Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.128
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Life Sci ; 347: 122617, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608835

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Assuntos
Plaquetas , Traumatismo por Reperfusão Miocárdica , Fator de Ativação de Plaquetas , Fator de Crescimento Derivado de Plaquetas , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Plaquetas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia
2.
Front Biosci (Landmark Ed) ; 29(4): 159, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682205

RESUMO

OBJECTIVE: The effect of the daily consumption of a low-fat yogurt (150 g) enriched with Platelet-Activating Factor receptor (PAF-R) antagonists, or the plain one, on gut microbiota and faecal metabolites was investigated in healthy overweight subjects. METHODS: A randomized, three-arm, double-blind, placebo-controlled, parallel-group study was performed that lasted 8 weeks. Blood and stools were collected and analyzed before and after the intervention. RESULTS: Our findings revealed that the intake of the enriched yogurt resulted in a significant increase in the levels of Bifidobacterium spp., Clostridium perfringens group and Firmicutes-to-Bacteroidetes (F/B) ratio. On the other hand, a significant increase in the levels of Lactobacillus and C. perfringens group was detected after the intake of the plain yogurt. The increase in the levels of C. perfringens group was inversely associated with the plasma catabolic enzyme of PAF, namely LpPLA2 (lipoprotein-associated phospholipase A2), a cardiovascular risk marker that has been linked with inflammation and atherosclerosis. Moreover, in the enriched with PAF-R antagonists yogurt group, the increased levels of C. perfringens group were also associated with lower PAF action assessed as ex vivo human platelet-rich plasma (PRP) aggregation. Additionally, a higher % increase in molar ratio of Branched Short Chain Fatty Acids (BSCFAs) was detected for both yogurt groups after the 8 week-intervention compared to control. The consumption of the enriched yogurt also resulted in a significant drop in faecal caproic levels and a trend for lower ratio of butyrate to total volatile fatty acids (VFAs) compared to baseline levels. CONCLUSION: Yogurt consumption seems to favorably affect gut microbiota while its enrichment with PAF-R antagonists from olive oil by-products, may provide further benefits in healthy overweight subjects. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT02259205).


Assuntos
Fezes , Microbioma Gastrointestinal , Azeite de Oliva , Sobrepeso , Fator de Ativação de Plaquetas , Iogurte , Humanos , Iogurte/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Sobrepeso/metabolismo , Sobrepeso/microbiologia , Sobrepeso/dietoterapia , Fezes/microbiologia , Fezes/química , Masculino , Feminino , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Fator de Ativação de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores
3.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
4.
Am J Pathol ; 194(6): 862-878, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38403163

RESUMO

Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.


Assuntos
Inflamação , Fator de Ativação de Plaquetas , Nascimento Prematuro , Humanos , Fator de Ativação de Plaquetas/metabolismo , Feminino , Gravidez , Animais , Inflamação/metabolismo , Inflamação/patologia , Nascimento Prematuro/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Trabalho de Parto Prematuro/metabolismo
5.
Toxicon ; 240: 107640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325757

RESUMO

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Assuntos
Capsicum , Fator de Ativação de Plaquetas/análogos & derivados , Animais , Galinhas , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Pós/farmacologia , Citocinas , Adipocinas/farmacologia , Fígado , Suplementos Nutricionais , Imunoglobulinas , Carne , Ração Animal/análise
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396790

RESUMO

Platelet-activating factor (PAF) is a phospholipid-derived inflammatory mediator that triggers various inflammatory conditions, including eosinophil activation and recruitment. This study aimed to evaluate the expressions of PAF-metabolism-associated genes, namely genes coding the enzymes involved in PAF synthesis (LPCAT1, LPCAT2, LPCAT3, and LPCAT4), PAF degradation (PAFAH1B2, PAFAH1B3, and PAFAH2), and the gene for the PAF receptor (PTAFR) in subtypes of CRSwNP classified by clinical- or hierarchal-analysis-based classifications. Transcriptomic analysis using bulk RNA barcoding and sequencing (BRB-seq) was performed with CRSwNP, including eosinophilic CRS (ECRS) (n = 9), nonECRS (n = 8), ECRS with aspirin-exacerbated respiratory disease (Asp) (n = 3), and controls with a normal uncinate process mucosa (n = 6). PTAFR was only upregulated in ECRS and nonECRS. In the hierarchical cluster analysis with clusters 1 and 2 reflecting patients with low-to-moderate and high levels of type 2 inflammation, respectively, cluster 1 exhibited a significant downregulation of LPCAT2 and an upregulation of PTAFR expression, while cluster 2 showed an upregulation of LPCAT1, PAFAH1B2, and PTAFR and downregulation of PAFAH2 expression. Understanding this strong PAF-associated pathophysiology in the severe type 2 inflammation group could provide valuable insights into the treatment and management of CRSwNP.


Assuntos
Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Rinite/patologia , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/metabolismo , Mucosa Nasal/metabolismo , RNA/metabolismo , Pólipos Nasais/patologia , Sinusite/metabolismo , Inflamação/metabolismo , Doença Crônica , Análise por Conglomerados , Eosinófilos/metabolismo
7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003333

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Voluntários Saudáveis , Cromatografia Líquida , Projetos Piloto , Espectrometria de Massas em Tandem , Inflamação , Fator de Ativação de Plaquetas , Mediadores da Inflamação
8.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836742

RESUMO

Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 µM and 0.46 µM, respectively. Within the series, complex (5) was less effective (IC50 = 39 µM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.


Assuntos
Antineoplásicos , Complexos de Coordenação , Elementos de Transição , Animais , Humanos , Coelhos , Agregação Plaquetária , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Plaquetas/metabolismo , Trombina/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Ligantes , Mediadores da Inflamação/metabolismo , Dimetil Sulfóxido/farmacologia , Quinoxalinas/farmacologia , Células HEK293 , Células HeLa , Antineoplásicos/farmacologia , Elementos de Transição/metabolismo
9.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533081

RESUMO

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Sepse , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Lesão Pulmonar/metabolismo , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , Macrófagos , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia
10.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867447

RESUMO

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Camundongos Knockout , Endotélio/metabolismo , Permeabilidade Capilar , Endotélio Vascular/metabolismo
11.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838847

RESUMO

Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs). Herein, the synthesis and biological investigation of a series of organometallic tin(II) and tin(IV) complexes, featuring the oxygen tripodal Kläui ligands [(η5-C5R5)Co{P(OEt)2O}3]-, {R = H, (LOEt-); Me (L*OEt-)}, are reported. Reaction of NaLOEt (1a) and NaL*OEt (1b) with SnCl2, yielded the rare four-coordinate LOEtSnCl (2a) and L*OEtSnCl (2b) complexes. Accordingly, LOEtSnPh3 (3a) and L*OEtSnPh3 (3b) were prepared, starting from Ph3SnCl. Characterization includes spectroscopy and X-ray diffraction studies for 2a, 2b and 3b. The antiplatelet activity of the lead complexes 2b and 3a (IC50 = 0.5 µΜ) is superior compared to that of 1a and 1b, while both complexes display a pronounced inhibitory activity against thrombin (IC50 = 1.8 µM and 0.6 µM). The in vitro cytotoxic activities of 3a and 2b on human Jurkat T lymphoblastic tumor cell line is higher than that of cisplatin.


Assuntos
Antineoplásicos , Trombina , Animais , Humanos , Coelhos , Ligantes , Estanho , Fator de Ativação de Plaquetas , Oxigênio/química
12.
Tumour Biol ; 45(1): 1-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36806529

RESUMO

BACKGROUND: Smoking is one of the most popular risk factors provoking bladder cancer (BC). This research intended to estimate cigarette smoking effect involving PAF signs between smoking patients with BC and non-smoking patients with same diagnosis to define relations with pathological characteristics and their prognosis on zero-relapse and disease-associated recovery. METHODS: Two groups of smokers (n = 54) and non-smokers (n = 62) were selected. Both cohorts of patients had BC. They were evaluated utilizing NGS on 9 cancer-related genes and confirmed through the Sanger DNA sequencing and histopathological tests based on H&E staining. The factor of smoking and impact of PAF development by ELISA assay and PAF-R manifestation in terms of immunochemical evaluation on BC areas comparing to a control group (n = 30) was examined involving healthy contributors, including the use of well-designed statistical trials. RESULTS: The multivariate evaluation showed considerable rise in mutation patterns related to smoking among BC patients (group 3), increase in PAF development (***P<0.001) and vivid signs of PAF-R contrasted to non-smokers with BC (group 2) and control group (group 1). All the identified biological changes (gains/losses) were recorded at the same locations in both groups. Patients from group 3 held 3-4 various mutations, while patients from group 2 held 1-3 various mutations. Mutations were not identified in 30 respondents from control group. The most repeated mutations were identified in 3 of 9 examined genes, namely TP53, PIK3CA and PTEN, with highest rates of increase in Group 3. Moreover, histopathological tests revealed barely identifiable and abnormal traits in BC tissues, i.e. were without essential histopathological changes between groups 2 and 3. CONCLUSION: Smoking of cigarettes provokes PAF development due to urothelial inflammation and rise of mutations in 9 cancer-related genes. These are indicative factors of inducing BC.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Masculino , Mutação , não Fumantes , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Fator de Ativação de Plaquetas/metabolismo
13.
J Ethnopharmacol ; 303: 116003, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464074

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Allergy is mediated by the crosslinking of immunoglobulins (Ig) -E or -G to their respective receptors, which degranulates mast cells, macrophages, basophils, or neutrophils, releasing allergy-causing mediators. The removal of these mediators such as histamine, platelet-activating factor (PAF) and interleukins (ILs) released by effector cells will alleviate allergy. Clinacanthus nutans (C. nutans), an herbal plant in Southeast Asia, is used traditionally to treat skin rash, an allergic symptom. Previously, we have reported that C. nutans aqueous leaves extract (CNAE) was able to suppress the release of ß-hexosaminidase and histamine but not interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in the IgE-induced mast cell degranulation model at 5 mg/mL and above. We also found that CNAE could protect rats against ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) through the downregulation and upregulation of certain metabolites using proton nuclear magnetic resonance (1H-NMR) metabolomics approach. AIM OF THE STUDY: As allergy could be mediated by both IgE and IgG, we further evaluated the anti-allergy potential of CNAE in both in vitro model of IgG-induced macrophage activation and in vivo anaphylaxis models to further dissect the mechanism of action underlying the anti-allergic properties of CNAE. MATERIAL & METHODS: The anti-allergy potential of CNAE was evaluated in in vivo anaphylaxis models of ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) and IgE-challenged passive systemic anaphylaxis (PSA) using Sprague Dawley rats as well as IgG-challenged passive systemic anaphylaxis (IgG-PSA) using C57BL/6 mice. Meanwhile, in vitro model of IgG-induced macrophage activation model was performed using IC-21 macrophages. The release of soluble mediators from both IgE and IgG-mediated pathways were measured using enzyme-linked immunosorbent assay (ELISA). The signaling molecules targeted by CNAE were identified by performing Western blot. RESULTS: IgG, platelet-activating factor (PAF) and IL-6 was suppressed by CNAE in OVA-ASA, but not IgE. In addition, CNAE significantly suppressed PAF and IL-6 in IgG-PSA but did not suppress histamine, IL-4 and leukotrienes C4 (LTC4) in IgE-PSA. CNAE also inhibited IL-6 and TNF-α by inhibiting the phosphorylation of ERK1/2 in the IgG-induced macrophage activation model. CONCLUSION: Overall, our findings supported that CNAE exerts its anti-allergic properties by suppressing the IgG pathway and its mediators by inhibiting ERK1/2 phosphorylation, thus providing scientific evidence supporting its traditional use in managing allergy.


Assuntos
Anafilaxia , Antialérgicos , Camundongos , Ratos , Animais , Anafilaxia/etiologia , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Interleucina-4/metabolismo , Ratos Sprague-Dawley , Histamina/metabolismo , Ovalbumina , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Imunoglobulina E/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/uso terapêutico , Imunoglobulina G , Mastócitos
14.
Biofactors ; 48(6): 1295-1304, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36504167

RESUMO

Chemotherapy has remained the mainstay for the treatment of multiple types of cancers. In particular, topical use of chemotherapy has been used for skin cancers. Though effective, topical chemotherapy has been limited due to adverse effects such as local and even systemic toxicities. Our recent studies demonstrated that exposure to pro-oxidative stressors, including therapeutic agents induces the generation of extracellular vesicles known as microvesicle particles (MVP) which are dependent on activation of the Platelet-activating factor-receptor (PAFR), a G-protein coupled receptor present on various cell types, and acid sphingomyelinase (aSMase), an enzyme required for MVP biogenesis. Based upon this premise, we tested the hypothesis that topical application of gemcitabine will induce MVP generation in human and murine skin. Our ex vivo studies using human skin explants demonstrate that gemcitabine treatment results in MVP generation in a dose-dependent manner in a process blocked by PAFR antagonist and aSMase inhibitor. Importantly, gemcitabine-induced MVPs carry PAFR agonists. To confirm the mechanisms, we employed PAFR-expressing and deficient (Ptafr-/- ) mouse models as well as mice deficient in aSMase enzyme (Spmd1-/- ). Similar to the findings using pharmacologic tools, genetic-based approaches demonstrate that gemcitabine-induced MVP release in WT mice was blunted in Ptafr-/- and Spmd1-/- mice. These findings demonstrate a novel mechanism by which local chemotherapy can generate bioactive components as a bystander effect in a process that is dependent upon the PAFR-aSMase pathway.


Assuntos
Gencitabina , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Pele/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Cutâneas/metabolismo , Fator de Ativação de Plaquetas/metabolismo
15.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543377

RESUMO

BACKGROUND: With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency. However, the mechanisms and factors that can potentially influence the incidence and severity of anaphylaxis in patients with cancer remain unclear. METHODS: Healthy, murine colon 26, CT26, breast 4T1, EMT6, and renal RENCA tumor-bearing mice were treated with an anti-PD-L1 antibody (clone 10F.9G2). Symptoms of anaphylaxis were evaluated along with body temperature and mortality. The amounts of antidrug antibody and platelet-activating factor (PAF) in the blood were quantified via ELISA and liquid chromatography-mass spectrometry (LC-MS/MS). Immune cells were analyzed and isolated using a flow cytometer and magnetic-activated cell sorting, respectively. RESULTS: Repeated administration of the anti-PD-L1 antibody 10F.9G2 to tumor-bearing mice caused fatal anaphylaxis, depending on the type of tumor model. After administration, antidrug immunoglobulin G (IgG), but not IgE antibodies, were produced, and PAF was released as a chemical mediator during anaphylaxis, indicating that anaphylaxis was caused by an IgG-dependent pathway. Anaphylaxis induced by 10F.9G2 was treated with a PAF receptor antagonist. We identified that neutrophils and macrophages were PAF-producing effector cells during anaphylaxis, and the tumor-bearing models with increased numbers of neutrophils and macrophages showed lethal anaphylaxis after treatment with 10F.9G2. Depletion of both neutrophils and macrophages using clodronate liposomes prevented anaphylaxis in tumor-bearing mice. CONCLUSIONS: Thus, increased numbers of neutrophils and macrophages associated with cancer progression may be risk factors for anaphylaxis. These findings may provide useful insights into the mechanism of anaphylaxis following the administration of immune checkpoint inhibitors in human subjects.


Assuntos
Anafilaxia , Neoplasias , Camundongos , Humanos , Animais , Imunoglobulina G , Anafilaxia/induzido quimicamente , Anafilaxia/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Neutrófilos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Macrófagos , Fator de Ativação de Plaquetas/efeitos adversos , Fator de Ativação de Plaquetas/metabolismo , Neoplasias/metabolismo
16.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297097

RESUMO

Platelet-activating factor (PAF) is a lipid mediator that interacts with its receptor (PAF-R) to carry out cell signalling. However, under certain conditions the binding of PAF to PAF-R leads to the activation of pro-inflammatory and prothrombotic pathways that have been implicated in the onset and development of atherosclerotic cardiovascular diseases (CVD) and inflammatory diseases. Over the past four decades, research has focused on the identification and development of PAF-R antagonists that target these inflammatory diseases. Research has also shown that dietary factors such as polar lipids, polyphenols, and other nutrient constituents may affect PAF metabolism and PAF-R function through various mechanisms. In this review we focus on the inhibition of PAF-R and how this may contribute to reducing cardiovascular disease risk. We conclude that further development of PAF-R inhibitors and human studies are required to investigate how modulation of the PAF-R may prevent the development of atherosclerotic cardiovascular disease and may lead to the development of novel therapeutics.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Nutrientes
17.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077027

RESUMO

Chronic spontaneous urticaria (CSU) is a skin disease characterized by the presence of wheals, angioedema, or both for at least 6 weeks. Although, CSU is often regarded as autoimmune in nature, its etiology is not fully explained and interactions between various small molecules are still taken under account. The aim of this research was to investigate the mean serum concentration of vascular endothelial growth factor (VEGF), platelet activating factor (PAF), and eosinophil-derived neurotoxin (EDN) in relation to the disease activity and pruritus intensity in adult patients with CSU. Fifteen patients with CSU and 15 healthy subjects participated in this pilot study. Blood samples were taken to examine the mean serum levels of VEGF, PAF, and EDN by the enzyme-linked immunosorbent assay test (ELISA). The Urticaria Activity Score (UAS7) and The Visual Analogue Scale (VAS) were used to assess the disease activity and the pruritus intensity, respectively. Obtained results revealed that VEGF, PAF, and EDN concentrations were higher in patients with CSU compared with those of the control group, but only for VEGF it was statistically significant (p = 0.008). However, levels of all investigated cytokines were not significantly correlated neither with the disease activity nor with the pruritus intensity. Our results showed higher serum levels of VEGF, PAF, and EDN among CSU patients which may highlight a functional role of these cytokines in the disease's pathogenesis. In contrast, VEGF, PAF, or EDN might not be useful to reflect the severity of symptoms.


Assuntos
Urticária Crônica , Urticária , Adulto , Doença Crônica , Citocinas , Neurotoxina Derivada de Eosinófilo , Humanos , Projetos Piloto , Fator de Ativação de Plaquetas , Prurido , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Biofactors ; 48(6): 1189-1202, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029481

RESUMO

Platelet-activating factor (PAF) is a phospholipid-derived mediator with an established role in multiple inflammatory states. PAF is synthesized and secreted by multiple cell types and is then rapidly hydrolyzed and degraded to an inactive metabolite, lyso-PAF, by the enzyme PAF acetylhydrolase. In addition to its role in platelet aggregation and activation, PAF contributes to allergic and nonallergic inflammatory diseases such as anaphylaxis, sepsis, cardiovascular disease, neurological disease, and malignancy as demonstrated in multiple animal models and, increasingly, in human disease states. Recent research has demonstrated the importance of the PAF pathway in multiple conditions including the prediction of severe pediatric anaphylaxis, effects on blood-brain barrier permeability, effects on reproduction, ocular diseases, and further understanding of its role in cardiovascular risk. Investigation of PAF as both a biomarker and a therapeutic target continues because of the need for directed management of inflammation. Collectively, studies have shown that therapies focused on the PAF pathway have the potential to provide targeted and effective treatments for multiple inflammatory conditions.


Assuntos
Anafilaxia , Fator de Ativação de Plaquetas , Animais , Humanos , Criança , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Inflamação/genética
19.
Eur J Med Chem ; 242: 114681, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001936

RESUMO

Thrombin is the most potent platelet aggregator. To discover the selective inhibitor of thrombin that is important to curing platelet aggregation-related diseases, docking experiments were performed to dock (1R,3S)-2,3,4,9-tetrahydro-ß-carboline-3- carboxylic acid, [(1R,3S)-THCCA], and (1S,3S)-2,3,4,9-tetrahydro-ß-carboline-3- carboxylic acid, [(1S,3S)-THCCA], into the p pocket of bovine thrombin. The ideal match supported that (1R,3S)-THCCA could be used as a potential lead compound. In this case 20 natural amino acids were theoretically introduced into the 3-carboxyl of (1R,3S)-THCCA and 20 derivatives, (1R,3S)-THCCA-amino acids, were docked into p pocket of bovine thrombin to perform virtual screening. The screening revealed that comparing to (1R,3S)-THCCA itself the DockScores of 16 derivatives were higher, and (1R,3S)-THCCA-Asn (4j) got the highest DockScore. Thus, 16 derivatives were synthesized for experimental study. The in vitro anti-platelet aggregation assay showed that at 100 µM of concentration the 16 derivatives failed to inhibit the platelet aggregation induced by both adenosine diphosphate and arachidonic acid. On the other hand, however, the IC50 value of the 16 derivatives inhibiting the platelet aggregation induced by platelet activating factor and thrombin ranged from 9.44 µM to 194.64 µM and from 0.07 µM to 9.56 µM, respectively. The in vitro anti-platelet aggregation assay suggested that the 16 derivatives selectively inhibited the platelet aggregation induced by thrombin. In particular, the IC50 of (1R,3S)-THCCA-Asn (4j) had the lowest value. On rat model at 1 nmol/kg of dosage the 16 derivatives effectively prevented thrombus formation. It is worth pointing out that even at 0.01 nmol/kg of dosage, 4j still effectively prevented thrombus formation. 4j hardly has effects on the proliferation of mammalian cells and rat tail bleeding time. In conclusion, the combination of virtual screening and biological assays successfully lead to the discovery of 4j as a promising candidate of selective inhibitor of thrombin.


Assuntos
Trombina , Trombose , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Aminoácidos/química , Animais , Ácidos Araquidônicos , Bioensaio , Plaquetas , Ácidos Carboxílicos/farmacologia , Bovinos , Mamíferos , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/química , Ratos , Trombina/metabolismo , Trombose/metabolismo
20.
Front Immunol ; 13: 923265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833146

RESUMO

Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.


Assuntos
Hipersensibilidade , Mastócitos , Eicosanoides/metabolismo , Humanos , Fosfolipases A2/metabolismo , Fator de Ativação de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA