance of aqueous humor into a newly built filtration bleb in the conjunctiva; management of the wound healing mechanism is essential for the success of GFS. Here, we investigated the roles of interleukin (IL)-6 family members during the wound healing process after GFS. At the surgical site, the expression levels of genes encoding IL-6, oncostatin M (OSM), their receptors, and collagen I were elevated at 3 h after GFS, whereas the levels of genes encoding transforming growth factor (TGF)-ß, α-smooth muscle actin (SMA), type IV collagen, and fibronectin were elevated at 3 days after GFS. IL-6 trans-signaling and OSM signaling suppressed TGF-ß-induced expression of α-SMA and collagen IV, as well as activation of the non-canonical TGF-ß pathway, suggesting that IL-6 and OSM may aid in controlling the phase transition from inflammation to proliferation and remodeling. The suppressive effects of OSM were accompanied by STAT3 activation, such that STAT1 function was complementary to STAT3. Taken together, these observations indicated that IL-6 family members constitute early response genes after GFS, which can suppress TGF-ß-induced expression of late response genes at the surgical site after GFS.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Túnica Conjuntiva/patologia , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/metabolismo , Oncostatina M/metabolismo , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Western Blotting , Colágeno Tipo IV/metabolismo , Túnica Conjuntiva/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Glaucoma/cirurgia , Humanos , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Trabeculectomia , Fator de Crescimento Transformador beta/farmacologia
10.
Neurochem Res ; 46(8): 2097-2111, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024016

RESUMO

Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells' proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-ß1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antipsicóticos/farmacologia , Clozapina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Fator Neurotrófico Ciliar/metabolismo , Haloperidol/farmacologia , Células PC12 , Proteoma/metabolismo , Ratos , Risperidona/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
11.
STAR Protoc ; 1(3): 100193, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377087

RESUMO

Cholinergic neurons control numerous primate-specific and sexually dimorphic brain functions. Here, we present our differentiation protocol for the closely related human female and male neuroblastoma-originated cell lines LA-N-2 and LA-N-5. Pro-cholinergic differentiation (with upregulation of choline acetyltransferase) of both lines can be achieved using neurokines such as ciliary neurotrophic factor (CNTF). Comparative RNA sequencing and mass spectrometry analyses between those two cell lines, supported by experimental intervention, will deepen our understanding of cholinergic systems in human psychiatric and neurologic disease. For complete details on the use and execution of this protocol, please refer to Lobentanzer et al. (2019).


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Acetilcolina/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Colina O-Acetiltransferase/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatologia , Células Tumorais Cultivadas
12.
Eur J Histochem ; 64(4)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33131268

RESUMO

Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohistochemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as key molecule to maintenance epithelium homeostasis via pERK downregulation by an autocrine mechanism. Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcinogenesis.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Próstata/metabolismo , Linhagem Celular , Humanos , Imuno-Histoquímica , Masculino , Próstata/citologia
13.
Int J Mol Sci ; 21(19)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019660

RESUMO

The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -ß, interleukin-1ß and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Carotídeo/metabolismo , Hiperóxia/genética , Hipóxia/genética , Fator de Crescimento Neural/genética , Receptores de Fatores de Crescimento/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Carotídeo/citologia , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Cell Transplant ; 29: 963689720946031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33023312

RESUMO

A number of degenerative conditions affecting the neural retina including age-related macular degeneration have no successful treatment, resulting in partial or complete vision loss. There are a number of stem cell replacement strategies for recovery of retinal damage using cells from variable sources. However, literature is still deficit in the comparison of efficacy of types of stem cells. The purpose of the study was to compare the therapeutic efficacy of undifferentiated cells, i.e., lineage negative stem cells (Lin-ve SC) with differentiated neurosphere derived from ciliary epithelium (CE) cells on retinal markers associated with laser-induced retinal injury. Laser-induced photocoagulation was carried out to disrupt Bruch's membrane and retinal pigmented epithelium in C57BL/6 mouse model. Lineage negative cells were isolated from human umbilical cord blood, whereas neurospheres were derived from CE of post-aborted human eyeballs. The cells were then transplanted into subretinal space to study their effect on injury. Markers of neurotropic factors, retina, apoptosis, and proliferation were analyzed after injury and transplantation. mRNA expression was also analyzed by real-time polymerase chain reaction at 1 week, and 3-month immunohistochemistry was evaluated at 1-week time point. CE cell transplantation showed enhanced differentiation of rods and retinal glial cells. However, Lin-ve cells exerted paracrine-dependent modulation of neurotrophic factors, which is possibly mediated by antiapoptotic and proliferative effects. In conclusion, CE transplantation showed superior regenerative outcome in comparison to Lin-ve SC for rescue of artificially injured rodent retinal cells. It is imperative that this source for transplantation may be extensively studied in various doses and additional retinal degeneration models for prospective clinical applications.


Assuntos
Cílios/metabolismo , Células Epiteliais/transplante , Olho/embriologia , Sangue Fetal/citologia , Feto/embriologia , Lasers/efeitos adversos , Degeneração Retiniana/terapia , Células-Tronco/citologia , Animais , Apoptose , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Fator Neurotrófico Ciliar/metabolismo , Modelos Animais de Doenças , Células Epiteliais/citologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Esferoides Celulares/citologia , Transplante de Células-Tronco
15.
Cancer Res ; 80(24): 5642-5655, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106335

RESUMO

Astrocytes are thought to play a pivotal role in coupling neural activity and cerebral blood flow. However, it has been shown that astrocytes undergo morphologic changes in response to brain metastasis, switching to a reactive phenotype, which has the potential to significantly compromise cerebrovascular function and contribute to the neurological sequelae associated with brain metastasis. Given that STAT3 is a key regulator of astrocyte reactivity, we aimed here to determine the impact of STAT3-mediated astrocyte reactivity on neurovascular function in brain metastasis. Rat models of brain metastasis and ciliary neurotrophic factor were used to induce astrocyte reactivity. Multimodal imaging, electrophysiology, and IHC were performed to determine the relationship between reactive astrocytes and changes in the cerebrovascular response to electrical and physiological stimuli. Subsequently, the STAT3 pathway in astrocytes was inhibited with WP1066 to determine the role of STAT3-mediated astrocyte reactivity, specifically, in brain metastasis. Astrocyte reactivity associated with brain metastases impaired cerebrovascular responses to stimuli at both the cellular and functional level and disrupted astrocyte-endothelial interactions in both animal models and human brain metastasis samples. Inhibition of STAT3-mediated astrocyte reactivity in rats with brain metastases restored cerebrovascular function, as shown by in vivo imaging, and limited cerebrovascular changes associated with tumor growth. Together these findings suggest that inhibiting STAT3-mediated astrocyte reactivity may confer significant improvements in neurological outcome for patients with brain metastases and could potentially be tested in other brain tumors. SIGNIFICANCE: These findings demonstrate that selectively targeting STAT3-mediated astrocyte reactivity ameliorates the cerebrovascular dysfunction associated with brain metastasis, providing a potential therapeutic avenue for improved patient outcome.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Astrócitos/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Circulação Cerebrovascular , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Feminino , Humanos , Imagem de Contraste de Manchas a Laser , Espectroscopia de Ressonância Magnética , Imagem Multimodal , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Piridinas/farmacologia , Ratos , Ratos Endogâmicos , Tirfostinas/farmacologia
16.
Cell Rep ; 31(7): 107657, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433966

RESUMO

Neuroinflammation is a crucial mechanism in many neurological disorders. Injury to the peripheral sensory nerves leads to a neuroinflammatory response in the somatosensory pathway, from dorsal root ganglia (DRG) to the spinal cord, contributing to neuropathic pain. How the immune reaction is initiated peripherally and propagated to the spinal cord remains less clear. Here, we find that ciliary neurotrophic factor (CNTF), highly expressed in Schwann cells, mediates neuroinflammatory response through the activating signal transducer and activator of transcription 3 (STAT3) and inducing interleukin 6 (IL-6) in sensory neurons. Cntf deficiency attenuates neuroinflammation in DRG and the spinal cord with alleviated pain post-injury. Recombinant CNTF applied to the sensory nerves recapitulates neuroinflammation in the DRG and spinal cord, with consequent pain development. We delineate the CNTF-STAT3-IL-6 axis in mediating the onset and progression of the inflammatory cascade from the periphery to the spinal cord with therapeutic implications for neuropathic pain.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Inflamação Neurogênica/metabolismo , Fator de Transcrição STAT3/metabolismo , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Humanos , Microglia/patologia , Neuralgia/patologia , Inflamação Neurogênica/patologia , Células de Schwann/patologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Fatores de Transcrição
17.
Stroke ; 51(5): 1587-1595, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312218

RESUMO

Background and Purpose- Women have worse stroke outcomes than men, especially after menopause. Few studies have focused on female-specific mechanisms, other than hormones. We investigated the role of the blood protein VTN (vitronectin) after ischemic stroke in mice. Methods- Adult male and female VTN knockout and wild-type littermates and C57BL/6 mice received a middle cerebral artery occlusion and the injured brain tissue analyzed 24 hours to 3 weeks later for cell loss and inflammation, as well as neurological function. Blood VTN levels were measured before and after stroke. Results- Intravenously injected VTN leaked extensively from bloodstream into brain infarct and penumbra by 24 hours after stroke. Strikingly, VTN was detrimental in female, but not male, mice, as shown by reduced brain injury (26.2±2.6% versus 13.4±3.8%; P=0.018; n=6 and 5) and forelimb dysfunction in female VTN knockout mice. Stroke increased plasma VTN 2- to 8-fold at 24 hours in females (36±4 versus 145±24 µg/mL; P<0.0001; n=10 and 7), but not males (62±8 versus 68±6; P>0.99; n=10 and 7), and returned to control levels by 7 days. Individually variable VTN levels at 24 hours correlated with stroke-induced brain injury at 7 days only in females. VTN promoted stroke-induced microglia/macrophage activation and leukocyte infiltration in females. Proinflammatory IL (interleukin)-6 greatly increased in the striatum at 24 hours in wild-type mice but was increased ≈60% less in female (739±159 versus 268±111; P=0.02; n=7 and 6), but not male (889±178 versus 1179±295; P=0.73; n=10 and 11), knockout mice. In individual wild-type females, plasma VTN levels correlated with striatal IL-6 expression at 24 hours. The female-specific effect of VTN-induced IL-6 expression following stroke was not due to gonadal hormones, as shown by ovariectomy and castration. Lastly, intrastriatal injection of IL-6 in female mice immediately before stroke reversed the VTN knockout phenotypes of reduced brain injury and microglia/macrophage activation. Conclusions- VTN plays a novel sexually dimorphic detrimental pathophysiological role in females and might ultimately be a therapeutic target to improve stroke outcomes in women.


Assuntos
Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/genética , Inflamação/genética , Interleucina-6/genética , Vitronectina/genética , Animais , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/metabolismo , Fatores Sexuais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Vitronectina/sangue , Vitronectina/metabolismo
18.
Exp Eye Res ; 185: 107671, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108056

RESUMO

Through the paracrine effects of stem cells, including the secretion of neurotrophic, immunomodulatory, and anti-apoptotic factors, cell-based therapies offer a new all-encompassing approach to treatment of neurodegenerative diseases. In this study, we used physically separated co-cultures of porcine neuroretina (NR) and human mesenchymal stem cells (MSC) to evaluate the MSC paracrine neuroprotective effects on NR degeneration. NR explants were obtained from porcine eyes and cultured alone or co-cultured with commercially available MSCs from Valladolid (MSCV; Citospin S.L.; Valladolid, Spain), currently used for several approved treatments. Cultures were maintained for 72 h. MSC surface markers were evaluated before and after co-culture with NRs. Culture supernatants were collected and the concentration of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial-derived neurotrophic factor (GDNF) were determined by enzyme-linked immunosorbent assays. NR sections were stained by haematoxylin/eosin or immunostained for terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), glial fibrillary acidic protein, ß-tubulin III, and neuronal nuclei marker. NR morphology, morphometry, nuclei count, apoptosis rate, retinal ganglion cells, and glial cell activation were evaluated. Treatment effects were statistically analysed by parametric or non-parametric tests. The MSCs retained stem cell surface markers after co-culture with NR. BDNF and CNTF concentrations in NR-MSCV co-cultures were higher than other experimental conditions at 72 h (p < 0.05), but no GDNF was detected. NR general morphology, total thickness, and cell counts were broadly preserved in co-cultures, and the apoptosis rate determined by TUNEL assay was lower than for NR monocultures (all p < 0.05). Co-cultures with MSCV also protected retinal ganglion cells from degenerative changes and reduced reactive gliosis (both p < 0.05). In this in vitro model of spontaneous NR degeneration, the presence of co-cultured MSCs retarded neuroglial degeneration. This effect was associated with elevated concentrations of the neurotrophic factors BDNF and CNTF. Our data suggest that the paracrine secretion of these, and possibly other molecules, are a potential resource for the treatment of several neuroretinal diseases.


Assuntos
Células-Tronco Mesenquimais/citologia , Neuroproteção/fisiologia , Comunicação Parácrina/fisiologia , Retina/citologia , Degeneração Retiniana/prevenção & controle , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Fator Neurotrófico Ciliar/metabolismo , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Suínos , Tubulina (Proteína)/metabolismo
19.
Glia ; 66(11): 2456-2469, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500112

RESUMO

Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Ventrículos Laterais/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurogênese/fisiologia , Animais , Antracenos/farmacologia , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Fator Neurotrófico Ciliar/genética , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno Ki-67/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fatores de Tempo
20.
Cell Physiol Biochem ; 51(4): 1852-1862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504707

RESUMO

BACKGROUND/AIMS: Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) exposure to myocardial cells mimics ischemia-reperfusion injuries. We studied the potential activity of ciliary neurotrophic factor (CNTF) on OGDR-treated myocardial cells. METHODS: CNTF and CNTFR expression were tested by RT-PCR assay and Western blotting assay. Cell viability and death were tested by MTT assay and LDH release assay, respectively. Akt-Nrf2 signalings were tested by Western blotting assay and qPCR assay. RESULTS: CNTF and its receptor CNTFR were functionally expressed in established H9c2 myocardial cells and primary murine myocardiocytes. Pretreatment of CNTF significantly attenuated OGDR-induced viability reduction and death in myocardial cells. Further studies show that in the myocardial cells CNTF activated NF-E2-related factor 2 (Nrf2) signaling to inhibit OGDR-induced reactive oxygen species (ROS) production and programmed necrosis, preventing adenine nucleotide translocator 1 (ANT-1)-p53-cyclophilin D (Cyp-D) mitochondrial association and mitochondrial depolarization. Nrf2 silencing or knockout almost abolished CNTF-induced H9c2 cytoprotection against OGDR. CNTF activated Akt in H9c2 cells and primary murine myocardiocytes. Conversely, Akt blockage by the pharmacological inhibitors not only blocked CNTF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified anti-OGDR actions by CNTF in myocardial cells. CONCLUSION: CNTF activates Akt-Nrf2 signaling to protect myocardial cells from OGDR.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Oxigênio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA