Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885716

RESUMO

Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.


Assuntos
Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Compostos Heterocíclicos/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Produtos Biológicos/química , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/genética , Compostos Heterocíclicos/química , Humanos , Neoplasias/genética , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/genética , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/genética , Timidina Fosforilase/antagonistas & inibidores , Timidina Fosforilase/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
2.
Invest New Drugs ; 39(1): 240-250, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32648119

RESUMO

To enhance the potency of EGFR inhibitors, we developed a novel strategy that seeks to conjugate EGFR to a bioactive moiety leading to a molecule termed "combi-molecule". In order to mimic the penetration of this type of molecules, based upon previously reported structure activity relationship studies, we designed a new molecule containing a quinazoline moiety tethered to a p-nitrobenzoxadiazole (NBD) moiety [molecular weight (MW) 700]. Despite its size, AL906 growth inhibitory activity was superior to that of the clinical drug gefitinib. Furthermore, AL906 retained significant EGFR inhibitory activity and good cellular penetration with abundant distribution in the perinuclear region of the cells. In an isogenic NIH3T3 transfected cell panel, it selectively inhibited the growth  of the NIH3T3-EGFR and HER2 transfectants. Confocal microscopy analysis revealed that it was capable of penetrating multilayer aggregates although to a lesser extent than FD105, a small inhibitor of EGFR inhibitor of the same class (MW 300). Its ability to inhibit EGFR auto-phosphorylation in monolayer culture was stronger than in the aggregates. The results suggest that our strategy did not negatively affect EGFR inhibitory potency, EGFR selectivity and growth inhibition. However, its molecular size may account for its decreased aggregate penetration when compared with a smaller EGFR inhibitor of the quinazoline class.


Assuntos
Antineoplásicos/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fluorescência , Animais , Gefitinibe/farmacologia , Genes erbB-2/efeitos dos fármacos , Camundongos , Células NIH 3T3
3.
FASEB J ; 34(10): 13654-13670, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799354

RESUMO

To examine the influence of epidermal growth factor (EGF) and its receptor (EGFR) on axial ocular elongation, we intraocularly injected an EGF antibody and an EGFR antibody into young guinea pigs with lens-induced axial elongation (myopization). Mean axial elongation was reduced in the eyes injected with the EGF/EGFR-antibody compared with the contralateral control eyes injected with PBS (phosphate-buffered solution) (0.43 ± 0.13 mm vs 0.53 ± 0.13 mm; P < .001). The intereye difference in axial length increased (P = .005) as the doses of the EGF antibody and EGFR antibody increased. As a corollary, the thickness of the retina at the posterior pole was dose-dependently increased in the injected eyes compared to the contralateral control eyes. Immunohistochemical staining for EGF and the relative mRNA expression of EGF and EGFR were the highest in eyes not injected with the EGF antibody or EGFR antibody and decreased (P < .05) as the dose of EGF antibody or EGFR antibody increased. In an in vitro study, EGF had a stimulating effect and the EGF antibody had an inhibitory effect on the proliferation and migration of RPE cells. The findings showed that the intravitreal application of an EGF antibody and EGFR antibody is associated with a dose-dependent reduction in lens-induced axial elongation in young guinea pigs. The EGFR family may play a role in axial elongation of the eye and in the development of myopia.


Assuntos
Comprimento Axial do Olho/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Miopia/metabolismo , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Comprimento Axial do Olho/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Cobaias , Humanos , Injeções Intravítreas , Miopia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia
4.
Development ; 147(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439759

RESUMO

The anchor cell (AC) in C. elegans secretes an epidermal growth factor (EGF) homolog that induces adjacent vulval precursor cells (VPCs) to differentiate. The EGF receptor in the nearest VPC sequesters the limiting EGF amounts released by the AC to prevent EGF from spreading to distal VPCs. Here, we show that not only EGFR localization in the VPCs but also EGF polarity in the AC is necessary for robust fate specification. The AC secretes EGF in a directional manner towards the nearest VPC. Loss of AC polarity causes signal spreading and, when combined with MAPK pathway hyperactivation, the ectopic induction of distal VPCs. In a screen for genes preventing distal VPC induction, we identified sra-9 and nlp-26 as genes specifically required for polarized EGF secretion. sra-9(lf) and nlp-26(lf) mutants exhibit errors in vulval fate specification, reduced precision in VPC to AC alignment and increased variability in MAPK activation. sra-9 encodes a seven-pass transmembrane receptor acting in the AC and nlp-26 a neuropeptide-like protein expressed in the VPCs. SRA-9 and NLP-26 may transduce a feedback signal to channel EGF secretion towards the nearest VPC.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Vulva/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Receptores ErbB/metabolismo , Feminino , Edição de Genes , Larva/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese , Netrinas/genética , Netrinas/metabolismo , Interferência de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Vulva/citologia , Vulva/crescimento & desenvolvimento , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
5.
PLoS One ; 15(4): e0231466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298294

RESUMO

DaHuangWan (DHW) is a traditional herbal medicine used by Mongolian to treat liver cancer for many years. Clinical application of the drug has been shown to help control tumor progression, prolong survival and improve quality of life. However, the underlying mechanisms and side effects of this drug remain unclear, which greatly limits the clinical application and further optimization of DHW. In this study, we found that DHW inhibits the proliferation of hepatoma cells by modulating the epithelial growth factor (EGF) signaling pathway. Berberine and Costunolide are the main active ingredients in DHW. Interestingly, the combination of Berberine and Costunolide has a dramatic synergistic effect on inhibiting the proliferation of hepatoma cells. Neither Berberine nor Costunolide directly block EGFR phosphorylation. Berberine promotes endocytosis of activated EGFR, while as Costunolide increases ubiquitination of EGFR and reduces EGFR recycling to cell membrane distribution, thereby inhibiting EGF signaling. Berberine and Costunolide target two different steps in regulating the EGF signaling, which explains the synergistic anti-cancer effect of DHW. Since Berberine and Costunolide do not directly target EGFR phosphorylation, DHW could be a supplementary medicine to tyrosine kinase inhibitors in cancer therapy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Fator de Crescimento Epidérmico/antagonistas & inibidores , Medicina Herbária/métodos , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional do Leste Asiático/métodos , Apoptose/efeitos dos fármacos , Berberina/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Mongólia , Plantas Medicinais , Sesquiterpenos/uso terapêutico
7.
Biol Pharm Bull ; 43(3): 399-403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115500

RESUMO

Immune checkpoint inhibitors (ICIs) exert beneficial effects in non-small cell lung cancer (NSCLC) patients. However, ICIs are only advantageous for a limited population of NSCLC patients. Therefore to enhance their effects, combination therapies with ICIs have been developed. To identify preferable chemotherapy to combine with ICIs against lung cancer, we examined immunological effects of docetaxel compared with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). We found no difference in peripheral lymphocyte counts and ratio of their subpopulations in lung cancer patients before and after both treatments. On the other hand, plasma levels of high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) protein, showed significant increase after docetaxel treatment. Furthermore, we investigated effects of HMGB1 on tumor-infiltrating immune cells obtained from surgically resected tumor tissue from NSCLC patients. When the tumor infiltrating cells were stimulated with HMGB1, CD11c+ cells showed increased expression of activation markers. These findings imply that docetaxel could be involved in anti-tumor immunity via HMGB1. Therefore docetaxel might be a candidate for combination treatment with ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Docetaxel/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Proteína HMGB1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Antineoplásicos , Antígenos CD11/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Terapia Combinada , Citocinas/metabolismo , Feminino , Proteína HMGB1/sangue , Humanos , Cadeias alfa de Integrinas/metabolismo , Masculino , Mutação , Proteínas Tirosina Quinases/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos
8.
J Med Chem ; 63(10): 5074-5088, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32027502

RESUMO

Membrane-bound mucins belong to a heterogeneous family of large O-glycoproteins involved in numerous cancers and inflammatory diseases of the epithelium. Some of them are also involved in protein-protein interactions, with receptor tyrosine kinase ErbB2, and fundamental and clinical data showed that these complexes have a detrimental impact on cancer outcome, thus raising interest in therapeutic targeting. This paper aims to demonstrate that MUC3, MUC4, MUC12, MUC13, and MUC17 have a common evolutionary origin and share a common structural organization with EGF-like and SEA domains. Theoretical structure-function relationship analysis of the conserved domains indicated that the studied membrane-bound mucins share common biological properties along with potential specific functions. Finally, the potential druggability of these complexes is discussed, revealing ErbB2-related pathways of cell signaling to be targeted.


Assuntos
Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Fator de Crescimento Epidérmico/metabolismo , Mucinas/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/química , Humanos , Mucinas/antagonistas & inibidores , Mucinas/química , Estrutura Secundária de Proteína , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Transdução de Sinais/fisiologia
9.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G375-G389, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31928220

RESUMO

Mixed acidic-alkaline refluxate is a major pathogenic factor in chronic esophagitis progressing to Barrett's esophagus (BE). We hypothesized that epidermal growth factor (EGF) can interact with COX-2 and peroxisome proliferator-activated receptor-γ (PPARγ) in rats surgically prepared with esophagogastroduodenal anastomosis (EGDA) with healthy or removed salivary glands to deplete salivary EGF. EGDA rats were treated with 1) vehicle, 2) EGF or PPARγ agonist pioglitazone with or without EGFR kinase inhibitor tyrphostin A46, EGF or PPARγ antagonist GW9662 respectively, 3) ranitidine or pantoprazole, and 4) the selective COX-2 inhibitor celecoxib combined with pioglitazone. At 3 mo, the esophageal damage and the esophageal blood flow (EBF) were determined, the mucosal expression of EGF, EGFR, COX-2, TNFα, and PPARγ mRNA and phospho-EGFR/EGFR protein was analyzed. All EGDA rats developed chronic esophagitis, esophageal ulcerations, and intestinal metaplasia followed by a fall in the EBF, an increase in the plasma of IL-1ß, TNFα, and mucosal PGE2 content, the overexpression of COX-2-, and EGF-EGFR mRNAs, and proteins, and these effects were aggravated by EGF and attenuated by pioglitazone. The rise in EGF and COX-2 mRNA was inhibited by pioglitazone but reversed by pioglitazone cotreated with GW9662. We conclude that 1) EGF can interact with PG/COX-2 and the PPARγ system in the mechanism of chronic esophagitis; 2) the deleterious effect of EGF involves an impairment of EBF and the overexpression of COX-2 and EGFR, and 3) agonists of PPARγ and inhibitors of EGFR may be useful in the treatment of chronic esophagitis progressing to BE.NEW & NOTEWORTHY Rats with EGDA exhibited chronic esophagitis accompanied by a fall in EBF and an increase in mucosal expression of mRNAs for EGF, COX-2, and TNFα, and these effects were exacerbated by exogenous EGF and reduced by removal of a major source of endogenous EGF with salivectomy or concurrent treatment with tyrphostin A46 or pioglitazone combined with EGF. Beneficial effects of salivectomy in an experimental model of BE were counteracted by PPARγ antagonist, whereas selective COX-2 inhibitor celecoxib synergistically with pioglitazone reduced severity of esophageal damage and protected esophageal mucosa from reflux. We propose the cross talk among EGF/EGFR, PG/COX-2, and proinflammatory cytokines with PPARγ pathway in the mechanism of pathogenesis of chronic esophagitis progressing to BE and EAC.


Assuntos
Esôfago de Barrett/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mucosa Esofágica/metabolismo , Esofagite/metabolismo , PPAR gama/metabolismo , Animais , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/patologia , Esofagite/tratamento farmacológico , Esofagite/genética , Esofagite/patologia , Interleucina-1beta/metabolismo , Masculino , PPAR gama/agonistas , PPAR gama/genética , Pioglitazona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Trends Pharmacol Sci ; 40(12): 941-955, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31706618

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors were among the first type of targeted agents discovered in cancer and currently constitute the standard of care for a wide range of lung and colon malignancies. However, the therapeutic progress achieved with these drugs has been accompanied by the identification of an ever-increasing number of acquired resistance mechanisms that inevitably appear in nearly all patients. Increased knowledge on EGFR biochemistry, cellular crosstalk, and resistance pathways provides an opportunity to establish effective combination therapies and discover novel-acting inhibitors that prevent or overcome therapeutic resistance. One such strategy is the selective blockade of circulating growth factors such as EGF. In this review, we address the uses and limitations of approved EGFR inhibitors and explore the potential of drug combinations and new third avenues to block the activation of the EGFR.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Ensaios Clínicos como Assunto , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Biomed Pharmacother ; 120: 109493, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586902

RESUMO

Afatinib (Afa), a second-generation irreversible epidermal growth factor inhibitor for the development of non-small cell lung cancer, has low bioavailability and adverse reactions. Nanoscaled drug delivery systems offer promising alternatives to address these defects and improve therapeutic outcomes. In the present study, a Tf contained, redox-sensitive ligand was synthesized and used for the preparation of afatinib loaded, Tf modified redox-sensitive lipid-polymer hybrid nanoparticles (Tf-SS-Afa-LPNs). Subsequently, studies of biological experiments in vitro and in vivo were performed to investigate the therapeutic effect of the system in lung cancer. The results showed that Tf-SS-Afa-LPNs has particle size of 103.5 ± 4.1 nm and zeta potential of -21.2 ± 2.4 mV. Significantly higher drug release was observed in the presence of glutathione (GSH). The area under the plasma concentration - time curve (AUC), peak concentration (Cmax) and terminal half life (T1/2) of Tf-SS-Afa-LPNs were 866.56 mg/L.h, 25.62 ± 3.21 L/kg/h, and 43.25 ± 2.31 h. Tf-SS-Afa-LPNs exhibited the most remarkable in vivo anti-tumor efficiency efficacy, which inhibited the tumor volume from 919 mm3 to 212 mm3. Tf-SS-Afa-LPNs is a promising platform for the lung cancer treatment.


Assuntos
Afatinib/administração & dosagem , Afatinib/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator de Crescimento Epidérmico/antagonistas & inibidores , Lipídeos/química , Nanopartículas/química , Afatinib/química , Afatinib/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Área Sob a Curva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Polimerase Dirigida por DNA , Sistemas de Liberação de Medicamentos , Feminino , Glutationa , Meia-Vida , Humanos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Oxirredução , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
12.
J Enzyme Inhib Med Chem ; 34(1): 1233-1246, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31286784

RESUMO

Neratinib is an oral pan HER inhibitor, that irreversibly inhibits EGFR and HER2 and was proven to be effective against multiple EGFR mutations. In previous study, we reported spiro [indoline-3, 4'-piperidine]-2-ones as anticancer agents. In this study, we designed aminopyridine-containing spiro [indoline-3,4'-piperidine] derivatives A1-A4 using Neratinib and spiro [indoline-3, 4'-piperidine]-2-one compound patented as lead structure, then replaced piperidine with cyclopropane to obtain B1-B7 and replaced indoline with benzmorpholine to get C1-C4 and D1-D2. We synthesized these compounds and evaluated their residual activities under 0.5 M drug concentration on EGFR and ERBB2. Most of compounds showed stronger inhibition on EGFR-wt and ERBB2, in which A1-A4 showed excellent inhibitory activity with inhibition percentage on EGFR-wt kinase of 7%, 6%, 19%, 27%, respectively and 9%, 5%, 12%, 34% on ERBB2 kinase compared with 2% and 6% of Neratinib.


Assuntos
Aminopiridinas/química , Descoberta de Drogas , Fator de Crescimento Epidérmico/antagonistas & inibidores , Mutação , Compostos de Espiro/farmacologia , Fator de Crescimento Epidérmico/genética , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Compostos de Espiro/química
13.
Chembiochem ; 20(16): 2079-2084, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268623

RESUMO

The epidermal growth factor (EGF) pathway, being overactive in a number of cancers, is a good target for clinical therapy. Although several drugs targeting the EGF receptor (EGFR) are on the market, tumours acquire resistance very rapidly. As an alternative, small molecules and peptides targeting EGF have been developed, although with moderate success. Herein, we report the use of mirror-image phage display technology to discover protease-resistant peptides with the capacity to inhibit the EGF-EGFR interaction. After the chemical synthesis of the enantiomeric protein d-EGF, two phage-display peptide libraries were used to select binding sequences. The d versions of these peptides bound to natural EGF, as confirmed by surface acoustic waves (SAWs). High-field NMR spectroscopy showed that the best EGF binder, d-PI_4, interacts preferentially with an EGF region that partially overlaps with the receptor binding interface. Importantly, we also show that d-PI_4 efficiently disrupts the EGF-EGFR interaction. This methodology represents a straightforward approach to find new protease-resistant peptides with potential applications in cancer therapy.


Assuntos
Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Biblioteca de Peptídeos , Peptídeos/farmacologia , Sequência de Aminoácidos , Fator de Crescimento Epidérmico/síntese química , Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química
14.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897725

RESUMO

Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.


Assuntos
Chalcona/análogos & derivados , Chalcona/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Mutação/genética
15.
Mol Carcinog ; 58(7): 1221-1233, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887599

RESUMO

Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3ß at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3ß-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quimioprevenção , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
16.
Nat Commun ; 10(1): 909, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796217

RESUMO

The distribution of single-cell properties across a population of cells can be measured using diverse tools, but no technology directly quantifies the biochemical stimulation events regulating these properties. Here we report digital counting of growth factors in single cells using fluorescent quantum dots and calibrated three-dimensional deconvolution microscopy (QDC-3DM) to reveal physiologically relevant cell stimulation distributions. We calibrate the fluorescence intensities of individual compact quantum dots labeled with epidermal growth factor (EGF) and demonstrate the necessity of near-infrared emission to overcome intrinsic cellular autofluoresence at the single-molecule level. When applied to human triple-negative breast cancer cells, we observe proportionality between stimulation and both receptor internalization and inhibitor response, reflecting stimulation heterogeneity contributions to intrinsic variability. We anticipate that QDC-3DM can be applied to analyze any peptidic ligand to reveal single-cell correlations between external stimulation and phenotypic variability, cell fate, and drug response.


Assuntos
Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Pontos Quânticos/química , Análise de Célula Única/métodos , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fluorescência , Corantes Fluorescentes , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência/métodos
17.
J Ethnopharmacol ; 231: 507-515, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508622

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The concept of the prescription in Traditional Chinese Medicine (TCM) is usually characterized by the compatibility principle "monarch, minister, assistant, and guide", which means herbs play primary, secondary, auxiliary, or harmonic roles, respectively, to achieve the optimally holistic effect. Following this compatibility principle, the Tanyu Tongzhi Formula (TTF), used for many years to treat cardiovascular diseases, has been proved effective clinically and experimentally. AIM OF THE STUDY: The ancient compatibility principle is based on experiences, but whether its underlying interactions can be explained at the cellular level is unknown. We aimed to explore the mechanisms of activity of the TTF herbs and the interactions between them. MATERIALS AND METHODS: We used a real-time cell analyzer to record the responses of COS-7 cells to the herbs in TTF, both individually and in different combinations. We also used biochemical assays to further characterize the TTF activity. RESULTS: Monarch herb Fructus trichosanthis acts as an inhibitor of the EGF signaling. It's cytotoxicity, derived from inhibition of tubulin polymerization, could be completely neutralized by the combination of the phlegm group, or the whole TTF combination. Meanwhile, the minister, assistant, and guide herbs in the TTF did not affect EGF signaling. CONCLUSION: Our results provide a demonstration, at the cellular level, of the compatibility principle of "monarch, minister, assistant, and guide" in TTF. Under the guidance of this principle, TTF exerts the anti-inflammation and anti-tumor effects through inhibiting EGF signaling, while avoiding the microtubule-disrupting activity of Fructus trichosanthis.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Animais , Células COS , Chlorocebus aethiops , Medicina Tradicional Chinesa
18.
Photochem Photobiol ; 95(1): 397-405, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499112

RESUMO

We have demonstrated that lung-sparing surgery with intraoperative photodynamic therapy (PDT) achieves remarkably extended survival for patients with malignant pleural mesothelioma (MPM). Nevertheless, most patients treated using this approach experience local recurrence, so it is essential to identify ways to enhance tumor response. We previously reported that PDT transiently activates EGFR/STAT3 in lung and ovarian cancer cells and inhibiting EGFR via erlotinib can increase PDT sensitivity. Additionally, we have seen higher EGFR expression associating with worse outcomes after Photofrin-mediated PDT for MPM, and the extensive desmoplastic reaction associated with MPM influences tumor phenotype and therapeutic response. Since extracellular matrix (ECM) proteins accrued during stroma development can alter EGF signaling within tumors, we have characterized novel 3D models of MPM to determine their response to erlotinib combined with Photofrin-PDT. Our MPM cell lines formed a range of acinar phenotypes when grown on ECM gels, recapitulating the locally invasive phenotype of MPM in pleura and endothoracic fascia. Using these models, we confirmed that EGFR inhibition increases PDT cytotoxicity. Together with emerging evidence that EGFR inhibition may improve survival of lung cancer patients through immunologic and direct cell killing mechanisms, these results suggest erlotinib-enhanced PDT may significantly improve outcomes for MPM patients.


Assuntos
Antineoplásicos/uso terapêutico , Fator de Crescimento Epidérmico/antagonistas & inibidores , Mesotelioma/tratamento farmacológico , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos
19.
J Clin Endocrinol Metab ; 103(11): 4241-4252, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124866

RESUMO

Context: Fos null mice failed to ovulate and form a corpus luteum (CL) even when given exogenous gonadotropins, suggesting that ovarian Fos expression is critical for successful ovulation and CL formation. However, little is known about FOS in the human ovary. Objectives: To determine the expression, regulation, and function of FOS in human periovulatory follicles. Design/Participants: Timed periovulatory follicles were obtained from normally cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. Main Outcome Measures: The in vivo expression after human chorionic gonadotropin (hCG) administration and in vitro regulation of FOS, JUN, JUNB, and JUND was evaluated at the mRNA and protein level. Binding of progesterone receptor (PGR) and FOS to their target genes was assessed by chromatin immunoprecipitation analyses. Prostaglandin E2 (PGE2) and progesterone were measured. Results: The expression of FOS, JUNB, and JUND drastically increased in ovulatory follicles after hCG administration. In human granulosa/lutein cell cultures, hCG increased the expression of FOS and JUN proteins. Inhibitors of PGR and epidermal growth factor (EGF) receptors reduced hCG-induced increases in the expression and phosphorylation of FOS. PGR bound to the FOS gene. A selective FOS inhibitor blocked hCG-induced increases in PGE2 and the expression of prostaglandin (PG) synthases and transporters (PTGES, SLCO2A1, and ABCC1). FOS bound to the promoter regions of these genes. Conclusions: The increase of FOS/activator protein 1 in human periovulatory follicles after hCG administration is mediated by collaborative actions of PGR and EGF signaling and critical for the upregulated expression of key ovulatory genes required for the rise in ovulatory PG in human granulosa cells.


Assuntos
Gonadotropina Coriônica/metabolismo , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Adulto , Benzofenonas/farmacologia , Células Cultivadas , Dinoprostona/análise , Dinoprostona/metabolismo , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Isoxazóis/farmacologia , Mifepristona/farmacologia , Folículo Ovariano/citologia , Cultura Primária de Células , Progesterona/análise , Progesterona/metabolismo , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/genética , Quinazolinas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tirfostinas/farmacologia , Regulação para Cima
20.
PLoS One ; 13(8): e0201796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075033

RESUMO

Gefitinib and erlotinib are epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Although EGFR-TKIs are effective as anti-cancer drugs, cancer cells sometimes gain tolerance to the drugs. Previous studies suggested that the fibroblast growth factor receptor (FGFR)-signaling pathway could serve as compensation for the EGFR-signaling pathway inhibited by EGFR-TKIs. Our study further suggested that FGF2, a FGFR ligand, leaked out from naïve cells killed by gefitinib could initiate the FGFR-signaling pathway in surviving cells; i.e., altruistic survival may occur in naïve cells immediately after EGFR-TKI treatment. Altruistic survival may be temporal, and cells need to change their gene regulation toward gaining resistance to EGFR-TKIs. Changes in such gene regulation after EGFR-TKI treatment are poorly understood. In this study, we examined early events of such gene regulation changes in human adenocarcinoma PC-9 cells that are capable of changing their nature from susceptibility to resistance to EFGR-TKIs. Our study indicated that activation of nuclear factor-kappa B (NF-κB) occurred in the cells immediately after EGFR-TKI treatment and also by gene silencing against oncogenic EGFR; and, MG132 treatment for inhibiting NF-κB activation affected cell viability. Taken together, our findings (including the previous study) suggest that altruistic survival and NF-κB activation might be vital for initiating the acquisition of EGFR-TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Interferência de RNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA