Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477282

RESUMO

The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1-Cys37) and the flexible C-terminal part (Arg38-Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure-activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.


Assuntos
Fator XIIIa/antagonistas & inibidores , Espectroscopia de Ressonância Magnética/métodos , Proteínas e Peptídeos Salivares/farmacologia , Sequência de Aminoácidos , Animais , Dissulfetos/química , Fator XIIIa/metabolismo , Fibrinolíticos/farmacologia , Humanos , Isomerismo , Sanguessugas/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 201: 112474, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32698061

RESUMO

Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.


Assuntos
Dissulfetos/química , Fator XIIIa/antagonistas & inibidores , Proteínas e Peptídeos Salivares/química , Sequência de Aminoácidos , Animais , Dissulfetos/síntese química , Fator XIIIa/genética , Fator XIIIa/metabolismo , Genes , Isomerismo , Sanguessugas/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas e Peptídeos Salivares/síntese química , Proteínas e Peptídeos Salivares/metabolismo
3.
Eur J Med Chem ; 200: 112442, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502864

RESUMO

Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.


Assuntos
Anticoagulantes/farmacologia , Fator XIIIa/antagonistas & inibidores , Relação Dose-Resposta a Droga , Fator XIIIa/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Med Chem ; 62(7): 3513-3523, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30852892

RESUMO

Tridegin is a potent and specific 66mer peptide inhibitor of coagulation factor XIIIa with six cysteines involved in three disulfide bonds. Three of the 15 possible 3-disulfide-bonded isomers have been identified, which share a bridge between cysteines 19 and 25. We synthesized the three possible 2-disulfide-bonded analogues using a targeted protecting group strategy to investigate the impact of the C19-C25 bond on tridegin's folding, stability, and function. The FXIIIa inhibitory activity of the analogues was retained, which was shown by in vitro fluorogenic activity and whole blood clotting assays. Molecular dynamics simulations of wild-type tridegin and the analogues as well as molecular docking studies with FXIIIa were performed to elucidate the impact of the C19-C25 bond on conformational stability and binding mode. The strategy of selectively reducing disulfide bonds to facilitate large-scale synthesis, while retaining the functionality of disulfide-bonded peptides, has been demonstrated with our present study.


Assuntos
Dissulfetos/química , Fator XIIIa/antagonistas & inibidores , Proteínas e Peptídeos Salivares/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Isomerismo , Sanguessugas , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estabilidade Proteica , Proteínas e Peptídeos Salivares/química
5.
PLoS One ; 11(7): e0160189, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467511

RESUMO

Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.


Assuntos
Inibidores Enzimáticos/farmacologia , Fator XIIIa/antagonistas & inibidores , Glicosaminoglicanos/farmacologia , Mimetismo Molecular , Regulação Alostérica , Inibidores Enzimáticos/química , Fibrina/química , Glicosaminoglicanos/química , Cinética , Polimerização , Relação Estrutura-Atividade
6.
J Med Chem ; 57(24): 10355-65, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25415134

RESUMO

The inhibition of the final step in blood coagulation, the factor XIIIa (FXIIIa) catalyzed cross-linking of fibrin monomers, is currently still a challenge in medicinal chemistry. We report synthesis, recombinant expression, disulfide connectivity, and biological activity of tridegin, the sole existing peptide representative displaying inhibitory activity on FXIIIa. Inhibition of the enzyme by this 66-mer cysteine-rich peptide is mediated by its C-terminal sequence, while the N-terminal part comprises structural information and contributes to inhibitor binding. Either of the production strategies examined leads to the formation of different disulfide-bridged isomers indicating the requirement of the correct fold for inhibitory activity. Molecular modeling and docking studies confirm disulfide bond isomer preference with respect to binding to FXIIIa, in turn, the knowledge of the enzyme-inhibitor interactions might bring about comprehensive ideas for the design of a suitable lead structure for addressing FXIIIa.


Assuntos
Dissulfetos/química , Fator XIIIa/antagonistas & inibidores , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/farmacologia , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dissulfetos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fator XIIIa/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Especificidade por Substrato
7.
Anal Biochem ; 428(1): 73-80, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683584

RESUMO

A series of Glu(pNA)-containing peptides was designed to determine the activity of the transglutaminase factor XIIIa at 405 nm due to p-nitroaniline release. The most suitable substrate properties were found for peptides containing the Glu(pNA) residue in the second position from the N terminus. For the best substrate 12 (H-Tyr-Glu(pNA)-Val-Lys-Val-Ile-Gly-NH(2)), a k(cat)/K(m) value of 3531 s(-1)M(-1) was found. Although the k(cat)/K(m) values of the Glu(pNA) peptides are more than 100-fold reduced compared with the previously reported cleavage of natural glutamine-containing substrates such as α(2)-antiplasmin and ß-casein, these chromogenic substrates can be useful tools for convenient determination of FXIII-A(2)* activity e.g., for in vitro inhibitor screening. As an example, peptide 12 was used to characterize the inhibition of FXIII-A(2)* by the well-known irreversible inhibitor iodoacetic acid.


Assuntos
Bioquímica/métodos , Coagulação Sanguínea , Compostos Cromogênicos/síntese química , Compostos Cromogênicos/metabolismo , Fator XIIIa/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Bioensaio , Coagulação Sanguínea/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Fator XIIIa/antagonistas & inibidores , Humanos , Ácido Iodoacético/farmacologia , Cinética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato/efeitos dos fármacos
8.
Biochemistry ; 46(35): 10089-101, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17691819

RESUMO

Factor XIII can be activated proteolytically by thrombin cleavage of the activation peptide or non-proteolytically by exposure to 50 mM Ca2+. The resultant transglutaminase cross-links Q and K residues within the noncovalently associated fibrin clot. Hydrogen deuterium exchange coupled with MALDI-TOF MS demonstrated that FXIII activation protects regions within the beta sandwich (98-104) and the beta barrel 1 (526-546) from deuterium, while exposing the potential Q substrate recognition site (220-230) to deuteration (Turner, B. T., Jr., and Maurer, M. C. (2002) Biochemistry 41, 7947-7954). Chemical modification indicated the availability of several residues upon activation including K73, K221, C314, and C409 (Turner, B. T., Jr., Sabo, T. M., Wilding, D., and Maurer, M. C. (2004) Biochemistry 43, 9755-9765). In the current work, activations of FXIII by IIa and by Ca2+ as well as FXIIIa inhibition by the K9 DON peptide (with the Q isostere 6-diazo-5-oxo-norleucine) and iodoacetamide were further examined. New findings unique for FXIIIaIIa included alkylation of C238 and C327, acetylation of K68, and increased proteolysis of 207-214. By contrast, FXIIIaCa led to increased proteolysis of 73-85 and 104-125 and to a loss of K129 acetylation. The FXIIIa inhibitors K9 DON and iodoacetamide both promoted even greater protection from deuteration for the beta sandwich (98-104) and beta barrel 1 (526-546). Interestingly, only K9 DON was able to block modification of catalytic core C409 near the dimer interface. The solution based approaches reveal that activation and inhibition lead to local and long range effects to FXIII(a) and that many are influenced by Ca2+ binding. Important glimpses are being provided on FXIIIa allostery and the presence of putative FXIIIa exosites.


Assuntos
Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Fator XIII/metabolismo , Fator XIIIa/antagonistas & inibidores , Fator XIIIa/metabolismo , Trombina/metabolismo , Acetilação , Alquilação , Cálcio/química , Catálise , Cátions Bivalentes/química , Simulação por Computador , Cisteína/química , Medição da Troca de Deutério , Ativação Enzimática , Inibidores Enzimáticos , Fator XIII/química , Fator XIIIa/química , Glutamina/química , Humanos , Iodoacetamida/química , Lisina/química , Modelos Moleculares , Peptídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Soluções , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Trombina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA