Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 9(11): 1121, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401820

RESUMO

Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1-/-/E2F2-/- or E2F2-/- transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.


Assuntos
Lesões Encefálicas Traumáticas/prevenção & controle , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Caspases/genética , Caspases/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F2/deficiência , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
PLoS One ; 13(4): e0194937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617434

RESUMO

The E2F transcription factors control key elements of development, including mammary gland branching morphogenesis, with several E2Fs playing essential roles. Additional prior data has demonstrated that loss of individual E2Fs can be compensated by other E2F family members, but this has not been tested in a mammary gland developmental context. Here we have explored the role of the E2Fs and their ability to functionally compensate for each other during mammary gland development. Using gene expression from terminal end buds and chromatin immunoprecipitation data for E2F1, E2F2 and E2F3, we noted both overlapping and unique mammary development genes regulated by each of the E2Fs. Based on our computational findings and the fact that E2Fs share a common binding motif, we hypothesized that E2F transcription factors would compensate for each other during mammary development and function. To test this hypothesis, we generated RNA from E2F1-/-, E2F2-/- and E2F3+/- mouse mammary glands. QRT-PCR on mammary glands during pregnancy demonstrated increases in E2F2 and E2F3a in the E2F1-/- mice and an increase in E2F2 levels in E2F3+/- mice. During lactation we noted that E2F3b transcript levels were increased in the E2F2-/- mice. Given that E2Fs have previously been noted to have the most striking effects on development during puberty, we hypothesized that loss of individual E2Fs would be compensated for at that time. Double mutant mice were generated and compared with the single knockouts. Loss of both E2F1 and E2F2 revealed a more striking phenotype than either knockout alone, indicating that E2F2 was compensating for E2F1 loss. Interestingly, while E2F2 was not able to functionally compensate for E2F3+/- during mammary outgrowth, increased E2F2 expression was observed in E2F3+/- mammary glands during pregnancy day 14.5 and lactation day 5. Together, these findings illustrate the specificity of E2F family members to compensate during development of the mammary gland.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Feminino , Regulação da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Gravidez , Interferência de RNA , RNA Interferente Pequeno/metabolismo
3.
Oncotarget ; 6(35): 38210-24, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26474282

RESUMO

In human breast cancer, mortality is associated with metastasis to distant sites. Therefore, it is critical to elucidate the biological mechanisms that underlie tumor progression and metastasis. Using signaling pathway signatures we previously predicted a role for E2F transcription factors in Myc induced tumors. To test this role we interbred MMTV-Myc transgenic mice with E2F knockouts. Surprisingly, we observed that the loss of E2F2 sharply increased the percentage of lung metastasis in MMTV-Myc transgenic mice. Examining the gene expression profile from these tumors, we identified genetic components that were potentially involved in mediating metastasis. These genes were filtered to uncover the genes involved in metastasis that also impacted distant metastasis free survival in human breast cancer. In order to elucidate the mechanism by which E2F2 loss enhanced metastasis we generated knockdowns of E2F2 in MDA-MB-231 cells and observed increased migration in vitro and increased lung colonization in vivo. We then examined genes that were differentially regulated between tumors from MMTV-Myc, MMTV-Myc E2F2-/-, and lung metastases samples and identified PTPRD. To test the role of PTPRD in E2F2-mediated breast cancer metastasis, we generated a knockdown of PTPRD in MDA-MB-231 cells. We noted that decreased levels of PTPRD resulted in decreased migration in vitro and decreased lung colonization in vivo. Taken together, these data indicate that E2F2 loss results in increased metastasis in breast cancer, potentially functioning through a PTPRD dependent mechanism.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/metabolismo , Genes myc , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Animais , Neoplasias da Mama/genética , Movimento Celular , Modelos Animais de Doenças , Fator de Transcrição E2F2/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Mapas de Interação de Proteínas , Interferência de RNA , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
4.
Mol Cell Biol ; 34(17): 3229-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24934442

RESUMO

While the E2F transcription factors (E2Fs) have a clearly defined role in cell cycle control, recent work has uncovered new functions. Using genomic signature methods, we predicted a role for the activator E2F transcription factors in the mouse mammary tumor virus (MMTV)-polyomavirus middle T oncoprotein (PyMT) mouse model of metastatic breast cancer. To genetically test the hypothesis that the E2Fs function to regulate tumor development and metastasis, we interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice. With the ablation of individual E2Fs, we noted alterations of tumor latency, histology, and vasculature. Interestingly, we noted striking reductions in metastatic capacity and in the number of circulating tumor cells in both the E2F1 and E2F2 knockout backgrounds. Investigating E2F target genes that mediate metastasis, we found that E2F loss led to decreased levels of vascular endothelial growth factor (Vegfa), Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression changes indicate that the E2Fs control the expression of genes critical to angiogenesis, the remodeling of the extracellular matrix, tumor cell survival, and tumor cell interactions with vascular endothelial cells that facilitate metastasis to the lungs. Taken together, these results reveal that the E2F transcription factors play key roles in mediating tumor development and metastasis in addition to their well-characterized roles in cell cycle control.


Assuntos
Fatores de Transcrição E2F/fisiologia , Neoplasias Mamárias Experimentais/etiologia , Animais , Antígenos Transformantes de Poliomavirus , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/secundário , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Knockout , Células Neoplásicas Circulantes/patologia , Neovascularização Patológica/genética , Infecções por Retroviridae/etiologia , Infecções por Retroviridae/patologia , Transdução de Sinais , Microambiente Tumoral , Infecções Tumorais por Vírus/etiologia , Infecções Tumorais por Vírus/patologia
5.
Cell Death Differ ; 20(7): 931-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23558950

RESUMO

The 'activating' E2fs (E2f1-3) are transcription factors that potently induce quiescent cells to divide. Work on cultured fibroblasts suggested they were essential for division, but in vivo analysis in the developing retina and other tissues disproved this notion. The retina, therefore, is an ideal location to assess other in vivo adenovirus E2 promoter binding factor (E2f) functions. It is thought that E2f1 directly induces apoptosis, whereas other activating E2fs only induce death indirectly by upregulating E2f1 expression. Indeed, mouse retinoblastoma (Rb)-null retinal neuron death requires E2f1, but not E2f2 or E2f3. However, we report an entirely distinct mechanism in dying cone photoreceptors. These neurons survive Rb loss, but undergo apoptosis in the cancer-prone retina lacking both Rb and its relative p107. We show that while E2f1 killed Rb/p107 null rod, bipolar and ganglion neurons, E2f2 was required and sufficient for cone death, independent of E2f1 and E2f3. Moreover, whereas E2f1-dependent apoptosis was p53 and p73-independent, E2f2 caused p53-dependent cone death. Our in vivo analysis of cone photoreceptors provides unequivocal proof that E2f-induces apoptosis independent of E2f1, and reveals distinct E2f1- and E2f2-activated death pathways in response to a single tumorigenic insult.


Assuntos
Apoptose/fisiologia , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Apoptose/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Retina/patologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/fisiologia , Proteína p107 Retinoblastoma-Like/deficiência , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/fisiologia , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
6.
Dev Biol ; 351(1): 35-45, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21185283

RESUMO

E2F transcription factors regulate the progression of the cell cycle by repression or transactivation of genes that encode cyclins, cyclin dependent kinases, checkpoint regulators, and replication proteins. Although some E2F functions are independent of the Retinoblastoma tumor suppressor (Rb) and related family members, p107 and p130, much of E2F-mediated repression of S phase entry is dependent upon Rb. We previously showed in cultured mouse embryonic fibroblasts that concomitant loss of three E2F activators with overlapping functions (E2F1, E2F2, and E2F3) triggered the p53-p21(Cip1) response and caused cell cycle arrest. Here we report on a dramatic difference in the requirement for E2F during development and in cultured cells by showing that cell cycle entry occurs normally in E2f1-3 triply-deficient epithelial stem cells and progenitors of the developing lens. Sixteen days after birth, however, massive apoptosis in differentiating epithelium leads to a collapse of the entire eye. Prior to this collapse, we find that expression of cell cycle-regulated genes in E2F-deficient lenses is aberrantly high. In a second set of experiments, we demonstrate that E2F3 ablation alone does not cause abnormalities in lens development but rescues phenotypic defects caused by loss of Rb, a binding partner of E2F known to recruit histone deacetylases, SWI/SNF and CtBP-polycomb complexes, methyltransferases, and other co-repressors to gene promoters. Together, these data implicate E2F1-3 in mediating transcriptional repression by Rb during cell cycle exit and point to a critical role for their repressive functions in cell survival.


Assuntos
Proliferação de Células , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F3/deficiência , Células Epiteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia
7.
Nature ; 462(7275): 925-9, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016601

RESUMO

The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the 'cancer cell cycle' in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1-3 and/or its relevance beyond irradiation has not been established. To address E2f1-3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1-3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f-Sirt1-p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.


Assuntos
Apoptose , Fatores de Transcrição E2F/deficiência , Retina/citologia , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Acetilação , Animais , Divisão Celular , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Fibroblastos , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neuroglia/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Nature ; 462(7275): 930-4, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016602

RESUMO

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Assuntos
Diferenciação Celular , Fatores de Transcrição E2F/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Alelos , Animais , Apoptose , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/metabolismo
9.
Nature ; 454(7208): 1137-41, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18594513

RESUMO

The E2F family is conserved from Caenorhabditis elegans to mammals, with some family members having transcription activation functions and others having repressor functions. Whereas C. elegans and Drosophila melanogaster have a single E2F activator protein and repressor protein, mammals have at least three activator and five repressor proteins. Why such genetic complexity evolved in mammals is not known. To begin to evaluate this genetic complexity, we targeted the inactivation of the entire subset of activators, E2f1, E2f2, E2f3a and E2f3b, singly or in combination in mice. We demonstrate that E2f3a is sufficient to support mouse embryonic and postnatal development. Remarkably, expression of E2f3b or E2f1 from the E2f3a locus (E2f3a(3bki) or E2f3a(1ki), respectively) suppressed all the postnatal phenotypes associated with the inactivation of E2f3a. We conclude that there is significant functional redundancy among activators and that the specific requirement for E2f3a during postnatal development is dictated by regulatory sequences governing its selective spatiotemporal expression and not by its intrinsic protein functions. These findings provide a molecular basis for the observed specificity among E2F activators during development.


Assuntos
Fatores de Transcrição E2F/metabolismo , Desenvolvimento Embrionário , Crescimento , Animais , Células Cultivadas , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Perda do Embrião/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Deleção de Genes , Genótipo , Crescimento/genética , Camundongos , Camundongos Knockout , Fenótipo
10.
Diabetes ; 57(6): 1605-17, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375440

RESUMO

OBJECTIVE: Chronic pancreatitis, characterized by pancreatic exocrine tissue destruction with initial maintenance of islets, eventually leads to insulin-dependent diabetes in most patients. Mice deficient for the transcription factors E2F1 and E2F2 suffer from a chronic pancreatitis-like syndrome and become diabetic. Surprisingly, onset of diabetes can be prevented through bone marrow transplantation. The goal of the described studies was to determine the hematopoietic cell type responsible for maintaining islets and the associated mechanism of this protection. RESEARCH DESIGN AND METHODS: Mouse models of acute and chronic pancreatitis, together with mice genetically deficient for macrophage production, were used to determine roles for macrophages in islet angiogenesis and maintenance. RESULTS: We demonstrate that macrophages are essential for preventing endocrine cell loss and diabetes. Macrophages expressing matrix metalloproteinase-9 migrate to the deteriorating pancreas. E2f1/E2f2 mutant mice transplanted with wild-type, but not macrophage-deficient colony stimulating factor 1 receptor mutant (Csf1r(-/-)), bone marrow exhibit increased angiogenesis and proliferation within islets, coinciding with increased islet mass. A similar macrophage dependency for islet and islet vasculature maintenance is observed during caerulein-induced pancreatitis. CONCLUSIONS: These findings demonstrate that macrophages promote islet angiogenesis and protect against islet loss during exocrine degeneration, could explain why most patients with chronic pancreatitis develop diabetes, and suggest an avenue for preventing pancreatitis-associated diabetes.


Assuntos
Transplante de Medula Óssea , Diabetes Mellitus/prevenção & controle , Ilhotas Pancreáticas/irrigação sanguínea , Macrófagos/fisiologia , Animais , Diabetes Mellitus/patologia , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Pâncreas/patologia , Pancreatite/genética , Pancreatite/prevenção & controle , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/prevenção & controle , Pancreatite Crônica/genética , Pancreatite Crônica/prevenção & controle
11.
J Immunol ; 180(6): 3699-707, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18322175

RESUMO

The E2F4 protein is involved in gene repression and cell cycle exit, and also has poorly understood effects in differentiation. We analyzed the impact of E2F4 deficiency on early steps in mouse hematopoietic development, and found defects in early hematopoietic progenitor cells that were propagated through common lymphoid precursors to the B and T lineages. In contrast, the defects in erythromyeloid precursor cells were self-correcting over time. This suggests that E2F4 is important in early stages of commitment to the lymphoid lineage. The E2F4-deficient progenitor cells showed reduced expression of several key lymphoid-lineage genes, and overexpression of two erythromyeloid lineage genes. However, we did not detect effects on cell proliferation. These findings emphasize the significance of E2F4 in controlling gene expression and cell fate.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Fator de Transcrição E2F2/fisiologia , Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Feminino , Feto , Fator de Transcrição Ikaros/deficiência , Fator de Transcrição Ikaros/genética , Fígado/citologia , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/imunologia , Células Mieloides/metabolismo
12.
Mol Cell Biol ; 27(24): 8713-28, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923680

RESUMO

By assessing the contribution of deregulated E2F activity to erythroid defects in Rb null mice, we have identified E2f-2 as being upregulated in end-stage red cells, where we show it is the major pRb-associated E2f and the predominant E2f detected at key target gene promoters. Consistent with its expression pattern, E2f-2 loss restored terminal erythroid maturation to Rb null red cells, including the ability to undergo enucleation. Deletion of E2f-2 also extended the life span of Rb null mice despite persistent defects in placental development, indicating that deregulated E2f-2 activity in differentiating erythroblasts contributes to the premature lethality of Rb null mice. We show that the aberrant entry of Rb null erythroblasts into S phase at times in differentiation when wild-type erythroblasts are exiting the cell cycle is inhibited by E2f-2 deletion. E2f-2 loss induced cell cycle arrest in both wild-type and Rb null erythroblasts and was associated with increased DNA double-strand breaks. These results implicate deregulated E2f-2 in the cell cycle defects observed in Rb null erythroblasts and reveal a novel role for E2f-2 during terminal red blood cell differentiation. The identification of a tissue-restricted role for E2f-2 in erythropoiesis highlights the nonredundant nature of E2f transcription factor activities in cell growth and differentiation.


Assuntos
Ciclo Celular , Diferenciação Celular , Fator de Transcrição E2F2/metabolismo , Eritroblastos/citologia , Eritroblastos/patologia , Proteína do Retinoblastoma/deficiência , Animais , Núcleo Celular/metabolismo , Dano ao DNA , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Eritrócitos/citologia , Feminino , Viabilidade Fetal , Longevidade , Camundongos , Mitose , Fenótipo , Placenta/citologia , Fase S , Regulação para Cima/genética
13.
J Virol ; 81(23): 13191-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17855529

RESUMO

The simian virus 40 large T antigen contributes to neoplastic transformation, in part, by targeting the Rb family of tumor suppressors. There are three known Rb proteins, pRb, p130, and p107, all of which block the cell cycle by preventing the transcription of genes regulated by the E2F family of transcription factors. T antigen interacts directly with Rb proteins and disrupts Rb-E2F complexes both in vitro and in cultured cells. Consequently, T antigen is thought to inhibit transcriptional repression by the Rb family proteins by disrupting their interaction with E2F proteins, thus allowing E2F-dependent transcription and the expression of cellular genes needed for entry into S phase. This model predicts that active E2F-dependent transcription is required for T-antigen-induced transformation. To test this hypothesis, we have examined the status of Rb-E2F complexes in murine enterocytes. Previous studies have shown that T antigen drives enterocytes into S phase, resulting in intestinal hyperplasia, and that the induction of enterocyte proliferation requires T-antigen binding to Rb proteins. In this paper, we show that normal growth-arrested enterocytes contain p130-E2F4 complexes and that T-antigen expression destroys these complexes, most likely by stimulating p130 degradation. Furthermore, unlike their normal counterparts, enterocytes expressing T antigen contain abundant levels of E2F2 and E2F3a. Concomitantly, T-antigen-induced intestinal proliferation is reduced in mice lacking either E2F2 alone or both E2F2 and E2F3a, but not in mice lacking E2F1. These studies support a model in which T antigen eliminates Rb-E2F repressive complexes so that specific activator E2Fs can drive S-phase entry.


Assuntos
Antígenos Transformantes de Poliomavirus/fisiologia , Fator de Transcrição E2F2/metabolismo , Gastroenteropatias/virologia , Hiperplasia/virologia , Vírus 40 dos Símios/patogenicidade , Animais , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F4/metabolismo , Enterócitos/química , Enterócitos/virologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína p130 Retinoblastoma-Like/metabolismo
14.
PLoS Biol ; 5(7): e179, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17608565

RESUMO

It has long been known that loss of the retinoblastoma protein (Rb) perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light-evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f) 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle-independent differentiation defects specifically in starburst amacrine cells (SACs), cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue-specific factors. Remarkably, however, Rb promotes SAC differentiation by inhibiting E2f3 activity. Two E2f3 isoforms exist, and we find both in the developing retina, although intriguingly they show distinct subcellular distribution. E2f3b is thought to mediate Rb function in quiescent cells. However, in what is to our knowledge the first work to dissect E2f isoform function in vivo we show that Rb promotes SAC differentiation through E2f3a. These data reveal a mechanism through which Rb regulates neural differentiation directly, and, unexpectedly, it involves inhibition of E2f3a, not potentiation of tissue-specific factors.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Fator de Transcrição E2F3/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Apoptose , Sequência de Bases , Ciclo Celular , Diferenciação Celular/fisiologia , Primers do DNA/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Feminino , Genes do Retinoblastoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética
15.
PLoS Biol ; 3(12): e401, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16277552

RESUMO

Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism.


Assuntos
Transformação Celular Neoplásica , Replicação do DNA , DNA/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucemia/genética , Leucemia/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hidroxiureia/farmacologia , Leucemia/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fase S , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA