Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Sci ; 112(10): 4176-4186, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34327778

RESUMO

As a POU homeodomain transcription factor, POU4F2 has been implicated in regulating tumorigenic processes in various cancers. However, the role of POU4F2 in colorectal cancer (CRC) remains unclear. Here, we revealed that POU4F2 functions as a tumor promotor in CRC. Bioinformatics analysis in specimens from CRC patients and expression analysis in CRC cell lines showed that POU4F2 was upregulated at the mRNA and protein levels in CRC. Depletion of POU4F2 suppressed the metastatic phenotypes of CRC cells, including cell migration, invasion, and the expression of epithelial-mesenchymal transition (EMT) markers. Moreover, depletion of POU4F2 decreased the number of lung metastatic nodes in nude mice. Mechanistically, POU4F2 positively regulated the Hedgehog signaling pathway, as inferred from the downregulation of the expression of sonic Hedgehog homolog, patched 1, Smoothened, and GLI family zinc finger 1 in vitro and vivo following silencing of POU4F2. Furthermore, the SMO agonist SAG reversed the effects of POU4F2 knockdown in CRC. Functionally, POU4F2 contributed to the Hedgehog signaling-regulated activation of the EMT process and promotion of CRC cell migration and invasion. Collectively, these findings elucidated the role of POU4F2 as a tumor promotor in CRC through the regulation of Hedgehog signaling-mediated EMT and suggested that POU4F2 suppression might be a promising therapeutic target in inhibiting CRC metastasis.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Hedgehog/metabolismo , Invasividade Neoplásica , Fator de Transcrição Brn-3B/fisiologia , Animais , Linhagem Celular Tumoral , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/patologia , Cicloexilaminas/farmacologia , Regulação para Baixo , Inativação Gênica , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Receptor Patched-1/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Tiofenos/farmacologia , Fator de Transcrição Brn-3B/antagonistas & inibidores , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo , Regulação para Cima , Dedos de Zinco
2.
Stem Cells Dev ; 28(20): 1365-1375, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580778

RESUMO

Glaucoma is characterized by retinal ganglion cell (RGC) degeneration and is the second leading cause of blindness worldwide. However, current treatments such as eye drop or surgery have limitations and do not target the loss of RGC. Regenerative therapy using embryonic stem cells (ESCs) holds a promising option, but ethical concern hinders clinical applications on human subjects. In this study, we employed spermatogonial stem cells (SSCs) as an alternative source of ESCs for cell-based regenerative therapy in mouse glaucoma model. We generated functional RGCs from SSCs with a two-step protocol without applying viral transfection or chemical induction. SSCs were first dedifferentiated to embryonic stem-like cells (SSC-ESCs) that resemble ESCs in morphology, gene expression signatures, and stem cell properties. The SSC-ESCs then differentiated toward retinal lineages. We showed SSC-ESC-derived retinal cells expressed RGC-specific marker Brn3b and functioned as bona fide RGCs. To allow in vivo RGC tracing, Brn3b-EGFP reporter SSC-ESCs were generated and the derived RGCs were subsequently transplanted into the retina of glaucoma mouse models by intravitreal injection. We demonstrated that the transplanted RGCs could survive in host retina for at least 10 days after transplantation. SSC-ESC-derived RGCs can thus potentially be a novel alternative to replace the damaged RGCs in glaucomatous retina.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Glaucoma/terapia , Células Ganglionares da Retina/transplante , Células-Tronco Germinativas Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Genes Reporter , Glaucoma/induzido quimicamente , Glaucoma/genética , Glaucoma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/administração & dosagem , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Testículo/citologia , Testículo/metabolismo , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo
3.
Cell Death Dis ; 10(8): 621, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413277

RESUMO

Adult hearts respond to increased workload such as prolonged stress or injury, by undergoing hypertrophic growth. During this process, the early adaptive responses are important for maintaining cardiac output whereas at later stages, pathological responses such as cardiomyocyte apoptosis and fibrosis cause adverse remodelling, that can progress to heart failure. Yet the factors that control transition from adaptive responses to pathological remodelling in the heart are not well understood. Here we describe the POU4F2/Brn-3b transcription factor (TF) as a novel regulator of adaptive hypertrophic responses in adult hearts since Brn-3b mRNA and protein are increased in angiotensin-II (AngII) treated mouse hearts with concomitant hypertrophic changes [increased heart weight:body weight (HW:BW) ratio]. These effects occur specifically in cardiomyocytes because Brn-3b expression is increased in AngII-treated primary cultures of neonatal rat ventricular myocytes (NRVM) or foetal heart-derived H9c2 cells, which undergo characteristic sarcomeric re-organisation seen in hypertrophic myocytes and express hypertrophic markers, ANP/ßMHC. The Brn-3b promoter is activated by known hypertrophic signalling pathways e.g. p42/p44 mitogen-activated protein kinase (MAPK/ERK1/2) or calcineurin (via NFAT). Brn-3b target genes, e.g. cyclin D1, GLUT4 and Bax, are increased at different stages following AngII treatment, supporting distinct roles in cardiac responses to stress. Furthermore, hearts from male Brn-3b KO mutant mice display contractile dysfunction at baseline but also attenuated hypertrophic responses to AngII treatment. Hearts from AngII-treated male Brn-3b KO mice develop further contractile dysfunction linked to extensive fibrosis/remodelling. Moreover, known Brn-3b target genes, e.g. GLUT4, are reduced in AngII-treated Brn-3b KO hearts, suggesting that Brn-3b and its target genes are important in driving adaptive hypertrophic responses in stressed heart.


Assuntos
Doenças Cardiovasculares/genética , Hipertrofia/genética , Miocárdio/metabolismo , Fator de Transcrição Brn-3B/genética , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Apoptose , Calcineurina/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Ciclina D1/genética , Regulação da Expressão Gênica/genética , Transportador de Glucose Tipo 4/genética , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/genética
4.
Mol Vis ; 22: 1048-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27587945

RESUMO

PURPOSE: Brn3b is a class IV POU domain transcription factor that plays an important role in the development of retinal ganglion cells (RGCs), RGC survival, and particularly axon growth and pathfinding. Our previous study demonstrated that recombinant adenoassociated virus serotype 2 (rAAV-2)-mediated overexpression of Brn3b in RGCs promoted neuroprotection in a rodent model of glaucoma. However, the mechanisms underlying neuroprotection of RGCs in rats overexpressing Brn3b in animal models of glaucoma remain largely unknown. The goal of this study was to understand some of the mechanisms underlying the neuroprotection of RGCs overexpressing Brn3b during intraocular pressure (IOP) elevation in Brown Norway rats. METHODS: One eye of Brown Norway rats (Rattus norvegicus) was injected with an AAV construct encoding either green fluorescent protein (GFP; recombinant adenoassociated virus-green fluorescent protein, rAAV-hSyn-GFP) or Brn3b (rAAV-hSyn-Brn3b). Expression of antiapoptotic proteins, including B cell lymphoma/leukemia-2 (Bcl-2) family proteins (Bcl-2 and Bcl-xL), and p-AKT, was observed following immunostaining of rat retinas that overexpress Brn3b. In a different set of experiments, intraocular pressure was elevated in one eye of Brown Norway rats, which was followed by intravitreal injection with AAV constructs encoding either GFP (rAAV-CMV-GFP) or Brn3b (rAAV-CMV-Brn3b). Retinal sections were stained for prosurvival factors, including Bcl-2, Bcl-XL, and p-AKT. RESULTS: AAV-mediated expression of transcription factor Brn3b promoted statistically significant upregulation of the Bcl-2 protein and increased expression of p-AKT in RGCs of Brown Norway rats. In addition, following IOP elevation, AAV-mediated Brn3b expression also statistically significantly increased levels of Bcl-2 in the RGC layer in Brown Norway rats. CONCLUSIONS: Adenoassociated virus-mediated Brn3b protein overexpression may promote neuroprotection by upregulating key antiapoptotic proteins, including Bcl-2, Bcl-xL, and p-AKT, in animal models of glaucoma.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipertensão Ocular/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/genética , Proteína bcl-X/metabolismo , Animais , Sobrevivência Celular/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Pressão Intraocular/fisiologia , Injeções Intravítreas , Masculino , Fármacos Neuroprotetores , Hipertensão Ocular/metabolismo , Plasmídeos/genética , Ratos , Ratos Endogâmicos BN , Regulação para Cima
5.
Oncotarget ; 7(3): 2754-64, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26700620

RESUMO

To develop a routine and effectual procedure of detecting bladder cancer (BlCa), an optimized combination of epigenetic biomarkers that work synergistically with high sensitivity and specificity is necessary. In this study, methylation levels of seven biomarkers (EOMES, GDF15, NID2, PCDH17, POU4F2, TCF21, and ZNF154) in 148 individuals-which including 58 urothelial cell carcinoma (UCC) patients, 20 infected urinary calculi (IUC) patients, 20 kidney cancer (KC) patients,20 prostate cancer (PC) patients, and 30 healthy volunteers (HV)-were quantified by qMSP using the urine sediment DNA. Receiver operating characteristic (ROC) curves were generated for each biomarker. The combining predictors of possible combinations were calculated through logistic regression model. Subsequently, ROC curves of the three best performing combinations were constructed. Then, we validated the three best performing combinations and POU4F2 in another 72 UCC, 21 IUC, 26 KC and 22 PC, and 23 HV urine samples. The combination of POU4F2/PCDH17 has yielded the highest sensitivity and specificity of 90.00% and 93.96% in all the 312 individuals, showing the capability of detecting BlCa effectively among pathologically varied sample groups.


Assuntos
Biomarcadores Tumorais/urina , Caderinas/genética , Metilação de DNA/genética , Fator de Transcrição Brn-3B/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Biomarcadores Tumorais/genética , China , DNA/genética , DNA/urina , Humanos , Neoplasias Renais/urina , Masculino , Neoplasias da Próstata/urina , Sensibilidade e Especificidade , Neoplasias da Bexiga Urinária/genética , Cálculos Urinários/urina , Urotélio/patologia
6.
Cell Mol Neurobiol ; 35(6): 769-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25786379

RESUMO

Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.


Assuntos
Diferenciação Celular/genética , Neuritos/fisiologia , Neurogênese/genética , Fator de Transcrição Brn-3B/genética , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Oxigênio/farmacologia , Células PC12 , Ratos , Regulação para Cima/genética
7.
Invest Ophthalmol Vis Sci ; 56(2): 893-907, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25587060

RESUMO

PURPOSE: Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP), leading to optic nerve head (ONH) cupping, axon loss, and apoptosis of retinal ganglion cells (RGCs), which could ultimately result in blindness. Brn3b is a class-4 POU domain transcription factor that plays a key role in RGC development, axon outgrowth, and pathfinding. Previous studies suggest that a decrease in Brn3b levels occurs in animal models of glaucoma. The goal of this study was to determine if adeno-associated virus (AAV)-directed overexpression of the Brn3b protein could have neuroprotective effects following elevated IOP-mediated neurodegeneration. METHODS: Intraocular pressure was elevated in one eye of Brown Norway rats (Rattus norvegicus), following which the IOP-elevated eyes were intravitreally injected with AAV constructs encoding either the GFP (rAAV-CMV-GFP and rAAV-hsyn-GFP) or Brn3b (rAAV-CMV-Brn3b and rAAV-hsyn-Brn3b). Retina sections through the ONH were stained for synaptic plasticity markers and neuroprotection was assessed by RGC counts and visual acuity tests. RESULTS: Adeno-associated virus-mediated expression of the Brn3b protein in IOP-elevated rat eyes promoted an upregulation of growth associated protein-43 (GAP-43), actin binding LIM protein (abLIM) and acetylated α-tubulin (ac-Tuba) both posterior to the ONH and in RGCs. The RGC survival as well as axon integrity score were significantly improved in IOP-elevated rAAV-hsyn-Brn3b-injected rats compared with those of the IOP-elevated rAAV-hsyn-GFP- injected rats. Additionally, intravitreal rAAV-hsyn-Brn3b administration significantly restored the visual optomotor response in IOP-elevated rat eyes. CONCLUSIONS: Adeno-associated virus-mediated Brn3b protein expression may be a suitable approach for promoting neuroprotection in animal models of glaucoma.


Assuntos
Regulação da Expressão Gênica , Glaucoma/genética , Hipertensão Ocular/genética , RNA/genética , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/genética , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Immunoblotting , Imuno-Histoquímica , Pressão Intraocular , Masculino , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Células Ganglionares da Retina/patologia , Transdução de Sinais , Fator de Transcrição Brn-3B/biossíntese
8.
Cell Death Dis ; 5: e1503, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25356872

RESUMO

Cardiomyocyte death following ischaemic/hypoxic injury causes irreversible damage to cardiac function and contributes to chronic diseases such as heart failure. Understanding the mechanisms associated with myocyte loss under these conditions can help to identify strategies to minimise/abrogate such detrimental effects. The p53 protein can induce apoptosis or cell cycle arrest, but effects on cell fate depend on interactions with other regulators such as POU4F2/Brn-3b (Brn-3b), which co-operates with p53 to increase the expression of pro-apoptotic genes. In contrast, the related POU4F1/Brn-3a (Brn-3a) blocks p53-mediated apoptosis but co-operates with p53 to enhance cell cycle arrest. In this study, we showed that permanent coronary artery ligation in mouse hearts, which induced apoptotic markers, activated caspase-3 and -8 and necroptosis markers; RIP-1 and -3 also increased Brn-3b and Brn-3a expression. However, Brn-3a was only detected in uninjured myocardium but not at the site of injury, whereas Brn-3b showed generalised increase, including within the infarct zone. Conversely, p53 was detected in the infarct zone and in some cells adjacent to the site of injury but not in uninjured myocardium. Co-localisation studies showed Brn-3a co-expression with p53 in cardiomyocytes adjacent to the infarct zone, whereas Brn-3b was co-localised with p53 in the infarct zone only. Increased Brn-3b and p53 correlated with elevated expression of pro-apoptotic target genes, Bax, Noxa and PUMA, whereas cleaved caspase-3 confirmed the presence of apoptotic cells within this region of the injured heart. Similarly, simulated ischaemia/reoxygenation (sI/R) injury in neonatal rat ventricular cardiomyocytes (NRVM) and heart derived H9c2 myoblasts increased Brn-3b, p53 as well as apoptotic genes, and this was associated with enhanced apoptosis. Furthermore, targeted reduction of Brn-3b using shRNA caused reduction in pro-apoptotic Bax and Noxa proteins, even though p53 expression remained intact, suggesting that Brn-3b is important for controlling the fate of the myocardium in the injured heart.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Hipóxia/patologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sobrevivência Celular/genética , Células Cultivadas , Vasos Coronários/patologia , Inativação Gênica , Ventrículos do Coração/patologia , Proteínas de Homeodomínio/genética , Hipóxia/complicações , Hipóxia/genética , Ligadura , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , Miócitos Cardíacos/patologia , Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3B/genética , Proteína X Associada a bcl-2/metabolismo
9.
J Pineal Res ; 54(1): 80-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22856590

RESUMO

Epigenetic alterations have emerged as an important mechanism involved in tumorigenesis. The epigenetic impact of DNA methylation in various types of human cancer is not completely understood. Previously, we observed melatonin-induced differential expression of miRNA and miRNA-related genes in human breast cancer cell lines that indicated an anticancer effect of melatonin. In this report, we further characterized epigenetic changes in melatonin-exposed MCF-7 cells through the analysis of DNA methylation profiles in breast cancer cells to provide new insights into the potential mechanisms of the anticancer effect of melatonin. Microarray-based DNA methylation and gene expression profiling were carried out using human breast cancer cell lines. We further identified a number of mRNAs whose expression levels show an inverse correlation with DNA methylation levels. The mRNA expression levels and methylation status of candidate genes in melatonin-exposed cells were confirmed by real-time quantitative PCR and bisulfite PCR. This approach led to the detection of cancer-related genes, which were oncogenic genes, including EGR3 and POU4F2/Brn-3b were down-regulated, while the tumor suppressor gene, GPC3, was up-regulated by 1 nm melatonin-treated MCF-7 cells. Our results provide detailed insights into the DNA methylation patterns induced by melatonin and suggest a potential mechanism of the anticancer effect of aberrant DNA methylation in melatonin-treated breast cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Melatonina/uso terapêutico , Oncogenes/efeitos dos fármacos , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo , Proteína 3 de Resposta de Crescimento Precoce/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Genes Supressores de Tumor/efeitos dos fármacos , Glipicanas/genética , Humanos , Fator de Transcrição Brn-3B/genética , Regulação para Cima
10.
Stem Cells Transl Med ; 1(3): 188-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23197778

RESUMO

Müller glia with stem cell characteristics have been identified in the adult human eye, and although there is no evidence that they regenerate retina in vivo, they can be induced to grow and differentiate into retinal neurons in vitro. We differentiated human Müller stem cells into retinal ganglion cell (RGC) precursors by stimulation with fibroblast growth factor 2 together with NOTCH inhibition using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). Differentiation into RGC precursors was confirmed by gene and protein expression analysis, changes in cytosolic [Ca(2+)] in response to neurotransmitters, and green fluorescent protein (GFP) expression by cells transduced with a transcriptional BRN3b-GFP reporter vector. RGC precursors transplanted onto the inner retinal surface of Lister hooded rats depleted of RGCs by N-methyl-d-aspartate aligned onto the host RGC layer at the site of transplantation but did not extend long processes toward the optic nerve. Cells were observed extending processes into the RGC layer and expressing RGC markers in vivo. This migration was observed only when adjuvant anti-inflammatory and matrix degradation therapy was used for transplantation. RGC precursors induced a significant recovery of RGC function in the transplanted eyes as determined by improvement of the negative scotopic threshold response of the electroretinogram (indicative of RGC function). The results suggest that transplanted RGC precursors may be capable of establishing local interneuron synapses and possibly release neurotrophic factors that facilitate recovery of RGC function. These cells constitute a promising source of cells for cell-based therapies to treat retinal degenerative disease caused by RGC dysfunction.


Assuntos
Diferenciação Celular , Neuroglia/citologia , Regeneração/fisiologia , Células Ganglionares da Retina/citologia , Neurônios Retinianos/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Adulto , Animais , Movimento Celular , Eletrorretinografia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neuritos/metabolismo , Neuroglia/metabolismo , Ratos , Células Ganglionares da Retina/metabolismo , Neurônios Retinianos/metabolismo , Células-Tronco/metabolismo , Fator de Transcrição Brn-3B/genética
11.
PLoS One ; 7(10): e46297, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056278

RESUMO

BACKGROUND: Non muscle invasive bladder cancer (NMIBC) has the highest recurrence rate of any malignancy and as many as 70% of patients experience relapse. Aberrant DNA methylation is present in all bladder tumors and can be detected in urine specimens. Previous studies have identified DNA methylation markers that showed significant diagnostic value. We evaluated the significance of the biomarkers for early detection of tumor recurrence in urine. METHODOLOGY/PRINCIPAL FINDINGS: The methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens were measured by real-time PCR (MethyLight). We analyzed 390 urine sediments from 184 patients diagnosed with NMIBC. Urine from 35 age-matched control individuals was used to determine the methylation baseline levels. Recurrence was diagnosed by cystoscopy and verified by histology. Initially, we compared urine from bladder cancer patients and healthy individuals and detected significant hypermethylation of all six markers (P<0.0001) achieving sensitivity in the range 82%-89% and specificity in the range 94%-100%. Following, we validated the urinary hypermethylation for use in recurrence surveillance and found sensitivities of 88-94% and specificities of 43-67%. EOMES, POU4F2, VIM and ZNF154 were more frequently methylated in urine from patients with higher grade tumors (P ≤ 0.08). Univariate Cox regression analysis showed that five markers were significantly associated with disease recurrence; HOXA9 (HR=7.8, P=0.006), POU4F2 (HR=8.5, P=0.001), TWIST1 (HR=12.0, P=0.015), VIM (HR=8.0, P=0.001), and ZNF154 (HR=13.9, P<0.001). Interestingly, for one group of patients (n=15) we found that hypermethylation was consistently present in the urine samples despite the lack of tumor recurrences, indicating the presence of a field defect. CONCLUSION/SIGNIFICANCE: Methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens are promising diagnostic biomarkers for bladder cancer recurrence surveillance.


Assuntos
Metilação de DNA , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/urina , Epigênese Genética , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/urina , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Nucleares/genética , Proteínas Nucleares/urina , Prognóstico , Proteínas com Domínio T/genética , Proteínas com Domínio T/urina , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/urina , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/urina , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/urina , Vimentina/genética , Vimentina/urina , Dedos de Zinco/genética
12.
Dev Biol ; 364(2): 114-27, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22326227

RESUMO

The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA(+) afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC(+) proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB(+) and TrkC(+) neurons as well as TrkA(+)/TrkB(+) and TrkA(+)/TrkC(+) double positive cells at early embryonic stages. At later stages in the mutant, TrkB(+), TrkC(+) and parvalbumin(+) neurons diminish while there is a significant increase of CGRP(+) and c-ret(+) neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets.


Assuntos
Axônios/fisiologia , Gânglios Espinais/embriologia , Medula Espinal/embriologia , Fator de Transcrição Brn-3A/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/análise , Subunidade alfa 2 de Fator de Ligação ao Core/análise , Regulação para Baixo , Feminino , Gânglios Espinais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-ret/análise , Receptor trkA/análise , Receptor trkB/análise , Receptor trkC/análise , Medula Espinal/crescimento & desenvolvimento , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/fisiologia
13.
Cell Stress Chaperones ; 16(4): 427-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21279488

RESUMO

POU4F2/Brn-3b transcription factor (referred to as Brn-3b) is elevated in >60% of breast cancers and profoundly alters growth and behaviour of cancer cells by regulating distinct subsets of target genes. Previous studies showed that Brn-3b was required to maximally transactivate small heat shock protein, HSPB1/Hsp-27 (referred to as Hsp-27), and consequently, Brn-3b expression correlated well with Hsp27 levels in human breast biopsies. In these studies, we showed that Brn-3b is increased in MCF7 breast cancer cells that survive following treatment with chemotherapeutic drug doxorubicin (Dox) with concomitant increases in Hsp-27 expression. Targeting of Brn-3b using short interfering RNA reduced Hsp-27 in Dox-treated cells, suggesting that Brn-3b regulates Hsp-27 expression under these conditions. Wound healing assays showed increased Brn-3b in Dox-treated migratory cells that also express Hsp-27. Interestingly, Hsp-27 phosphorylation and cellular localisation are also significantly altered at different times following Dox treatment. Thus, phospho-Hsp-27 (p-Hsp27) protein displayed widespread distribution after 24 hrs of Dox treatment but was restricted to the nucleus after 5 days. However, in drug-resistant cells (grown in Dox for > 1 month), p-Hsp-27 was excluded from nuclei and most of the cytoplasm and appeared to be associated with the cell membrane. Studies to determine how this protein promotes survival and migration in breast cancer cells showed that the protective effects were conferred by unphosphorylated Hsp-27 protein. Thus, complex and dynamic mechanisms underlie effects of Hsp-27 protein in breast cancer cells following treatment with chemotherapeutic drugs such as Dox, and this may contribute to invasiveness and drug resistance following chemotherapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP27/metabolismo , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Humanos , Fosforilação , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética
14.
Breast Cancer Res ; 13(1): R5, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241485

RESUMO

INTRODUCTION: In cancer cells, elevated transcription factor-related Brn-3a regulator isolated from brain cDNA (Brn-3b) transcription factor enhances proliferation in vitro and increases tumour growth in vivo whilst conferring drug resistance and migratory potential, whereas reducing Brn-3b slows growth both in vitro and in vivo. Brn-3b regulates distinct groups of key target genes that control cell growth and behaviour. Brn-3b is elevated in >65% of breast cancer biopsies, but mechanisms controlling its expression in these cells are not known. METHODS: Bioinformatics analysis was used to identify the regulatory promoter region and map transcription start site as well as transcription factor binding sites. Polymerase chain reaction (PCR) cloning was used to generate promoter constructs for reporter assays. Chromatin immunoprecipitation and site-directed mutagenesis were used to confirm the transcription start site and autoregulation. MCF-7 and Cos-7 breast cancer cells were used. Cells grown in culture were transfected with Brn-3b promoter and treated with growth factors or estradiol to test for effects on promoter activity. Quantitative reverse transcriptase PCR assays and immunoblotting were used to confirm changes in gene and protein expression. RESULTS: We cloned the Brn-3b promoter, mapped the transcription start site and showed stimulation by estradiol and growth factors, nerve growth factor and epidermal growth factor, which are implicated in breast cancer initiation and/or progression. The effects of growth factors are mediated through the mitogen-activated protein kinase pathway, whereas hormone effects act via oestrogen receptor α (ERα). Brn-3b also autoregulates its expression and cooperates with ERα to further enhance levels. CONCLUSIONS: Key regulators of growth in cancer cells, for example, oestrogens and growth factors, can stimulate Brn-3b expression, and autoregulation also contributes to increasing Brn-3b in breast cancers. Since increasing Brn-3b profoundly enhances growth in these cells, understanding how Brn-3b is increased in breast cancers will help to identify strategies for reducing its expression and thus its effects on target genes, thereby reversing its effects in breast cancer cells.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição Brn-3B/genética , Sítios de Ligação/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Clonagem Molecular , Fator de Crescimento Epidérmico/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Homeostase , Humanos , Mutação , Fator de Crescimento Neural/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Fator de Transcrição Brn-3B/metabolismo , Sítio de Iniciação de Transcrição
15.
Exp Eye Res ; 88(3): 542-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109949

RESUMO

Despite the magnitude of the problem, no effective treatments exist to prevent retinal ganglion cell (RGC) death and optic nerve degeneration from occurring in diseases affecting the human eye. Animal models currently available for developing treatment strategies suffer from cumbersome procedures required to induce RGC death or rely on mutations that induce defects in developing retinas rather than in mature retinas of adults. Our objective was to develop a robust genetically engineered adult mouse model for RGC loss and optic nerve degeneration based on genetic ablation. To achieve this, we took advantage of Pou4f2 (Brn3b), a gene activated immediately as RGCs begin to differentiate and expressed throughout life. We generated adult mice whose genomes harbored a conditional Pou4f2 allele containing a floxed-lacZ-stop-diphtheria toxin A cassette and a CAGG-Cre-ER transgene. In this bigenic model, Cre recombinase is fused to a modified estrogen nuclear receptor in which the estrogen-binding domain binds preferentially to the estrogen agonist tamoxifen rather than to endogenous estradiol. Upon binding to the estrogen-binding domain, tamoxifen derepresses Cre recombinase, leading to the efficient genomic deletion of the floxed-lacZ-stop DNA sequence and expression of diphtheria toxin A. Tamoxifen administered to adult mice at different ages by intraperitoneal injection led to rapid RGC loss, reactive gliosis, progressive degradation of the optic nerve over a period of several months, and visual impairment. Perhaps more reflective of human disease, partial loss of RGCs was achieved by modulating the tamoxifen treatment. Especially relevant for RGC death and optic nerve degeneration in human retinal pathologies, RGC-ablated retinas maintained their structural integrity, and other retinal neurons and their connections in the inner and outer plexiform layers appeared unaffected by RGC ablation. These events are hallmarks of progressive optic nerve degeneration observed in human retinal pathologies and demonstrate the validity of this model for use in developing stem cell therapies for replacing dead RGCs with healthy ones.


Assuntos
Degeneração Neural/patologia , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Morte Celular/efeitos dos fármacos , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Deleção de Genes , Gliose/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/metabolismo , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Doenças do Nervo Óptico/genética , Fragmentos de Peptídeos/farmacologia , Retina/efeitos dos fármacos , Retina/embriologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Tamoxifeno/farmacologia , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo , Acuidade Visual
16.
Oncogene ; 27(1): 145-54, 2008 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17637757

RESUMO

Brn-3b transcription factor enhances proliferation of neuroblastoma (NB) and breast cancer cell lines in vitro and increases the rate and size of in vivo tumour growth, whereas reducing Brn-3b slows growth, both in vitro and in vivo. Brn-3b is elevated in >65% of breast cancer biopsies, and here we demonstrate that Brn-3b is also elevated in NB tumours. We show a significant correlation between Brn-3b and cyclin D1 (CD1) in breast cancers and NB tumours and cell lines. Brn-3b directly transactivates the CD1 promoter in co-transfection experiments, whereas electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrate that Brn-3b protein binds to an octamer sequence located in the proximal CD1 promoter. Site-directed mutagenesis of this sequence resulted in loss of transactivation of the CD1 promoter by Brn-3b. Thus, Brn-3b may act to alter growth properties of breast cancer and NB cells by enhancing CD1 expression in these cells.


Assuntos
Neoplasias da Mama/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/metabolismo , Fator de Transcrição Brn-3B/fisiologia , Ativação Transcricional , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Feminino , Humanos , Neuroblastoma/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Fator de Transcrição Brn-3B/biossíntese , Fator de Transcrição Brn-3B/genética , Células Tumorais Cultivadas , Regulação para Cima/fisiologia
17.
FEBS Lett ; 581(13): 2490-6, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17490655

RESUMO

The post-transcriptional control of mRNA levels is a very powerful mechanism which allows cells to quickly change the amount of specific proteins. In this study, we wanted to analyze whether the Brn-3b transcription factor, essential for the proper development of mouse retinal ganglion cells, is subjected to such post-transcriptional regulation. In particular, due to its conservation amongst different species, we wanted to study the role of its 3' untranslated region (3'UTR). We show that the 3'UTR of the Brn-3b mRNA does indeed contain regulatory sequences that mediate mRNA degradation upon serum starvation-induced differentiation of ND7 neuroblastoma cells. The specific region mediating this effect has been characterized and two different microRNAs that potentially regulate the stability of Brn-3b have been identified. Moreover we show that Dicer, one of the key enzymes in the production of microRNAs, is strongly up-regulated in ND7 cells subjected to differentiation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Brn-3B/genética , Regiões 3' não Traduzidas/genética , Northern Blotting , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Vetores Genéticos , Humanos , MicroRNAs/genética , Neuroblastoma , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Brn-3A/genética
18.
Nucleic Acids Res ; 34(22): 6640-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17145718

RESUMO

The Brn-3a and Brn-3b transcription factor have opposite and antagonistic effects in neuroblastoma cells since Brn-3a is associated with differentiation whilst Brn-3b enhances proliferation in these cells. In this study, we demonstrate that like Brn-3a, Brn-3b physically interacts with p53. However, whereas Brn-3a repressed p53 mediated Bax expression but cooperated with p53 to increase p21cip1/waf1, this study demonstrated that co-expression of Brn-3b with p53 increases trans-activation of Bax promoter but not p21cip1/waf1. Consequently co-expression of Brn-3b with p53 resulted in enhanced apoptosis, which is in contrast to the increased survival and differentiation, when Brn-3a is co-expressed with p53. For Brn-3b to cooperate with p53 on the Bax promoter, it requires binding sites that flank p53 sites on this promoter. Furthermore, neurons from Brn-3b knock-out (KO) mice were resistant to apoptosis and this correlated with reduced Bax expression upon induction of p53 in neurons lacking Brn-3b compared with controls. Thus, the ability of Brn-3b to interact with p53 and modulate Bax expression may demonstrate an important mechanism that helps to determine the fate of cells when p53 is induced.


Assuntos
Apoptose , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Sítios de Ligação , Ciclo Celular , Linhagem Celular , Células Cultivadas , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fator de Transcrição Brn-3B/química , Fator de Transcrição Brn-3B/genética , Proteína X Associada a bcl-2/biossíntese
19.
Expert Opin Ther Targets ; 10(1): 15-25, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16441225

RESUMO

The Brn-3b POU domain transcription factor is elevated in a significant proportion of breast cancers and in neuroblastoma tumours, where it is associated with increased proliferation, anchorage-independent growth, faster and larger tumour growth in xenograft models, resistance to growth inhibitory stimuli and increased migratory potential. These effects are associated with the ability of Brn-3b to regulate specific genes associated with these processes. Reducing Brn-3b can reverse many of these effects, suggesting that it may be possible to alter the growth and behaviour of tumour cells by abrogating Brn-3b in these cancers. This review discusses the effect of altering Brn-3b in these cancer cells and possible approaches to targeting Brn-3b as a strategy for therapy in treatment of breast cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fator de Transcrição Brn-3B/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Humanos , Dados de Sequência Molecular , Fator de Transcrição Brn-3B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA