Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Horm Res Paediatr ; 95(6): 619-630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446332

RESUMO

The growth hormone (GH)-insulin-like growth factor (IGF) cascade is central to the regulation of growth and metabolism. This article focuses on the history of the components of the IGF system, with an emphasis on the peptide hormones, IGF-I and -II, their cell surface receptors, and the IGF binding proteins (IGFBPs) and IGFBP proteases that regulate the availability of the peptide hormones for interaction with their receptors in relevant target tissues. We describe landmark events in the evolution of the somatomedin hypothesis, including evidence that has become available from experiments at the molecular and cellular levels, whole animal and tissue-specific gene knockouts, studies of cancer epidemiology, identification of prismatic human cases, and short- and long-term clinical trials of IGF-I therapy in humans. In addition, this new evidence has expanded our clinical definition of GH insensitivity (GHI) beyond growth hormone receptor mutations (classic Laron syndrome) to include conditions that cause primary IGF deficiency by impacting post-receptor signal transduction, IGF production, IGF availability to interact with the IGF-I receptor (IGF-1R), and defects in the IGF-1R, itself. We also discuss the clinical aspects of IGFs, from their description as insulin-like activity, to the use of IGF-I in the diagnosis and treatment of GH deficiency, and to the use of recombinant human IGF-I for therapy of children with GHI.


Assuntos
Fator de Crescimento Insulin-Like II , Fator de Crescimento Insulin-Like I , Síndrome de Laron , Animais , Humanos , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/história , Fator de Crescimento Insulin-Like I/fisiologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Síndrome de Laron/tratamento farmacológico , Síndrome de Laron/genética , Síndrome de Laron/história , Síndrome de Laron/fisiopatologia , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Somatomedinas/deficiência , Somatomedinas/história , Somatomedinas/fisiologia , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/história , Fator de Crescimento Insulin-Like II/fisiologia , Fator de Crescimento Insulin-Like II/uso terapêutico
2.
Eur J Endocrinol ; 174(4): R145-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26578640

RESUMO

The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.


Assuntos
Transtornos do Crescimento/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Nanismo Hipofisário/genética , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/genética , Humanos , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Proteína Relacionada ao Hormônio Paratireóideo/deficiência , Proteína Relacionada ao Hormônio Paratireóideo/genética , Receptor IGF Tipo 1/genética , Transdução de Sinais/genética , Síndrome , Via de Sinalização Wnt/genética
3.
J Mol Endocrinol ; 52(3): 333-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711643

RESUMO

Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M 'interactome', to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure.


Assuntos
Antígenos CD/genética , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas do Citoesqueleto/genética , Nanismo/genética , Hipotonia Muscular/genética , Receptor de Insulina/genética , Coluna Vertebral/anormalidades , Processamento Alternativo/genética , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Proteínas Culina/biossíntese , Proteínas do Citoesqueleto/biossíntese , Fibroblastos , Perfilação da Expressão Gênica , Transtornos do Crescimento/genética , Células HEK293 , Hormônio do Crescimento Humano/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Proteína Supressora de Tumor p53/genética , Ubiquitinação/genética
4.
Endocrinology ; 153(1): 241-53, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22087027

RESUMO

Myostatin inhibition by follistatin (FS) offers a new approach for muscle mass enhancement. The aim of the present study was to characterize the mediators responsible for the FS hypertrophic action on skeletal muscle in male mice. Because IGF-I and IGF-II, two crucial skeletal muscle growth factors, are induced by myostatin inhibition, we assessed their role in FS action. First, we tested whether type 1 IGF receptor (IGF-IR) is required for FS-induced hypertrophy. By using mice expressing a dominant-negative IGF-IR in skeletal muscle, we showed that IGF-IR inhibition blunted by 63% fiber hypertrophy caused by FS. Second, we showed that FS caused the same degree of fiber hypertrophy in wild-type and IGF-II knockout mice. We then tested the role of the signaling molecules stimulated by IGF-IR, in particular the Akt/mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (S6K) pathway. We investigated whether Akt phosphorylation is required for the FS action. By cotransfecting a dominant-negative form of Akt together with FS, we showed that Akt inhibition reduced by 65% fiber hypertrophy caused by FS. Second, we evaluated the role of mTOR in FS action. Fiber hypertrophy induced by FS was reduced by 36% in rapamycin-treated mice. Finally, because the activity of S6K is increased by FS, we tested its role in FS action. FS caused the same degree of fiber hypertrophy in wild-type and S6K1/2 knockout mice. In conclusion, the IGF-IR/Akt/mTOR pathway plays a critical role in FS-induced muscle hypertrophy. In contrast, induction of IGF-II expression and S6K activity by FS are not required for the hypertrophic action of FS.


Assuntos
Folistatina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Receptor IGF Tipo 1/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Folistatina/genética , Humanos , Hipertrofia , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção
5.
Endocrinology ; 152(8): 3202-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21673101

RESUMO

The pattern of fetal growth is a major determinant of the subsequent health of the infant. We recently showed in undernourished (UN) mice that fetal growth is maintained until late pregnancy, despite reduced placental weight, through adaptive up-regulation of placental nutrient transfer. Here, we determine the role of the placental-specific transcript of IGF-II (Igf2P0), a major regulator of placental transport capacity in mice, in adapting placental phenotype to UN. We compared the morphological and functional responses of the wild-type (WT) and Igf2P0-deficient placenta in WT mice fed ad libitium or 80% of the ad libitium intake. We observed that deletion of Igf2P0 prevented up-regulation of amino acid transfer normally seen in UN WT placenta. This was associated with a reduction in the proportion of the placenta dedicated to nutrient transport, the labyrinthine zone, and its constituent volume of trophoblast in Igf2P0-deficient placentas exposed to UN on d 16 of pregnancy. Additionally, Igf2P0-deficient placentas failed to up-regulate their expression of the amino acid transporter gene, Slc38a2, and down-regulate phosphoinositide 3-kinase-protein kinase B signaling in response to nutrient restriction on d 19. Furthermore, deleting Igf2P0 altered maternal concentrations of hormones (insulin and corticosterone) and metabolites (glucose) in both nutritional states. Therefore, Igf2P0 plays important roles in adapting placental nutrient transfer capacity during UN, via actions directly on the placenta and/or indirectly through the mother.


Assuntos
Adaptação Fisiológica , Fator de Crescimento Insulin-Like II/fisiologia , Desnutrição/metabolismo , Placenta/metabolismo , Aminoácidos/metabolismo , Animais , Transporte Biológico , Feminino , Fator de Crescimento Insulin-Like II/deficiência , Masculino , Desnutrição/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/fisiologia , Placenta/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/fisiologia
6.
Development ; 138(2): 203-13, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21148188

RESUMO

During embryonic development, Igf2 gene transcription is highly regulated through the use of several promoters whose specific roles are not defined. Here, we show that loss-of-function of one of these promoters, Igf2-P2, results in growth defects that are temporally and quantitatively different from those seen in Igf2-null mutants. In particular, Igf2-P2 mutants exhibit skeletal abnormalities characterized by thin and short bones with reduced mineralization and medullar cavity and with altered bone remodeling. These abnormalities are associated with decreased numbers of embryonic mesenchymal chondroprogenitors, adult mesenchymal stem cells and osteoprogenitors. Differentiation of osteoprogenitors into osteoblasts is impaired in the Igf2-P2 mutant mice in a cell-autonomous manner, and osteopontin is a target of the IGF2 signaling pathway during this differentiation. Igf2-P2 mutant mice also display impaired formation of giant osteoclasts owing to a defective micro-environment. These results support a model wherein transcriptional activity of the Igf2-P2 promoter regulates the fate of mesenchymal progenitors during bone development and remodeling in the adult, and regulates osteogenesis in a cell-autonomous and non-autonomous manner.


Assuntos
Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ensaio de Unidades Formadoras de Colônias , Nanismo/embriologia , Nanismo/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Mutantes , Mutação , Osteogênese/genética , Osteogênese/fisiologia , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo
7.
Int J Oncol ; 32(5): 1041-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425330

RESUMO

The Pleomorphic adenoma gene 1 (PLAG1) is involved in various human neoplasias, including pleomorphic adenomas of the salivary glands. Moreover, the oncogenic role of PLAG1 was clearly demonstrated in two independent PLAG1 transgenic mouse founders, in which PLAG1 expression could be targeted to different tissues using the Cre/loxP system. MMTV-Cre-mediated targeted overexpression of PLAG1 in the salivary glands of double transgenic offspring mice, referred to as P1-MCre and P2-MCre mice, induced pleomorphic adenomas in this organ. Igf2, a genuine PLAG1 target gene, was highly upregulated in those tumours as well as in human pleomorphic adenomas of the salivary glands. These and previous observations in other PLAG1-induced tumours e.g. breast adenomyoepitheliomas emphasize the importance of Igf upregulation in such tumours. In this study, further evidence for the role of Igf2 in PLAG1-induced tumourigenesis, is reported. Inactivation of Igf2 in P1-MCre mice leads to a significant delay in tumour development. Since tumour development is not fully abrogated by inactivation of Igf2, other signalling pathways are likely to contribute to PLAG1-induced tumourigenesis as well. Further studies revealed that several genes such as H19, Dlk1, Gtl2, Igfbp2, Igfbp3 and genes involved in Wnt signalling, such as Wnt6, Cyclin D1 and beta-catenin are upregulated in P1-MCre mice in which Igf2 is inactivated. In conclusion, we clearly demonstrate upregulation of several genes associated with Igf and Wnt signalling in PLAG1-induced pleomorphic adenomas. Furthermore, inactivation of Igf2 does not affect upregulation of genes associated with Wnt signalling, which might suggest that both signalling pathways are involved.


Assuntos
Adenoma Pleomorfo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , Adenoma Pleomorfo/genética , Adenoma Pleomorfo/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Fatores de Tempo , Proteínas Wnt/genética
8.
Growth Horm IGF Res ; 9(4): 272-7, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10512693

RESUMO

A 6.5-year-old male with normal linear growth, despite septo-optic dysplasia, panhypopituitarism and a deficient GH/IGF axis, is presented. In addition to measuring IGF-I, IGF-II and IGFBP-3, serum IGFBP-1, -2, -4 and -5 were measured. A human osteosarcoma cell line was used to assess growth-promoting activity in the patient's serum. The role of leptin in linear growth in this case was investigated. There was no evidence for hyperinsulinism or hyperandrogenism. GH was undetectable upon multiple stimulation. GHBP was elevated. Serum IGF-I (25 microg/l), IGF-II (194 microg/l), IGFBP-3 (0.4 mg/l), and IGFBP-5 (87 microg/l) levels were low compared to age-matched prepubertal children. Serum IGFBP-4 level was normal. Molecular size of IGF-II in the patient's serum was normal, suggesting normal IGF-II bioavailability. Human osteosarcoma cell proliferation in response to the patient's serum was similar to sera from age-matched normal controls. Leptin levels were markedly elevated. Osteoblast cell proliferation was not stimulated by leptin. The data demonstrate that normal growth and osteoblast cell proliferation in this patient is not mediated by GH, total IGFs, insulin, or leptin, and suggest the presence of a yet unidentified growth factor or mechanism. The case offers a detailed picture of binding proteins in a case of growth without GH. It introduces osteoblast cell proliferation as a method of assessing serum growth-promoting activity in such cases. It adds IGF-II and leptin to the list of excluded growth-promoting candidates in GH-independent growth, and further demonstrates our incomplete understanding of the phenomenon of growth.


Assuntos
Estatura , Hormônio do Crescimento Humano/deficiência , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like I/deficiência , Criança , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/uso terapêutico , Hipoglicemia/complicações , Hipotireoidismo/complicações , Soros Imunes , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/efeitos dos fármacos , Cariotipagem , Leptina/sangue , Masculino , Tiroxina/uso terapêutico , Transtornos da Visão/complicações , Transtornos da Visão/diagnóstico
9.
Endocrinology ; 140(3): 1442-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10067873

RESUMO

Insulin-like growth factor II (IGF-II), a polypeptide hormone with structural homologies to insulin-like growth factor I (IGF-I) and insulin, regulates the metabolism and growth of many tissues. In this study, we examined the role of IGF-II in hepatic glycogen metabolism in normal and growth-retarded IGF-II-deficient (knockout) mice. Liver glycogen content was significantly lower in the IGF-II knockout than in control livers during embryonic day 18 and postnatal day 0. Biochemical results were verified histologically using a glycogen-specific stain. The enzymatic activity of glycogen synthase, the rate-limiting enzyme for glycogen synthesis, was significantly lower in livers of knockout mice than in livers from wild-type controls on embryonic day 18 and postnatal day 0. The levels of glycogen synthase messenger RNA were not different between the two groups at any age studied, indicating that IGF-II acts posttranscriptionally. Hepatic glycogen content, measured in newborns after food withdrawal, was significantly lower in knockout mice compared with that in wild-type mice after 0, 3, and 6 h of fasting. Blood glucose was significantly lower in knockouts vs. wild-type newborn mice before fasting and was similar in both genotypes after 6 h of fasting. Consistent with this, only 23% of IGF-II knockout newborn mice survived fasting for 12 h, whereas 93% of wild-type mice survived this treatment. These results indicate that IGF-II is required for the regulation of glycogen metabolism of the mouse in the perinatal period, possibly via stimulation of glycogen synthase activity. IGF-II, via perinatal regulation of glycogen synthesis, may regulate fetal growth as well as play an important role in the transition from fetal to postnatal life by protecting the neonate against hypoglycemia during periods of fasting.


Assuntos
Metabolismo dos Carboidratos , Fator de Crescimento Insulin-Like II/deficiência , Glicogênio Hepático/fisiologia , Animais , Glicemia/metabolismo , Privação de Alimentos , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Insulina/sangue , Camundongos , RNA Mensageiro/biossíntese
10.
J Clin Endocrinol Metab ; 69(6): 1291-301, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2555386

RESUMO

Insulin-like growth factor-I (IGF-I) and IGF-II are associated in the blood with specific binding proteins (BPs), forming complexes that elute in gel filtration with estimated mol wt around 40 and 150 kD. The latter appears to be under GH control. Five molecular forms of BP (41.5, 38.5, 34, 30, and 24 kD) have been identified by Western blotting using 125I-labeled IGF. All five forms are present in the smaller complexes, but only the 41.5- and 38.5-kD forms are found in the larger complexes. In this study immunoblotting showed that the 41.5- and 38.5-kD forms were recognized by antibodies directed against the GH-dependent BP purified from human plasma, and the 30-kD form was recognized by antibodies directed against the BP purified from amniotic fluid. The 34- and 24-kD forms proved to be immunologically unrelated to the other three. In sera with large quantities of the 41.5- and 38.5-kD forms, an additional band was often observed immediately ahead of the migration front of the 30 kD band. This was recognized by the anti-GH-dependent BP antibody and probably corresponds to a degradation product of the 41.5- and 38.5-kD BPs. Serum 41.5- and 38.5-kD BPs have been found to be elevated in acromegaly, where GH hypersecretion causes increased IGF-I levels, and diminished in cases of genetic or idiopathic GH deficiency and defects of the GH receptor (Laron's syndrome), where both IGF-I and IGF-II are decreased, as well as in Pygmy adults and children who have isolated IGF-I deficiency. In all of these conditions, the proportions of the 34- and 30-kD forms were inversely related to those of the 41.5- and 38.5-forms. Under treatment, the BP profiles tended to return to normal. In cases of GH deficiency caused by a tumor, the BP profiles resembled those of hypopituitary or normal serum, depending on whether IGF levels were diminished or normal. It, therefore, seems that BP synthesis is coordinated with IGF-I synthesis and may not be directly GH dependent. The results of neutral pH gel filtration analysis of hypopituitary (idiopathic and tumoral) and normal sera point to a relationship between the levels of circulating IGFs and those of the 150-kD IGF-BP complex whose binding units are the 41.5- and 38.5-kD BPs. It, therefore, seems that the 150-kD complex controls the bioavailability of IGF-I and IGF-II.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Acromegalia/sangue , Transtornos do Crescimento/sangue , Hipopituitarismo/sangue , Fator de Crescimento Insulin-Like II/sangue , Fator de Crescimento Insulin-Like I/sangue , Receptores de Superfície Celular/metabolismo , Somatomedinas/sangue , Adulto , Pré-Escolar , Hormônio do Crescimento/sangue , Hormônio do Crescimento/deficiência , Humanos , Immunoblotting , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like II/deficiência , Peso Molecular , Receptores de Somatomedina , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA