Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
FASEB J ; 38(17): e70039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39258958

RESUMO

Platelets play a crucial role in tissue regeneration, and their involvement in liver regeneration is well-established. However, the specific contribution of platelet-derived Transforming Growth Factor Beta 1 (TGFß1) to liver regeneration remains unexplored. This study investigated the role of platelet-derived TGFß1 in initiating liver regeneration following 2/3 liver resection. Using platelet-specific TGFß1 knockout (Plt.TGFß1 KO) mice and wild-type littermates (Plt.TGFß1 WT) as controls, the study assessed circulating levels and hepatic gene expression of TGFß1, Platelet Factor 4 (PF4), and Thrombopoietin (TPO) at early time points post-hepatectomy (post-PHx). Hepatocyte proliferation was quantified through Ki67 staining and PCNA expression in total liver lysates at various intervals, and phosphohistone-H3 (PHH3) staining was employed to mark mitotic cells. Circulating levels of hepatic mitogens, Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL6) were also assessed. Results revealed that platelet-TGFß1 deficiency significantly reduced total plasma TGFß1 levels at 5 h post-PHx in Plt.TGFß1 KO mice compared to controls. While circulating PF4 levels, liver platelet recruitment and activation appeared normal at early time points, Plt.TGFß1 KO mice showed more stable circulating platelet numbers with higher numbers at 48 h post-PHx. Notably, hepatocyte proliferation was significantly reduced in Plt.TGFß1 KO mice. The results show that a lack of TGFß1 in platelets leads to an unbalanced expression of IL6 in the liver and to strongly increased HGF levels 48 h after liver resection, and yet liver regeneration remains reduced. The study identifies platelet-TGFß1 as a regulator of hepatocyte proliferation and platelet homeostasis in the early stages of liver regeneration.


Assuntos
Plaquetas , Hepatectomia , Regeneração Hepática , Camundongos Knockout , Trombopoetina , Fator de Crescimento Transformador beta1 , Animais , Regeneração Hepática/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos , Plaquetas/metabolismo , Trombopoetina/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Proliferação de Células , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Masculino , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/genética , Camundongos Endogâmicos C57BL
2.
BMC Cancer ; 24(1): 1173, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304856

RESUMO

BACKGROUND: Exosomes are closely associated with different aspects of tumor-progression in patients with head and neck squamous cell carcinoma (HNSCC), such as angiogenesis or immune regulation. As extracellular vesicles they are involved in the intercellular communication by transferring their cargo such as proteins and nucleic acids from one cell to another. However, the influence of tumor related plasma-derived exosomes on the polarization and characteristics of monocyte derived macrophages is not fully understood. METHODS: Exosomes were isolated from plasma samples of healthy donors (HD) and HNSCC patients and further evaluated with regard to morphology, size and protein composition via transmission electron microscopy, nanoparticle tracking, western blot analysis and cytokine assays. Differentiation and characteristics of monocyte derived macrophages upon exosome internalization were analyzed using flow cytometry and fluorescence microscopy. Macrophage cytokine secretion patterns were analyzed by human cytokine antibody arrays and ELISA measurements. RESULTS: Our data revealed elevated overall plasma levels of CTLA-4, PD-L1, and TIM-3 as well as elevated exosome-associated CTLA-4, PD-L2, TIM-3, and LAG-3 levels in HNSCC patients compared to HD. Furthermore, we observed a significant type 2-like polarization and elevated CXCL4 secretion of monocyte derived macrophages upon internalization of plasma-derived exosomes from HNSCC patients, which could be visualized by fluorescence microcopy of membrane stained exosomes. CONCLUSIONS: The study provides new insights regarding exosome driven pro-tumorigenic immune regulation in the circulation of patients with head and neck cancer and could help to better understand the individual immunologic situation.


Assuntos
Exossomos , Neoplasias de Cabeça e Pescoço , Macrófagos , Humanos , Exossomos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/sangue , Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Feminino , Fator Plaquetário 4/metabolismo , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Idoso , Adulto
3.
J Clin Invest ; 134(20)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207852

RESUMO

The blood-retina barrier (BRB), which is disrupted in diabetic retinopathy (DR) and uveitis, is an important anatomical characteristic of the retina, regulating nutrient, waste, water, protein, and immune cell flux. The BRB is composed of endothelial cell tight junctions, pericytes, astrocyte end feet, a collagen basement membrane, and perivascular macrophages. Despite the importance of the BRB, retinal perivascular macrophage function remains unknown. We found that retinal perivascular macrophages resided on postcapillary venules in the superficial vascular plexus and expressed MHC class II. Using single-cell RNA-Seq, we found that perivascular macrophages expressed a prochemotactic transcriptome and identified platelet factor 4 (Pf4, also known as CXCL4) as a perivascular macrophage marker. We used Pf4Cre mice to specifically deplete perivascular macrophages. To model retinal inflammation, we performed intraocular CCL2 injections. Ly6C+ monocytes crossed the BRB proximal to perivascular macrophages. Depletion of perivascular macrophages severely hampered Ly6C+ monocyte infiltration. These data suggest that retinal perivascular macrophages orchestrate immune cell migration across the BRB, with implications for inflammatory ocular diseases including DR and uveitis.


Assuntos
Barreira Hematorretiniana , Modelos Animais de Doenças , Macrófagos , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/metabolismo , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/imunologia , Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Uveíte/imunologia , Uveíte/patologia , Uveíte/genética , Retina/imunologia , Retina/patologia , Retina/metabolismo , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Monócitos/imunologia , Monócitos/patologia , Monócitos/metabolismo
4.
Leukemia ; 38(9): 1971-1984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025985

RESUMO

Despite increased understanding of the genomic landscape of Myeloproliferative Neoplasms (MPNs), the pathological mechanisms underlying abnormal megakaryocyte (Mk)-stromal crosstalk and fibrotic progression in MPNs remain unclear. We conducted mass spectrometry-based proteomics on mice with Romiplostim-dependent myelofibrosis to reveal alterations in signaling pathways and protein changes in Mks, platelets, and bone marrow (BM) cells. The chemokine Platelet Factor 4 (PF4)/Cxcl4 was up-regulated in all proteomes and increased in plasma and BM fluids of fibrotic mice. High TPO concentrations sustained in vitro PF4 synthesis and secretion in cultured Mks, while Ruxolitinib restrains the abnormal PF4 expression in vivo. We discovered that PF4 is rapidly internalized by stromal cells through surface glycosaminoglycans (GAGs) to promote myofibroblast differentiation. Cxcl4 gene silencing in Mks mitigated the profibrotic phenotype of stromal cells in TPO-saturated co-culture conditions. Consistently, extensive stromal PF4 uptake and altered GAGs deposition were detected in Romiplostim-treated, JAK2V617F mice and BM biopsies of MPN patients. BM PF4 levels and Mk/platelet CXCL4 expression were elevated in patients, exclusively in overt fibrosis. Finally, pharmacological inhibition of GAGs ameliorated in vivo fibrosis in Romiplostim-treated mice. Thus, our findings highlight the critical role of PF4 in the fibrosis progression of MPNs and substantiate the potential therapeutic strategy of neutralizing PF4-GAGs interaction.


Assuntos
Fator Plaquetário 4 , Mielofibrose Primária , Proteômica , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/genética , Animais , Camundongos , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Humanos , Proteômica/métodos , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos Endogâmicos C57BL , Diferenciação Celular
5.
Cytokine ; 181: 156684, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936205

RESUMO

As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.


Assuntos
Receptor 1 de Quimiocina CX3C , Púrpura Trombocitopênica Idiopática , Receptores CXCR3 , Receptores CXCR5 , Humanos , Receptores CXCR3/metabolismo , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Masculino , Receptores CXCR5/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Contagem de Plaquetas , Fator Plaquetário 4/sangue , Fator Plaquetário 4/metabolismo , Idoso , Linfócitos B/imunologia , Linfócitos B/metabolismo
6.
Rejuvenation Res ; 27(3): 110-114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581429

RESUMO

This article presents the concept of Antagonistic Pathogenic Pleiotropy, in which an abnormality that causes a specific pathology can simultaneously reduce other morbidities through unrelated mechanisms, resulting in the pathology causing less morbidity or mortality than expected. The concept is illustrated by the case of essential thrombocythemia (ET). Patients with ET have substantially elevated platelets and are therefore expected to have increased thrombotic events leading to reduced life expectancy. However, patients with ET do not have reduced life expectancy. A possible explanation is that elevated platelets produce higher levels of platelet factor 4 (PF4), which has been found to reduce age-associated decline in immune and cognitive function in mice and has been suggested as a treatment for age-associated illness. The benefit of elevated PF4 is hypothesized to balance the increased morbidity from hematological causes. Searches for other indications where a well-defined pathology is not associated with concomitant reduction in overall mortality may be a route to identifying factors that could protect against, prevent, or treat chronic disease.


Assuntos
Longevidade , Fator Plaquetário 4 , Trombocitemia Essencial , Humanos , Trombocitemia Essencial/patologia , Trombocitemia Essencial/genética , Trombocitemia Essencial/sangue , Fator Plaquetário 4/metabolismo , Animais , Plaquetas/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660804

RESUMO

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Assuntos
Plaquetas , Ciclo-Oxigenase 1 , Modelos Animais de Doenças , Integrases , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária , Fator Plaquetário 4 , Receptores de LDL , Animais , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/deficiência , Agregação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Integrases/genética , Receptores de LDL/genética , Receptores de LDL/deficiência , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Aterosclerose/sangue , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/enzimologia , Fenótipo , Proteínas de Membrana , Complexo Glicoproteico GPIb-IX de Plaquetas
8.
Int J Lab Hematol ; 46 Suppl 1: 12-26, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432651

RESUMO

Hematology is a clinical specialty with strong roots in the laboratory; accordingly, the lab can help solve perplexing clinical problems. This review highlights clinical-pathological conundrums addressed during my 35-year hematology career at McMaster University. Heyde syndrome is the association between aortic stenosis and bleeding gastrointestinal (GI) angiodysplasia where the bleeding is usually cured by aortic valve replacement; the chance reading of a neonatal study showing reversible deficiency of high-molecular-weight (HMW) multimers of von Willebrand factor (vWF) following surgical correction of congenital heart disease provided the key insight that a subtle deficiency of HMW multimers of vWF explains Heyde syndrome. The unusual immunobiology of heparin-induced thrombocytopenia (HIT)-a highly prothrombotic, antibody-mediated, anti-platelet factor 4 (PF4) disorder featuring rapid appearance and then disappearance (seroreversion) of the pathological heparin-dependent platelet-activating antibodies-permitted identification of key clinical features that informed development of a scoring system (4Ts) to aid in HIT diagnosis. Atypical clinical presentations of HIT prompted identification of heparin-independent anti-PF4 antibodies, now recognized as the explanation for vaccine-induced immune thrombotic thrombocytopenia (VITT), as well as VITT-like disorders triggered by adenovirus infection. Another unusual feature of HIT is its strong association with limb ischemia, including limb necrosis secondary to deep-vein/microvascular thrombosis (venous limb gangrene). The remarkable observation that supratherapeutic warfarin anticoagulation predisposes to HIT- and cancer-associated venous limb gangrene provided insight into disturbed procoagulant/anticoagulant balance; these concepts are relevant to microvascular thrombosis in critical illness (symmetrical peripheral gangrene), including a pathophysiological role for proximate "shock liver" (impaired hepatic synthesis of natural anticoagulants).


Assuntos
Fator Plaquetário 4 , Humanos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Necrose , Isquemia/etiologia , Isquemia/patologia , Isquemia/metabolismo , Heparina/efeitos adversos , Estenose da Valva Aórtica , Trombocitopenia/etiologia , Trombocitopenia/patologia , Autoanticorpos/imunologia
9.
Blood Rev ; 64: 101155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38008700

RESUMO

Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.


Assuntos
Fator Plaquetário 4 , Trombocitopenia , Humanos , Fator Plaquetário 4/metabolismo , Vacinas contra COVID-19/efeitos adversos , Heparina , Trombocitopenia/etiologia , Imunoglobulina G , Fatores Imunológicos/efeitos adversos
10.
Hematology Am Soc Hematol Educ Program ; 2023(1): 1-10, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066843

RESUMO

Antibodies against the chemokine platelet factor 4 (PF4) occur often, but only those that activate platelets induce severe prothrombotic disorders with associated thrombocytopenia. Heparin-induced thrombocytopenia (HIT) is the prototypic anti-PF4 disorder, mediated by strong activation of platelets through their FcγIIa (immunoglobulin G [IgG]) receptors (FcγRIIa). Concomitant pancellular activation (monocytes, neutrophils, endothelium) triggers thromboinflammation with a high risk for venous and arterial thrombosis. The classic concept of HIT is that anti-PF4/heparin IgG, recognizing antigen sites on (cationic) PF4 that form in the presence of (anionic) heparin, constitute the heparin-dependent antibodies that cause HIT. Accordingly, HIT is managed by anticoagulation with a nonheparin anticoagulant. In 2021, adenovirus vector COVID-19 vaccines triggered the rare adverse effect "vaccine-induced immune thrombotic thrombocytopenia" (VITT), also caused by anti-PF4 IgG. VITT is a predominantly heparin-independent platelet-activating disorder that requires both therapeutic-dose anticoagulation and inhibition of FcγRIIa-mediated platelet activation by high-dose intravenous immunoglobulin (IVIG). HIT and VITT antibodies bind to different epitopes on PF4; new immunoassays can differentiate between these distinct HIT-like and VITT-like antibodies. These studies indicate that (1) severe, atypical presentations of HIT ("autoimmune HIT") are associated with both HIT-like (heparin-dependent) and VITT-like (heparin-independent) anti-PF4 antibodies; (2) in some patients with severe acute (and sometimes chronic, recurrent) thrombosis, VITT-like antibodies can be identified independent of proximate heparin exposure or vaccination. We propose to classify anti-PF4 antibodies as type 1 (nonpathogenic, non- platelet activating), type 2 (heparin dependent, platelet activating), and type 3 (heparin independent, platelet activating). A key concept is that type 3 antibodies (autoimmune HIT, VITT) require anticoagulation plus an adjunct treatment, namely high-dose IVIG, to deescalate the severe anti-PF4 IgG-mediated hypercoagulability state.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Humanos , Fator Plaquetário 4/efeitos adversos , Fator Plaquetário 4/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Vacinas contra COVID-19/efeitos adversos , Inflamação , Trombose/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Trombocitopenia/terapia , Heparina/efeitos adversos , Anticoagulantes/efeitos adversos , Anticorpos , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/terapia , Fatores Imunológicos/efeitos adversos
11.
Blood ; 142(26): 2305-2314, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37883798

RESUMO

ABSTRACT: Platelet-activating anti-platelet factor 4 (PF4)/heparin antibodies and anti-PF4 antibodies cause heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT), respectively. Diagnostic and treatment considerations differ somewhat between HIT and VITT. We identified patients with thrombocytopenia and thrombosis without proximate heparin exposure or adenovirus-based vaccination who tested strongly positive by PF4/polyanion enzyme-immunoassays and negative/weakly positive by heparin-induced platelet activation (HIPA) test but strongly positive by PF4-induced platelet activation (PIPA) test (ie, VITT-like profile). We tested these patients by a standard chemiluminescence assay that detects anti-PF4/heparin antibodies found in HIT (HemosIL AcuStar HIT-IgG(PF4-H)) as well as a novel chemiluminescence assay for anti-PF4 antibodies found in VITT. Representative control sera included an exploratory anti-PF4 antibody-positive but HIPA-negative/weak cohort obtained before 2020 (n = 188). We identified 9 patients with a clinical-pathological profile of a VITT-like disorder in the absence of proximate heparin or vaccination, with a high frequency of stroke (arterial, n = 3; cerebral venous sinus thrombosis, n = 4), thrombocytopenia (median platelet count nadir, 49 × 109/L), and hypercoagulability (greatly elevated D-dimer levels). VITT-like serological features included strong reactivity by PIPA (aggregation <10 minutes in 9/9 sera) and positive testing in the novel anti-PF4 chemiluminescence assay (3/9 also tested positive in the anti-PF4/heparin chemiluminescence assay). Our exploratory cohort identified 13 additional patient sera obtained before 2020 with VITT-like anti-PF4 antibodies. Platelet-activating VITT-like anti-PF4 antibodies should be considered in patients with thrombocytopenia, thrombosis, and very high D-dimer levels, even without a proximate exposure to heparin or adenovirus vector vaccines.


Assuntos
Anticorpos , Trombocitopenia , Trombose , Trombocitopenia/diagnóstico , Trombocitopenia/patologia , Heparina , Vacinação , Humanos , Fator Plaquetário 4/metabolismo , Anticorpos/análise , Masculino , Feminino , Pré-Escolar , Criança , Adulto , Trombose/diagnóstico , Trombose/patologia
12.
Curr Opin Hematol ; 30(6): 219-229, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603711

RESUMO

PURPOSE OF REVIEW: Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS: Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY: Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.


Assuntos
COVID-19 , Trombocitopenia , Humanos , Heparina/efeitos adversos , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Trombocitopenia/patologia , Anticorpos/efeitos adversos
13.
Cell Rep ; 42(2): 112131, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807143

RESUMO

Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.


Assuntos
Macrófagos , Miofibroblastos , Humanos , Fibrose , Ligantes , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Osteopontina , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo
14.
Front Immunol ; 13: 980733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405694

RESUMO

Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Camundongos , Animais , Complemento C5a/metabolismo , Anafilatoxinas/metabolismo , Fator Plaquetário 4/metabolismo , Polifosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Fatores Imunológicos , Bactérias/metabolismo
15.
Front Immunol ; 13: 1016472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325331

RESUMO

Platelets play a major role in coagulation and hemostasis; evidence supports the hypothesis that they also contribute to immunological processes. Increased platelet counts have been associated with poor prognosis in tuberculosis (TB). Platelet-monocyte aggregates have been reported in patients with TB, but it is still unclear if only one monocyte subpopulation is correlated to the platelet count; moreover, the platelet-monocyte axis has not been studied during latent tuberculosis (LTB). In this study, mononuclear cells and plasma were obtained from patients diagnosed with active drug-sensitive TB (DS-TB, n = 10) and LTB (n = 10); cytokines and growth factors levels associated to platelets were evaluated, and correlations with monocyte subpopulations were performed to identify a relationship between them, as well as an association with the degree of lung damage. Our data showed that, compared to LTB, DS-TB patients had an increased frequency of platelets, monocytes, and neutrophils. Although DS-TB patients showed no significant difference in the frequency of classical and non-classical monocytes, the classical monocytes had increased CD14 intensity of expression and frequency of TLR-2+. Furthermore, the plasma levels of angiogenic factors such as vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), and platelet factor-4 (PF4), and pro-inflammatory cytokines like interleukin 6 (IL-6), interleukin 1 beta (IL-1ß), and interferon-γ-inducible protein 10 (IP-10) were increased in DS-TB patients. In addition, PF-4 and VEGF-A correlated positively with the frequency of classical monocytes and the platelet count. Using a principal component analysis, we identified four groups of DS-TB patients according to their levels of pro-inflammatory cytokines, angiogenic factors, and degree of lung damage. This study establishes that there is a correlation between VEGF-A and PF4 with platelets and classical monocytes during active TB, suggesting that those cell subpopulations are the major contributors of these molecules, and together, they control the severity of lung damage by amplification of the inflammatory environment.


Assuntos
Monócitos , Tuberculose , Humanos , Fator Plaquetário 4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tuberculose/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Fatores Imunológicos/metabolismo
16.
Sci Rep ; 12(1): 18636, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329090

RESUMO

Periodontitis is a chronic inflammatory disease characterized by the release of matrix metalloproteinases (MMPs) from resident connective tissue cells in tooth-supporting tissues (periodontium). Platelet activation, and the attendant release of pro-inflammatory chemokines such as platelet factor 4 (CXCL4/PF4), are associated with periodontitis although the associated biochemical pathways remain undefined. Here we report that recombinant PF4 is internalized by cultured human gingival fibroblasts (hGFs), resulting in significant (p < 0.05) upregulation in both the production and release of MMP-2 (gelatinase A). This finding was corroborated by elevated circulating levels of MMP-2 (p < 0.05) in PF4-overexpressing transgenic mice, relative to controls. We also determined that PF4 induces the phosphorylation of NF-κB; notably, the suppression of NF-κB signaling by the inhibitor BAY 11-7082 abrogated PF4-induced MMP-2 upregulation. Moreover, the inhibition of surface glycosaminoglycans (GAGs) blocked both PF4 binding and NF-κB phosphorylation. Partial blockade of PF4 binding to the cells was achieved by treatment with either chondroitinase ABC or heparinase III, suggesting that both chondroitin sulfate and heparan sulfate mediate PF4 signaling. These results identify a novel pathway in which PF4 upregulates MMP-2 release from fibroblasts in an NF-κB- and GAG-dependent manner, and further our comprehension of the role of platelet signaling in periodontal tissue homeostasis.


Assuntos
Metaloproteinase 2 da Matriz , Periodontite , Camundongos , Animais , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Fator Plaquetário 4/metabolismo , NF-kappa B/metabolismo , Gengiva , Fibroblastos/metabolismo , Periodontite/metabolismo , Inibidores da Angiogênese/metabolismo , Metaloproteinase 3 da Matriz/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232795

RESUMO

COVID-19 patients often develop coagulopathies including microclotting, thrombotic strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (ß2GPI), phosphodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor (vWF). Different combinations of autoantibodies associate with different coagulopathies. Previous research revealed similarities between proteins with blood clotting functions and SARS-CoV-2 proteins, adenovirus, and bacterial proteins associated with moderate-to-severe COVID-19 infections. This study investigated whether polyclonal antibodies (mainly goat and rabbit) against these viruses and bacteria recognize human blood-related proteins. Antibodies against SARS-CoV-2 and adenovirus recognized vWF, PDE and PF4 and SARS-CoV-2 antibodies also recognized additional antigens. Most bacterial antibodies tested (group A streptococci [GAS], staphylococci, Escherichia coli [E. coli], Klebsiella pneumoniae, Clostridia, and Mycobacterium tuberculosis) cross-reacted with CL and PF4. while GAS antibodies also bound to F2, Factor VIII, Factor IX, and vWF, and E. coli antibodies to PDE. All cross-reactive interactions involved antibody-antigen binding constants smaller than 100 nM. Since most COVID-19 coagulopathy patients display autoantibodies against vWF, PDE and PF4 along with CL, combinations of viral and bacterial infections appear to be necessary to initiate their autoimmune coagulopathies.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Adenoviridae , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Autoanticorpos , Proteínas de Bactérias , Fatores de Coagulação Sanguínea , Proteínas do Capsídeo , Cardiolipinas , Escherichia coli/metabolismo , Fator IX , Fator VIII , Humanos , Diester Fosfórico Hidrolases , Fator Plaquetário 4/metabolismo , Protrombina , Coelhos , SARS-CoV-2 , Albumina Sérica , beta 2-Glicoproteína I , Fator de von Willebrand
18.
Sci Rep ; 12(1): 17204, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229490

RESUMO

Chemokines form a family of proteins with critical roles in many biological processes in health and disease conditions, including cardiovascular, autoimmune diseases, infections, and cancer. Many chemokines engage in heterophilic interactions to form heterodimers, leading to synergistic activity enhancement or reduction dependent on the nature of heterodimer-forming chemokines. In mixtures, different chemokine species with diverse activities coexist in dynamic equilibrium, leading to the observation of their combined response in biological assays. To overcome this problem, we produced a non-dissociating CXCL4-CXCL12 chemokine heterodimer OHD4-12 as a new tool for studying the biological activities and mechanisms of chemokine heterodimers in biological environments. Using the OHD4-12, we show that the CXCL4-CXCL12 chemokine heterodimer inhibits the CXCL12-driven migration of triple-negative MDA-MB-231 breast cancer cells. We also show that the CXCL4-CXCL12 chemokine heterodimer binds and activates the CXCR4 receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Quimiocina CXCL12/metabolismo , Quimiotaxia , Fator Plaquetário 4/metabolismo , Ligação Proteica , Receptores CXCR4/metabolismo , Transdução de Sinais
19.
J Mater Chem B ; 10(38): 7708-7716, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36069407

RESUMO

Heparin-induced thrombocytopenia (HIT) is caused by newly formed platelet-activating antibodies against complexes formed between platelet factor 4 (PF4) and heparin (H). HIT can result in life-threatening complications; thus, early detection of HIT antibodies is crucial for the treatment of the disease. The enzyme-linked immune absorbance assay (ELISA) for the identification of HIT antibodies is widely used in many laboratories, but in general, this test provides only ∼50% accuracy while other methods show multiple limitations. Here, we developed a new cell-based ELISA to improve the detection of HIT antibodies. Instead of immobilizing PF4 or PF4/H complexes directly onto a plate as in the standard ELISA, we added the complexes on breast cancer cells, i.e., cell line MDA-MB-231, and applied the same protocol for antibody detection. Using confocal laser scanning microscopy and flow cytometry for the characterization of bound complexes, we identified two types of HIT-mimicked antibodies (KKO and 1E12), which were able to differentiate from the non-HIT antibody (RTO). PF4-treated MDA-MB-231 cells allowed binding of HIT-mimicked antibodies better than PF4/H complexes. With human sera, the cell-based ELISA allowed better differentiation of clinically relevant from non-clinically relevant HIT antibodies as compared with the standard ELISA. Our findings provide a potential approach that contributes to the development of better assays for the detection of HIT antibodies.


Assuntos
Neoplasias da Mama , Trombocitopenia , Anticorpos , Neoplasias da Mama/tratamento farmacológico , Ensaio de Imunoadsorção Enzimática , Feminino , Heparina/efeitos adversos , Humanos , Fator Plaquetário 4/efeitos adversos , Fator Plaquetário 4/metabolismo , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico
20.
Eur J Intern Med ; 105: 1-7, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953336

RESUMO

Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome characterized by high-titer anti-platelet factor 4 (PF4) antibodies, thrombocytopenia and arterial and venous thrombosis in unusual sites, as cerebral venous sinuses and splanchnic veins. VITT has been described to occur almost exclusively after administration of ChAdOx1 nCoV-19 and Ad26.COV2.S adenovirus vector- based COVID-19 vaccines. Clinical and laboratory features of VITT resemble those of heparin-induced thrombocytopenia (HIT). It has been hypothesized that negatively charged polyadenylated hexone proteins of the AdV vectors could act as heparin to induce the conformational changes of PF4 molecule that lead to the formation of anti-PF4/polyanion antibodies. The anti-PF4 immune response in VITT is fostered by the presence of a proinflammatory milieu, elicited by some impurities found in ChAdOx1 nCoV-19 vaccine, as well as by soluble spike protein resulting from alternative splice events. Anti-PF4 antibodies bind PF4, forming immune complexes which activate platelets, monocytes and granulocytes, resulting in the VITT's immunothrombosis. The reason why only a tiny minority of patents receiving AdV-based COVID-19 vaccines develop VITT is still unknown. It has been hypothesized that individual intrinsic factors, either acquired (i.e., pre-priming of B cells to produce anti-PF4 antibodies by previous contacts with bacteria or viruses) or inherited (i.e., differences in platelet T-cell ubiquitin ligand-2 [TULA-2] expression) can predispose a few subjects to develop VITT. A better knowledge of the mechanistic basis of VITT is essential to improve the safety and the effectiveness of future vaccines and gene therapies using adenovirus vectors.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Vacinas , Humanos , Complexo Antígeno-Anticorpo , Vacinas contra COVID-19/efeitos adversos , Ad26COVS1 , ChAdOx1 nCoV-19 , Ligantes , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Heparina/efeitos adversos , Trombocitopenia/induzido quimicamente , Vacinas/efeitos adversos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Ubiquitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA