Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Diabetes ; 73(9): 1447-1461, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905124

RESUMO

Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain ß-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of ß-cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces ß-cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of ß-cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared with controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine ß-cells in mice.


Assuntos
Células Acinares , Envelhecimento , Células Secretoras de Insulina , Camundongos Knockout , Fator Trefoil-2 , Animais , Células Secretoras de Insulina/metabolismo , Camundongos , Fator Trefoil-2/metabolismo , Fator Trefoil-2/genética , Masculino , Células Acinares/metabolismo , Feminino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Secreção de Insulina/fisiologia , Secreção de Insulina/genética , Fatores Trefoil/metabolismo , Fatores Trefoil/genética , Peptídeos/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396964

RESUMO

TFF3 is a typical secretory poplypeptide of mucous epithelia belonging to the trefoil factor family (TFF) of lectins. In the intestine, respiratory tract, and saliva, TFF3 mainly exists as a high-molecular-mass complex with IgG Fc binding protein (FCGBP), which is indicative of a role in mucosal innate immunity. For the first time, we identified different forms of TFF3 in the endocervix, i.e., monomeric and homodimeric TFF3, as well as a high-molecular-mass TFF3-FCGBP complex; the latter also exists in a hardly soluble form. Immunohistochemistry co-localized TFF3 and FCGBP. Expression analyses of endocervical and post-menopausal vaginal specimens revealed a lack of mucin and TFF3 transcripts in the vaginal specimens. In contrast, genes encoding other typical components of the innate immune defense were expressed in both the endocervix and vagina. Of note, FCGBP is possibly fucosylated. Endocervical specimens from transgender individuals after hormonal therapy showed diminished expression, particularly of FCGBP. Furthermore, mucus swabs from the endocervix and vagina were analyzed concerning TFF3, FCGBP, and lysozyme. It was the aim of this study to illuminate several aspects of the cervico-vaginal innate immune barrier, which is clinically relevant as bacterial and viral infections are also linked to infertility, pre-term birth and cervical cancer.


Assuntos
Colo do Útero , Mucinas , Vagina , Feminino , Humanos , Proteínas de Transporte , Moléculas de Adesão Celular/metabolismo , Colo do Útero/imunologia , Imunidade Inata , Imunoglobulina G/metabolismo , Mucinas/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo , Vagina/imunologia
3.
Sci Rep ; 13(1): 21641, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062108

RESUMO

Pyloric gland adenoma (PGA) is a duodenal neoplasm expressing MUC6 and is often associated with high-grade dysplasia and adenocarcinoma. MUC6 secreted from the pyloric gland cells carries unique O-glycans exhibiting terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc). The small peptide trefoil factor 2 (TFF2) is also secreted from pyloric gland cells and binds to αGlcNAc. We recently demonstrated that αGlcNAc serves as a tumor suppressor for gastric neoplasm including PGA, but the significance of TFF2 expression remains unknown. We examined 20 lesions representing low- and high-grade PGA in 22 cases by immunohistochemistry for αGlcNAc, TFF2, MUC6, MUC5AC, MUC2 and p53. αGlcNAc, TFF2 and MUC6 were co-expressed on the cell surface and a dot-like pattern in the cytosol in low-grade PGA lesions. High-grade PGA also expressed MUC6, but reduced αGlcNAc and TFF2 expression. The ratios of αGlcNAc or TFF2 to MUC6 score in high-grade PGA were significantly lower than low-grade PGA (P < 0.001). Co-expression of αGlcNAc-glycosylated MUC6 and TFF2 in PGA suggests the existence of αGlcNAc/TFF2 form complex in PGA cells, a finding consistent with our observations in non-neoplastic Brunner's gland cells. The decreased αGlcNAc and TFF2 expression are associated with high grade atypical cells, indicative of the malignant potential of PGA.


Assuntos
Adenoma , Biomarcadores Tumorais , Humanos , Glicosilação , Mucina-6/metabolismo , Fator Trefoil-2/metabolismo , Biomarcadores Tumorais/metabolismo , Duodeno/metabolismo , Mucosa Gástrica/metabolismo , Adenoma/patologia
4.
Cell Stem Cell ; 30(8): 1091-1109.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541213

RESUMO

While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Fator Trefoil-2/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/metabolismo , Células Acinares/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108221

RESUMO

The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.


Assuntos
Lectinas , Estômago , Fator Trefoil-2 , Animais , Humanos , Camundongos , Mucinas/genética , Mucinas/metabolismo , Pâncreas/metabolismo , Peptídeos/química , Estômago/química , Suínos , Fator Trefoil-2/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499686

RESUMO

The polypeptide TFF3 belongs to the trefoil factor family (TFF) of lectins. TFF3 is typically secreted from mucous epithelia together with mucins. Both intestinal and salivary TFF3 mainly exist as disulfide-linked heterodimers with IgG Fc binding protein (FCGBP). Here, we investigated bronchial tissue specimens, bronchial secretions, and bronchoalveolar lavage (BAL) fluid from patients with a chronic obstructive pulmonary disease (COPD) background by fast protein liquid chromatography and proteomics. For the first time, we identified different molecular forms of TFF3 in the lung. The high-molecular mass form represents TFF3-FCGBP oligomers, whereas the low-molecular mass forms are homodimeric and monomeric TFF3 with possibly anti-apoptotic activities. In addition, disulfide-linked TFF3 heterodimers with an Mr of about 60k and 30k were detected in both bronchial secretions and BAL fluid. In these liquids, TFF3 is partly N-terminally truncated probably by neutrophil elastase cleavage. TFF3-FCGBP is likely involved in the mucosal innate immune defense against microbial infections. We discuss a hypothetical model how TFF3 might control FCGBP oligomerization. Furthermore, we did not find indications for interactions of TFF3-FCGBP with DMBT1gp340 or the mucin MUC5AC, glycoproteins involved in mucosal innate immunity. Surprisingly, bronchial MUC5AC appeared to be degraded when compared with gastric MUC5AC.


Assuntos
Proteínas de Transporte , Mucinas , Humanos , Brônquios/metabolismo , Moléculas de Adesão Celular/metabolismo , Dissulfetos/metabolismo , Imunoglobulina G/metabolismo , Mucinas/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/metabolismo , Fragmentos Fc das Imunoglobulinas
7.
Cancer Sci ; 113(2): 576-586, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34808019

RESUMO

Biomarkers for early diagnosis of pancreatic cancer are greatly needed, as the high fatality of this cancer is in part due to delayed detection. α1,4-linked N-acetylglucosamine (αGlcNAc), a unique O-glycan specific to gastric gland mucus, is biosynthesized by α1,4-N-acetylglucosaminyltransferase (α4GnT) and primarily bound at the terminal glycosylated residue to scaffold protein MUC6. We previously reported that αGlcNAc expression decreases at early stages of neoplastic pancreatic lesions, followed by decreased MUC6 expression, although functional effects of these outcomes were unknown. Here, we ectopically expressed α4GnT, the αGlcNAc biosynthetic enzyme, together with MUC6 in the human pancreatic cancer cell lines MIA PaCa-2 and PANC-1, neither of which expresses α4GnT and MUC6. We observed significantly suppressed proliferation in both lines following coexpression of α4GnT and MUC6. Moreover, cellular motility decreased following MUC6 ectopic expression, an effect enhanced by cotransduction with α4GnT. MUC6 expression also attenuated invasiveness of both lines relative to controls, and this effect was also enhanced by additional α4GnT expression. We found αGlcNAc-bound MUC6 formed a complex with trefoil factor 2. Furthermore, analysis of survival curves of patients with pancreatic ductal adenocarcinoma using a gene expression database showed that samples marked by higher A4GNT or MUC6 mRNA levels were associated with relatively favorable prognosis. These results strongly suggest that αGlcNAc and MUC6 function as tumor suppressors in pancreatic cancer and that decreased expression of both may serve as a biomarker of tumor progression to pancreatic cancer.


Assuntos
Acetilglucosamina/metabolismo , Mucina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicosilação , Humanos , Mucina-6/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , RNA Mensageiro/metabolismo , Fator Trefoil-2/metabolismo , Proteínas Supressoras de Tumor/genética
8.
Carcinogenesis ; 42(12): 1496-1505, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34644378

RESUMO

Trefoil factor family 2 (TFF2) is one of three trefoil factor family proteins and is expressed abundantly in the gastrointestinal epithelium. Recent studies have shown that TFF2 acts as a tumor suppressor in gastric and pancreatic carcinogenesis; however, little is known about its function in cholangiocarcinogenesis. To investigate the function of TFF2 in cholangiocellular carcinoma (CCC), immunohistochemistry of surgically resected human CCC samples was performed. TFF2 expression was upregulated in the early stage and lost in the late stage of cholangiocarcinogenesis, suggesting the association of TFF2 and CCC. A TFF2 expression vector was then transfected into a CCC cell line (HuCCT1) in vitro, revealing that TFF2 functions as a tumor suppressor not only by inhibiting proliferation and invasion but also by promoting the apoptosis of cancer cells. In addition, PTEN signaling activity was downregulated by TFF2, suggesting an association between TFF2 and PTEN. Next, hepatic carcinogenesis model mice (KC; albumin-Cre/Lox-Stop-Lox KRASG12D) were bred with TFF2-knockout mice to generate a TFF2-deficient mouse model (KC/TFF2-/-). Although the incidence of hepatocellular carcinoma was not different between KC/TFF2-/- mice and control mice, biliary intraepithelial neoplasm (BilIN), the precursor of CCC, was frequently found in the biliary epithelium of KC/TFF2-/- mice. Immunohistochemistry revealed that BilIN samples from these mice did not express PTEN. In addition, two KC/TFF2-/- mice developed CCC adjacent to BilIN, suggesting that TFF2 functions to inhibit the development of CCC in vivo. These results indicate that TFF2 acts as a tumor suppressor to inhibit the development of CCC by regulating PTEN activity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Fator Trefoil-2/metabolismo , Animais , Apoptose , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator Trefoil-2/genética
9.
Int J Gynecol Pathol ; 40(1): 65-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32897966

RESUMO

Gastric-type carcinoma (GAS) is the most common human papilloma virus-independent endocervical adenocarcinoma (ECA), characterized by an aggressive behavior. Trefoil factor 2 (TFF2) is a mucin-associated peptide expressed in normal gastric but not endocervical glands. This study was carried out to investigate whether TFF2 could be a surrogate marker to separate GAS from other types of ECA. ECAs from 9 international institutions were reviewed for consensus histotype. Of them, expression of TFF2 was immunohistochemically examined compared with that of HIK1083, using whole sections of 50 ECAs (10 GASs and 40 non-GASs) and 179 ECAs (24 GASs and 155 non-GASs) with tissue microarrays (TMAs). TMAs were assessed to simulate assessment of immunohistochemical stains in small biopsies. Both markers were similarly scored, and any cytoplasmic/membranous staining of >5% of tumor cells was considered positive. Of 50 ECAs with whole sections, TFF2 was significantly more frequently expressed in GASs (8/10) compared with non-GASs (5/40) (P<0.01). In 179 ECAs with TMAs, TFF2 was also significantly more frequently expressed in GASs (7/24) compared with non-GASs (4/155) (P<0.01). There was no significant difference in specificity among the 2 markers. Double positivity for TFF2 and HIK1083 in ECAs was highly specific in separating GASs from non-GAS (P<0.01). A significantly smaller percentage of GASs were TFF2 positive in TMAs than in whole sections (P<0.01). Our results suggest that TFF2 is a promising marker, along with HIK1083, to confirm a diagnosis of GAS. This marker may be negative in small biopsies, indicating the necessity of using other exclusionary markers in combination with rigorous morphologic review and extensive sampling in resection specimens.


Assuntos
Adenocarcinoma/diagnóstico , Carcinoma/diagnóstico , Neoplasias Gástricas/diagnóstico , Fator Trefoil-2/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Adenocarcinoma/patologia , Biomarcadores/metabolismo , Carcinoma/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Gástricas/patologia , Análise Serial de Tecidos , Fator Trefoil-2/genética , Neoplasias do Colo do Útero/patologia
10.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630599

RESUMO

Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.


Assuntos
Mucosa/metabolismo , Fatores Trefoil/metabolismo , Fatores Trefoil/fisiologia , Animais , Proteínas de Transporte/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Humanos , Mucinas/metabolismo , Mucosa/fisiologia , Muco/metabolismo , Peptídeos , Estômago/patologia , Fator Trefoil-1/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/metabolismo , Fatores Trefoil/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Aging (Albany NY) ; 12(6): 5318-5335, 2020 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32200357

RESUMO

Major abdominal procedures could induce dysfunction in the immune system and lead to postoperative immunosuppression. Sleep dysfunction is associated with impaired immune activity. However, the effects of postoperative sleep dysfunction on postoperative immune function remain unclear. In this study, we found that sleep-restriction (SR) after surgery increased the spleen weight and the percentage of myeloid-derived suppressor cells (MDSCs) in the spleen, and inhibited splenic CD8+ T cells activity, which was via inhibiting subdiaphragmatic vagus nerve (SVN)-mediated trefoil factor 2 (TFF2) expression in the spleen of aged mice. Dexmedetomidine could alleviate SR-induced these changes via modulating gut microbiota, which acted through SVN. Moreover, we showed essential roles of splenic TFF2 in attenuating SR-induced reduced protective ability against Escherichia coli (E. coli) pneumonia, increased expression of IL-4 and IL-13 in the lung and M2 polarization of alveolar macrophages (AMs), and decreased phagocytic activity of AMs. Dexmedetomidine improved SR-induced reduced protective ability against E. coli pneumonia via splenic TFF2, and subsequently decreasing IL-4 and IL-13 expression in the lung via modulating gut microbiota/SVN, increasing the compromised phagocytic activity of AMs, and ultimately decreasing M2 polarization of AMs. Taken together, dexmedetomidine-induced increase in splenic TFF2 expresssion could alleviate SR-induced exaggeration of postoperative immunosuppression.


Assuntos
Dexmedetomidina/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Complicações Pós-Operatórias/imunologia , Privação do Sono/imunologia , Fator Trefoil-2/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal/imunologia , Hipnóticos e Sedativos/farmacologia , Ativação Linfocitária , Macrófagos , Macrófagos Alveolares , Camundongos , Sono , Baço/imunologia
12.
Gut ; 69(6): 1027-1038, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31481545

RESUMO

OBJECTIVE: Spasmolytic polypeptide-expressing metaplasia (SPEM) is a regenerative lesion in the gastric mucosa and is a potential precursor to intestinal metaplasia/gastric adenocarcinoma in a chronic inflammatory setting. The goal of these studies was to define the transcriptional changes associated with SPEM at the individual cell level in response to acute drug injury and chronic inflammatory damage in the gastric mucosa. DESIGN: Epithelial cells were isolated from the gastric corpus of healthy stomachs and stomachs with drug-induced and inflammation-induced SPEM lesions. Single cell RNA sequencing (scRNA-seq) was performed on tissue samples from each of these settings. The transcriptomes of individual epithelial cells from healthy, acutely damaged and chronically inflamed stomachs were analysed and compared. RESULTS: scRNA-seq revealed a population Mucin 6 (Muc6)+gastric intrinsic factor (Gif)+ cells in healthy tissue, but these cells did not express transcripts associated with SPEM. Furthermore, analyses of SPEM cells from drug injured and chronically inflamed corpus yielded two major findings: (1) SPEM and neck cell hyperplasia/hypertrophy are nearly identical in the expression of SPEM-associated transcripts and (2) SPEM programmes induced by drug-mediated parietal cell ablation and chronic inflammation are nearly identical, although the induction of transcripts involved in immunomodulation was unique to SPEM cells in the chronic inflammatory setting. CONCLUSIONS: These data necessitate an expansion of the definition of SPEM to include Tff2+Muc6+ cells that do not express mature chief cell transcripts such as Gif. Our data demonstrate that SPEM arises by a highly conserved cellular programme independent of aetiology and develops immunoregulatory capabilities in a setting of chronic inflammation.


Assuntos
Mucosa Gástrica/metabolismo , Gastrite/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Feminino , Imunofluorescência , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/patologia , Perfilação da Expressão Gênica , Hibridização In Situ , Masculino , Metaplasia/induzido quimicamente , Metaplasia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucina-6/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Tamoxifeno/farmacologia , Fator Trefoil-2/metabolismo
13.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817054

RESUMO

OBJECTIVE: Trefoil factor family peptide 3 (TFF3) has been shown to support catabolic functions in cases of osteoarthritis (OA). As in joint physiology and diseases such as OA, the synovial membrane (SM) of the joint capsule also plays a central role. We analyze the ability of SM to produce TFF compare healthy SM and its secretion product synovial fluid (SF) with SM and SF from patients suffering from OA or rheumatoid arthritis (RA). METHODS: Real-time PCR and ELISA were used to measure the expression of TFFs in healthy SM and SM from patients suffering from OA or RA. For tissue localization, we investigated TFF1-3 in differently aged human SM of healthy donors by means of immunohistochemistry, real-time PCR and Western blot. RESULTS: Only TFF3 but not TFF1 and -2 was expressed in SM from healthy donors as well as cases of OA or RA on protein and mRNA level. In contrast, all three TFFs were detected in all samples of SF on the protein level. No significant changes were observed for TFF1 at all. TFF2 was significantly upregulated in RA samples in comparison to OA samples. TFF3 protein was significantly downregulated in OA samples in comparison to healthy samples and cases of RA significantly upregulated compared to OA. In contrast, in SM TFF3 protein was not significantly regulated. CONCLUSION: The data demonstrate the production of TFF3 in SM. Unexpectedly, SF contains all three known TFF peptides. As neither articular cartilage nor SM produce TFF1 and TFF2, we speculate that these originate with high probability from blood serum.


Assuntos
Artrite Reumatoide/metabolismo , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Fator Trefoil-1/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doadores de Tecidos , Fator Trefoil-1/genética , Fator Trefoil-2/genética , Fator Trefoil-3/genética
14.
BMC Gastroenterol ; 19(1): 102, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226941

RESUMO

BACKGROUND: Aryl-hydrocarbon receptor (AhR) is a multiple ligand-activated transcription factor that has important roles in xenobiotic, physiological, or pathological functions. Transgenic mice systemically expressing constitutively-active AhR (CA-AhR) have been created to mimic activated AhR signaling in vivo. However, their detailed histopathological features are unclear. In the present study, we generated CA-AhR-expressing FVB/N mice (FVB-CA-AhR mice) and clarified their phenotypes in detail. METHODS: Male and female FVB-CA-AhR and wild-type mice were histopathologically examined from 6 to 33 weeks of age. RESULTS: Among the systemic organs, only the stomachs in FVB-CA-AhR mice showed pathological changes including cystic structures beneath the serosa; in addition, stomach weights increased with age. Histopathologically, cystic structures and alcian blue-positive metaplasia were observed in the mucosa of the proper gastric glands, and these two histometric parameters were positively correlated. Furthermore, proliferating cells shifted from the isthmus to the base of the glands, and parietal cells decreased. Age-related histopathological changes were clearer in females than in males. Importantly, in FVB-CA-AhR mice, intramucosal cysts developed as extramucosal cysts beneath the serosa, penetrating the lamina muscularis mucosae and the muscularis propria. Their incidence reached 100% in 28-week-old male mice and 33-week-old female mice. Extramucosal cysts contained alcian blue-, Griffonia simplicifolia lectin II-, or trefoil factor 2-positive cells, suggesting a stomach origin for the cysts and spasmolytic polypeptide-expressing metaplasia-like lesions. CONCLUSIONS: Disease onset occurred earlier in FVB-CA-AhR mice than previously reported in C57BL/6-derived CA-AhR mice. Importantly, the histopathological features were partly similar with gastritis cystica profunda in humans and animals. Excessive activation of AhR signaling aggravated abnormalities in the gastric mucosa and were affected by both genetic- and sex-related factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cistos/patologia , Mucosa Gástrica/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Azul Alciano , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Lectinas de Plantas/metabolismo , Transdução de Sinais , Fator Trefoil-2/metabolismo
15.
Mucosal Immunol ; 12(1): 64-76, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30337651

RESUMO

Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.


Assuntos
Lesão Pulmonar/imunologia , Pulmão/imunologia , Macrófagos/fisiologia , Nippostrongylus/imunologia , Mucosa Respiratória/fisiologia , Infecções por Strongylida/imunologia , Fator Trefoil-2/metabolismo , Animais , Bleomicina , Antígeno CD11c/metabolismo , Comunicação Celular , Proliferação de Células , Células Cultivadas , Humanos , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator Trefoil-2/genética , Cicatrização
16.
Acta Clin Croat ; 57(2): 264-277, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30431719

RESUMO

The objective of this study was to determine differential expression of TFF1, TFF2 and TFF3 genes and proteins in breast tumor subtypes. In addition, we investigated the correlation between TFF genes within tumor subgroups, and TFF genes with clinical and pathologic characteristics of the tumor. Study group included 122 patients with surgically removed breast tumors. Samples were investigated using qRT-PCR and immunohistochemistry. TFF1 and TFF3 genes and proteins were expressed in breast tumors, while the levels of TFF2 gene and protein expression were very low or undetectable. TFF1 was significantly more expressed in benign tumors, while TFF3 was more expressed in malignant tumors. Gene and protein expression of both TFF1 and TFF3 was greater in lymph node-negative tumors, hormone positive tumors, tumors with moderate levels of Ki67 expression, and in grade II tumors. A strong positive correlation was found between TFF1 and TFF3 genes, and the expression of both negatively correlated with Ki67 and the level of tumor histologic differentiation. Our results suggest that TFF1 and TFF3, but not TFF2, may have a role in breast tumor pathogenesis and could be used in the assessment of tumor differentiation and malignancy.


Assuntos
Neoplasias da Mama , Fator Trefoil-1 , Fator Trefoil-2 , Fator Trefoil-3 , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Mucinas , Proteínas Musculares , Peptídeos , Fator Trefoil-1/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/metabolismo
17.
Chembiochem ; 19(24): 2598-2608, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30371971

RESUMO

Mucous gels (mucus) cover internal body surfaces. The secretory mucins MUC5AC and MUC6 and the protective peptide TFF2 are characteristic constituents of gastric mucus; TFF2 is co-secreted with MUC6. Herein, we investigated two commercial mucin preparations by FPLC and proteomics, because they are model systems for studying the rheology of gastric mucins. One preparation is also used as a saliva substitute, for example, after radiation therapy. We show that both preparations contain TFF2 (≈0.6 to 1.1 %, w/w). The majority of TFF2 is strongly bound noncovalently to mucin in a manner that is resistant to boiling in SDS. First overlay assays with 125 I-labeled porcine TFF2 revealed that mucin binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the antibody HIK1083, both recognizing the peripheral GlcNAcα1→4Galß1→R moiety of MUC6. TFF2 binding was also inhibited in the presence of Me-ß-Gal but less so by the α anomer. TFF2 may play a role in the oligomerization and secretion of MUC6, the rheology of gastric mucus, and the adherence of gastric microbiota. TFF2 in artificial saliva may be of benefit. TFF2 might also interact with the sugar moiety of various receptors.


Assuntos
Mucinas Gástricas/análise , Peptídeos/isolamento & purificação , Saliva Artificial/análise , Fator Trefoil-2/isolamento & purificação , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Cálcio/metabolismo , Mucinas Gástricas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Radioisótopos do Iodo , Espectrometria de Massas , Mucina-6/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica , Saliva Artificial/metabolismo , Estômago/química , Suínos , Fator Trefoil-2/química , Fator Trefoil-2/metabolismo
18.
Molecules ; 23(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751628

RESUMO

Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.


Assuntos
Imunidade/imunologia , Infecções/etiologia , Infecções/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lectinas/química , Polimorfismo Genético , Fator Trefoil-2/química , Fator Trefoil-2/metabolismo
19.
Am J Pathol ; 188(5): 1161-1170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29458008

RESUMO

Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.


Assuntos
Células Epiteliais/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Infecções por Strongylida/metabolismo , Fator Trefoil-2/metabolismo , Animais , Proliferação de Células , Células Epiteliais/parasitologia , Células Epiteliais/patologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Nippostrongylus , Alvéolos Pulmonares/parasitologia , Alvéolos Pulmonares/patologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/patologia
20.
Food Res Int ; 95: 38-45, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28395823

RESUMO

Nano TiO2 has been widely used in food industry as a coloring agent, whether the application has adverse effects on stomach for humans and animals is rarely concerned. This study determined whether intragastric administration with nano TiO2 every day for nine months cause gastric damages and dysfunction, and is associated with changes of stomach damage-related protein expression in mice. Our results suggested that nano TiO2 exposure resulted in significant titanium accumulation in the stomach, reductions in daily food intake and water intake, stomach weight, and stomach indices. Importantly, mice exhibited severe gastric damages such as gastric mucosa atrophy, erosion, inflammatory cell infiltration and cell morphologic damages including apoptosis, and coupled with reductions of serum pepsin activity, stomach total acidity and H+ concentration, and increases of serum gastrin concentration and gastric pH. Furthermore, these are associated with decreased expression of IκB, TFF 1, 2, and increased expression of NF-κB, TNF-α, IL-lß, -6, -8, COX-2, and PGE2 in the stomach. The findings showed that gastric toxicity of mice induced by chronic exposure to nano TiO2 may be associated with alterations of gastritis-related protein expression in mice. It implies that the potential adverse effects to digestive system health should be concerned.


Assuntos
Gastrite/genética , Nanopartículas Metálicas/toxicidade , Estômago/efeitos dos fármacos , Titânio/toxicidade , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Gastrinas/sangue , Gastrite/induzido quimicamente , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos de Músculo Liso/ultraestrutura , NF-kappa B/genética , NF-kappa B/metabolismo , Fator Trefoil-1/genética , Fator Trefoil-1/metabolismo , Fator Trefoil-2/genética , Fator Trefoil-2/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA