Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 120(3): 400-411, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31940673

RESUMO

Factor XII (FXII) zymogen activation requires cleavage after arginine 353 located in the activation loop. This cleavage can be executed by activated FXII (autoactivation), plasma kallikrein (PKa), or plasmin. Previous studies proposed that the activation loop of FXII is shielded to regulate FXII activation and subsequent contact activation. In this study, we aimed to elucidate this mechanism by expressing and characterizing seven consecutive N-terminally truncated FXII variants as well as full-length wild-type (WT) FXII. As soon as the fibronectin type II domain is lacking (FXII Δ1-71), FXII cleavage products appear on Western blot. These fragments display spontaneous amidolytic activity, indicating that FXII without the fibronectin type II domain is susceptible to autoactivation. Additionally, truncated FXII Δ1-71 is more easily activated by PKa or plasmin than full-length WT FXII. To exclude a contribution of autoactivation, we expressed active-site incapacitated FXII truncation variants (S544A). FXII S544A Δ1-71 is highly susceptible to cleavage by PKa, indicating exposure of the activation loop. In surface binding experiments, we found that the fibronectin type II domain is non-essential for binding to kaolin or polyphosphate, whereas the following epidermal growth factor-like domain is indispensable. Binding of full-length FXII S544A to kaolin or polyphosphate increases its susceptibility to cleavage by PKa. Moreover, the activation of full-length WT FXII by PKa increases approximately threefold in the presence of kaolin. Deletion of the fibronectin type II domain eliminates this effect. Combined, these findings suggest that the fibronectin type II domain shields the activation loop of FXII, ensuring zymogen quiescence.


Assuntos
Precursores Enzimáticos/química , Fator XII/química , Fibrinolisina/química , Fibronectinas/química , Calicreínas/química , Animais , Sítios de Ligação , Coagulação Sanguínea , Bradicinina/química , Domínio Catalítico , Bovinos , Fator XIIa/química , Fibronectinas/sangue , Células HEK293 , Humanos , Calicreínas/sangue , Caulim/química , Polifosfatos/química , Ligação Proteica , Domínios Proteicos
2.
J Mol Graph Model ; 89: 225-233, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30921556

RESUMO

Thrombosis represents a major cause of morbidity and mortality around the world. Peptides isolated from natural sources have been proven to have anticoagulant and antithrombotic properties. VITPOR AI, a 16-mer peptide, isolated from Porphyra yezoensis was reported to have anticoagulant property. In this study, the coagulation factor XIIa activity in the presence of VITPOR AI was determined. Molecular modelling was performed to investigate the interaction between peptide and FXIIa. The structure of the peptide was predicted using PEP-FOLD3 server and simulated by molecular dynamics (MD) using GROMACS package. Molecular docking was carried out using peptide-protein docking software, pepATTRACT and its stability was confirmed by MD simulations. The chromogenic substrate assay revealed that the peptide inhibited the amidolytic activity of FXIIa with IC50 of 70.24 µM. The docking result showed peptide interactions through hydrogen bonds with Pro 96, Tyr 99, Glu 146, Gly 193 and Ser 195 of FXIIa. The MD simulation demonstrated that the peptide's binding with the FXIIa was stable as it did not move away from its binding region throughout the simulation period of 100 ns Moreover, MM/PBSA analysis also indicated a stable binding between the protein and peptide. These results suggest that the inhibition of the FXIIa activity might be due to binding of the peptide to oxyanion hole of the catalytic site. Thus, VITPOR AI could be explored as a potent anticoagulant which inhibits only intrinsic pathway of coagulation cascade but does not affect the extrinsic pathway.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Fator XIIa/antagonistas & inibidores , Fator XIIa/química , Peptídeos/química , Peptídeos/farmacologia , Porphyra/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Extratos Vegetais , Relação Estrutura-Atividade
3.
Blood ; 133(10): 1152-1163, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30591525

RESUMO

The plasma proteins factor XII (FXII) and prekallikrein (PK) undergo reciprocal activation to the proteases FXIIa and kallikrein by a process that is enhanced by surfaces (contact activation) and regulated by the serpin C1 inhibitor. Kallikrein cleaves high-molecular-weight kininogen (HK), releasing the vasoactive peptide bradykinin. Patients with hereditary angioedema (HAE) experience episodes of soft tissue swelling as a consequence of unregulated kallikrein activity or increased prekallikrein activation. Although most HAE cases are caused by reduced plasma C1-inhibitor activity, HAE has been linked to lysine/arginine substitutions for Thr309 in FXII (FXII-Lys/Arg309). Here, we show that FXII-Lys/Arg309 is susceptible to cleavage after residue 309 by coagulation proteases (thrombin and FXIa), resulting in generation of a truncated form of FXII (δFXII). The catalytic efficiency of δFXII activation by kallikrein is 15-fold greater than for full-length FXII. The enhanced rate of reciprocal activation of PK and δFXII in human plasma and in mice appears to overwhelm the normal inhibitory function of C1 inhibitor, leading to increased HK cleavage. In mice given human FXII-Lys/Arg309, induction of thrombin generation by infusion of tissue factor results in enhanced HK cleavage as a consequence of δFXII formation. The effects of δFXII in vitro and in vivo are reproduced when wild-type FXII is bound by an antibody to the FXII heavy chain (HC; 15H8). The results contribute to our understanding of the predisposition of patients carrying FXII-Lys/Arg309 to angioedema after trauma, and reveal a regulatory function for the FXII HC that normally limits PK activation in plasma.


Assuntos
Fator XII/química , Fator XIa/química , Angioedema Hereditário Tipo III/sangue , Angioedema Hereditário Tipo III/genética , Angioedemas Hereditários , Animais , Arginina/química , Coagulação Sanguínea , Bradicinina/sangue , Catálise , Proteína Inibidora do Complemento C1/química , Fator XIIa/química , Células HEK293 , Humanos , Cininogênios/sangue , Lisina/química , Camundongos , Camundongos Endogâmicos C57BL , Calicreína Plasmática/química , Pré-Calicreína/química , Ligação Proteica , Proteínas Recombinantes/química , Propriedades de Superfície , Trombina/genética
4.
Glycobiology ; 28(10): 754-764, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016441

RESUMO

Plasma contact system is the initial part of both the intrinsic coagulation pathway and kallikrein-kinin pathway, which mainly involves three proteins: coagulation factor XII (FXII), prekallikrein (PK) and high-molecular weight kininogen. Fucosylated chondroitin sulfate (FCS) is a unique sulfated glycosaminoglycan (GAG) composed of a chondroitin sulfate-like backbone and sulfated fucose branches. The native FCS was preliminary found to cause undesired activation of the plasma contact system. How this unusual GAG functions in this process remains to be clarified. Herein, the relationship between its structure, plasma contact activation and its effects on the PK-FXII reciprocal activation loop were studied. The recalcification time assay indicated that the FCS at high concentration could be procoagulant which may be attributed to its contact activation activity. The structure-activity relationship study indicated that its high molecular weight and distinct fucose side chains are required for contact activation by FCS, although the sulfate substitution types of its side chains have less impact. In human plasma, the native FCSs potently induced FXII-dependent contact activation. However, in purified systems FCS did not significantly activate FXII per se or induce its autoactivation, whereas FCS significantly promoted the activation of PK by factor XIIa. Polysaccharide-protein interaction assays showed that FCS bound to PK with higher affinity than other contact system proteins. These data suggested that potent contact activation by FCS requires the positive feedback loop between PK and FXII. These findings contribute to better understanding of contact activation by complex GAG.


Assuntos
Sulfatos de Condroitina/sangue , Sulfatos de Condroitina/metabolismo , Fator XIIa/metabolismo , Cininogênios/metabolismo , Pré-Calicreína/metabolismo , Sulfatos de Condroitina/química , Fator XIIa/química , Humanos , Cininogênios/química , Pré-Calicreína/química , Relação Estrutura-Atividade
5.
Thromb Haemost ; 110(3): 399-407, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846131

RESUMO

Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein (PK) and circulates in plasma bound to high molecular weight kininogen. The zymogen is converted to PK by activated factor XII. PK drives multiple proteolytic reaction cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system and the alternative complement pathway. Here, we review the biochemistry and cell biology of PK and focus on recent in vivo studies that have established important functions of the protease in procoagulant and proinflammatory disease states. Targeting PK offers novel strategies not previously appreciated to interfere with thrombosis and vascular inflammation in a broad variety of diseases.


Assuntos
Bradicinina/metabolismo , Calicreína Plasmática/metabolismo , Animais , Aprotinina/química , Coagulação Sanguínea , Hemorragia Cerebral/metabolismo , Proteínas do Sistema Complemento , Cisteína/química , Retinopatia Diabética/metabolismo , Dissulfetos/química , Fator XIIa/química , Fibrinólise , Hemostasia , Humanos , Inflamação , Sistema Calicreína-Cinina , Calicreínas/química , Cininas/química , Camundongos , Oligonucleotídeos Antissenso/química , Peptídeos/química , Estrutura Terciária de Proteína , Proteólise , Sistema Renina-Angiotensina , Transdução de Sinais , Trombose/metabolismo , Tripsina/química
6.
Thromb Haemost ; 110(3): 423-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23494059

RESUMO

The kallikrein kinin system (KKS) consists of serine proteases involved in the production of peptides called kinins, principally bradykinin and Lys-bradykinin (kallidin). The KKS contributes to a variety of physiological processes including inflammation, blood pressure control and coagulation. Here we review the protein structural data available for these serine proteases and examine the molecular mechanisms of zymogen activation and substrate recognition focusing on plasma kallikrein (PK) and tissue kallikrein (KLK1) cleavage of kininogens. PK circulates as a zymogen bound to high-molecular-weight kininogen (HK). PK is activated by coagulation factor XIIa and then cleaves HK to generate bradykinin and factor XII to generate further XIIa.A structure has been described for the activated PK protease domain in complex with the inhibitor benzamidine. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and the central nervous system.They cleave a wide variety of substrates including low-molecular-weight kininogen (LK) and matrix proteins. Crystal structures are available for KLK1, 3, 4, 5, 6 and 7 activated protease domains typically in complex with S1 pocket inhibitors. A substrate mimetic complex is described for KLK3 which provides insight into substrate recognition. A zymogen crystal structure determined for KLK6 reveals a closed S1 pocket and a novel mechanism of zymogen activation. Overall these structures have proved highly informative in understanding the molecular mechanisms of the KKS and provide templates to design inhibitors for treatment of a variety of diseases.


Assuntos
Calicreína Plasmática/química , Calicreínas Teciduais/química , Sequência de Aminoácidos , Animais , Pressão Sanguínea , Catálise , Domínio Catalítico , Precursores Enzimáticos/química , Fator XIIa/química , Humanos , Inflamação , Sistema Calicreína-Cinina , Cininogênios/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Homologia de Sequência de Aminoácidos , Serina Proteases/química , Especificidade por Substrato
7.
Biochemistry ; 46(50): 14450-60, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18020374

RESUMO

The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.


Assuntos
Plaquetas/metabolismo , Fator XIa/química , Fator XIa/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Linhagem Celular , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Ensaio de Imunoadsorção Enzimática , Fator XI/química , Fator XI/genética , Fator XI/metabolismo , Fator XIIa/química , Fator XIIa/genética , Fator XIIa/metabolismo , Fator XIa/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pré-Calicreína/química , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 280(41): 34661-6, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16096270

RESUMO

Proteases function at every level in host defense, from regulating vascular hemostasis and inflammation to mobilizing the "rapid responder" leukocytes of the immune system by regulating the activities of various chemoattractants. Recent studies implicate proteolysis in the activation of a ubiquitous plasma chemoattractant, chemerin, a ligand for the G-protein-coupled receptor CMKLR1 present on plasmacytoid dendritic cells and macrophages. To define the pathophysiologic triggers of chemerin activity, we evaluated the ability of serum- and inflammation-associated proteases to cleave chemerin and stimulate CMKLR1-mediated chemotaxis. We showed that serine proteases factor XIIa and plasmin of the coagulation and fibrinolytic cascades, elastase and cathepsin G released from activated neutrophil granules and mast cell tryptase are all potent activators of chemerin. Activation results from cleavage of the labile carboxyl terminus of the chemoattractant at any of several different sites. Activation of chemerin by the serine protease cascades that trigger rapid defenses in the body may direct CMKLR1-positive plasmacytoid dendritic cell and tissue macrophage recruitment to sterile sites of tissue damage, as well as trafficking to sites of infectious and allergic inflammation.


Assuntos
Quimiocinas/química , Serina Endopeptidases/química , Sequência de Aminoácidos , Baculoviridae/genética , Sítios de Ligação , Catepsina G , Catepsinas/química , Catepsinas/farmacologia , Quimiotaxia , Meios de Cultivo Condicionados/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Células Dendríticas/citologia , Escherichia coli/metabolismo , Fator XIIa/química , Fibrinolisina/química , Fibrinolisina/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Mastócitos/citologia , Modelos Biológicos , Dados de Sequência Molecular , Neutrófilos/metabolismo , Elastase Pancreática/química , Elastase Pancreática/metabolismo , Plasmocitoma/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Serina Endopeptidases/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Transfecção , Tripsina/química , Triptases
9.
J Biol Chem ; 278(38): 36341-9, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12815039

RESUMO

Hepatocyte growth factor activator inhibitor-1 (HAI-1) is an integral membrane protein expressed on epithelial cells and contains two extracellular Kunitz domains (N-terminal KD1 and C-terminal KD2) known to inhibit trypsin-like serine proteases. In tumorigenesis and tissue regeneration, HAI-1 regulates the hepatocyte growth factor (HGF)/c-Met pathway by inhibiting the activity of HGF activator (HGFA) and matriptase, two serine proteases that convert pro-HGF into its biologically active form. By screening a placental cDNA library, we discovered a new splice variant of HAI-1 designated HAI-1B that contains an extra 16 amino acids adjacent to the C terminus of KD1. To investigate possible consequences on Kunitz domain function, a soluble form of HAI-1B (sHAI-1B) comprising the entire extracellular domain was produced. First, we found that sHAI-1B displayed remarkable enzyme specificity by potently inhibiting only HGFA (IC50 = 30.5 nm), matriptase (IC50 = 16.5 nm), and trypsin (IC50 = 2.4 nm) among 16 serine proteases examined, including plasminogen activators (urokinase- and tissue-type plasminogen activators), coagulation enzymes thrombin, factors VIIa, Xa, XIa, and XIIa, and activated protein C. Relatively weak inhibition was found for plasmin (IC50 = 399 nm) and plasma kallikrein (IC50 = 686 nm). Second, the functions of the KD1 and KD2 domains in sHAI-1B were investigated using P1 residue-directed mutagenesis to show that inhibition of HGFA, matriptase, trypsin, and plasmin was due to KD1 and not KD2. Furthermore, analysis by reverse transcription-PCR demonstrated that HAI-1B and HAI-1 were co-expressed in normal tissues and various epithelial-derived cancer cell lines. Both isoforms were up-regulated in eight examined ovarian carcinoma specimens, three of which had higher levels of HAI-1B RNA than of HAI-1 RNA. Therefore, previously demonstrated roles of HAI-1 in various physiological and pathological processes likely involve both HAI-1B and HAI-1.


Assuntos
Processamento Alternativo , Endopeptidases/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Alanina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Clonagem Molecular , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Éxons , Fator VIIa/química , Fator XIIa/química , Fator XIa/química , Fator Xa/química , Feminino , Fibrinolisina/química , Biblioteca Gênica , Humanos , Concentração Inibidora 50 , Íntrons , Glicoproteínas de Membrana/biossíntese , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Neoplasias Ovarianas/metabolismo , Calicreína Plasmática/química , Plasmídeos/metabolismo , Ativadores de Plasminogênio/química , Proteína C/química , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Secretadas Inibidoras de Proteinases , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Distribuição Tecidual , Tripsina/química , Tripsina/metabolismo , Tripsina/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA