Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454344

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F7/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Prognóstico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genética
2.
Rev Invest Clin ; 76(1): 6-17, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253021

RESUMO

Background: Adriamycin resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Doxorrubicina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Proteínas de Membrana/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
Medicine (Baltimore) ; 103(3): e34342, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241554

RESUMO

E2F transcription factors (E2Fs) are a family of transcription factors critical regulators of the cell cycle, apoptosis, and differentiation, thus influencing tumorigenesis. However, the specific roles of E2Fs in lung adenocarcinoma (LUAD) remain unclear. Data from The Cancer Genome Atlas (TCGA) were used. R version. 4.0.3 and multiple databases (TIMER, cBioportal, gene expression profile interaction analysis [GEPIA], LinkedOmics, and CancerSEA) were utilized to investigate mRNA expression, mutational analysis, prognosis, clinical correlations, co-expressed gene, pathway and network, and single-cell analyses. Immunohistochemistry (IHC) confirmed that E2F transcription factor 7 (E2F7) correlated with LUAD. Among the E2Fs, E2F7 was identified by constructing a prognostic model most significantly associated with overall survival (OS) in LUAD patients. The univariate and multivariate Cox regression analyses showed that E2F7, p-T stage, and p-TNM stage were closely related to OS and progression-free survival (PFS) (P < .05) in LUAD. E2F 7/8 were also identified as significantly associated with tumor stage in the GEPIA database. Compared with paracancerous tissues, E2F7 was up-regulated in LUAD by IHC, and E2F7 might be positively correlated with larger tumors and higher TNM stages. E2F7 may primarily regulate DNA repair, damage, and cell cycle processes and thus affect LUAD tumorigenesis, invasion, and metastasis by LinkedOmics and CancerSEA. E2F7 serves as a potential prognostic biomarker for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Biomarcadores , Fator de Transcrição E2F7
4.
Anticancer Res ; 43(11): 4905-4914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909953

RESUMO

BACKGROUND/AIM: Endometrial cancer (EC) is a frequent gynecological cancer. Studies have demonstrated that the sensitivity of EC toward 5-fluorouracil (5-FU) chemotherapy has decreased, leading to unsatisfactory treatment effects. There is an urgent need to investigate the reasons for the unsatisfactory treatment of EC with 5-FU. The purpose of the study was to investigate the effect of RAD51AP1 after being transcriptionally activated by E2F7 on the sensitivity of EC cells to 5-FU chemotherapy via the fatty acid metabolic pathway. MATERIALS AND METHODS: mRNA expression data on EC were downloaded from The Cancer Genome Atlas database, subjected to differential expression analysis, and the target genes were determined based on the bioinformatics analysis and literature consulting. The regulatory transcription factor upstream of RAD51AP1 in EC was predicted using the hTFtarget database. The expression of E2F7 and RAD51AP1 was measured by qRT-PCR and western blot. Then, the transcriptional activation relationship between E2F7 and RAD51AP1 was verified by chromatin immunoprecipitation (ChIP) and dual luciferase assays. The IC50 values of EC cells toward 5-FU were determined by the CCK-8 assay, and cell apoptosis was detected by flow cytometry. The expression of apoptosis-related and fatty acid metabolism-related proteins was evaluated by western blot. RESULTS: Bioinformatics analysis showed that both E2F7 and RAD51AP1 were highly expressed in EC, and the possible binding sites between RAD51AP1 promoter and E2F7 were predicted. ChIP assay and dual luciferase assay confirmed the binding of E2F7 to RAD51AP1 promoter region. Cell experiments showed that overexpressing RAD51AP1 could facilitate the growth and fatty acid metabolism of EC cells, and suppress cell sensitivity to 5-FU, while silencing of E2F7 could reduce the effect of RAD51AP1 overexpression on EC cell growth and sensitivity toward 5-FU. CONCLUSION: The E2F7/RAD51AP1 axis can promote the growth of EC cells and inhibit cell sensitivity to 5-FU by regulating fatty acid metabolism, suggesting that E2F7/RAD51AP1 axis may be a novel pathway for EC treatment.


Assuntos
Neoplasias do Endométrio , Humanos , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Ácidos Graxos , Fluoruracila/farmacologia , Redes e Vias Metabólicas , Luciferases , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Fator de Transcrição E2F7
5.
J Mol Histol ; 54(5): 489-498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615745

RESUMO

Cervical cancer (CC) is the second most common type of cancer in women, and presents a serious threat to public health. We aimed to investigate the regulatory impacts of CDGSH iron-sulfur domain-containing protein 2 (CISD2) in CC and to discuss its relationship with E2F transcription factor 7 (E2F7). With the employment of real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the expression of CISD2 and E2F7 in SiHa cells before or after transfection was estimated. Cell counting kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, wound healing and transwell were used to detect the proliferation, apoptosis, migration and invasion of SiHa cells. The activity of CISD2 was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) assay was used to confirm the binding of E2F7 and CISD2 promoter. The contents of proliferation- and apoptosis-related proteins were detected using western blot. Results revealed that CISD2 expression was greatly enhanced in CC cell lines. CISD2 depletion inhibited the proliferation, migration and invasion of SiHa cells but promoted the cell apoptosis. It was also found that E2F7 was remarkably elevated in SiHa cells. According to JASPAR database, the binding sites of E2F7 and CISD2 were predicted and ChIP confirmed the binding of E2F7 and CISD2 promoter. Results obtained from luciferase report assay indicated that E2F7 overexpression increased the activity of CISD2 promoter region. Furthermore, further functional experiments demonstrated that the impacts of E2F7 interference on the proliferation, migration, invasion and apoptosis of SiHa cells were reversed by CISD2 overexpression. In summary, CISD2 silence could alleviate the malignant progression of CC and could be transcribed by E2F7.


Assuntos
Fatores de Transcrição , Neoplasias do Colo do Útero , Humanos , Feminino , Fatores de Transcrição/metabolismo , Neoplasias do Colo do Útero/patologia , Regulação da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo
6.
Arch Biochem Biophys ; 744: 109694, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481196

RESUMO

Triple-negative breast cancer (TNBC), accounting for about 15∼18% of all breast cancers, is notorious for its poor prognosis, high rate of relapse and short overall survival. Because of lacking effective therapeutic targets or drugs, treatment of TNBC in clinical encounters great obstacle. Siegesbeckiaorientalis L. have been used as a traditional Chinese medicine "Xi-Xian-Cao" for centuries with multiple medicinal benefits including cancerous treatment. We have reported the isolation of twenty-seven germacranolides including So-2 from the aerial parts of S. orientalis with potent cytotoxicity against breast cancer cells. The studyaims to verified the anti-TNBC function of the natural compound So-2 both in vitro and vivo and uncover the underlying mechanism. The results showed that So-2 caused cell cycle arrest and suppress TNBC cell proliferation and migration. Also, So-2 was first identified to be a bona fide ferroptosis inducer in TNBC cells. So-2 effectively suppressed tumor growth of TNBC by using an orthotopic transplantation tumor model. We also characterized the oncogenic role of the transcription factor E2F7 in TNBC. E2F7 was demonstrated to be involved in the ferroptosis-inducing and tumor suppression effect of So-2. Altogether, So-2 exhibits inhibitory effect on TNBC both in vitro and vivo by inducing TNBC ferroptosis via downregulating the expression of E2F7. These findings provide valuable insight into the pathogenesis of TNBC. The natural compound So-2, isolated from Chinese traditional medicine, might be a prospective drug candidate in TNBC therapy.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F7 , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Thorac Cancer ; 14(20): 1946-1957, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37277864

RESUMO

BACKGROUND: Cisplatin (DDP) treatment is one of the most predominant chemotherapeutic strategies for lung cancer patients. Circular RNAs (circRNAs) have been revealed to participate in the chemoresistance in lung cancer. Hence, the role and mechanism of circ_0010235 in cisplatin resistance in lung cancer was investigated. METHODS: Expression levels of circ_0010235, microRNA (miR)-379-5p and E2F transcription factor 7 (E2F7) were analyzed using quantitative reverse transcription PCR (qRT-PCR) and western blot. Cell DDP sensitivity, proliferation, apoptosis, invasion, and migration were detected by cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EDU) assay, flow cytometry and western blot, respectively. The binding interaction was verified using dual-luciferase reporter assay. A murine xenograft model was established to investigate effects in vivo. RESULTS: Circ_0010235 was highly expressed in DDP-resistant lung cancer tissues and cells. Knockdown of circ_0010235 elevated DDP sensitivity, constrained proliferation, invasion and migration as well as fostered apoptosis in DDP-resistant lung cancer cells. Moreover, circ_0010235 silencing boosted DDP sensitivity and impeded tumor growth in lung cancer in vivo. Mechanistically, circ_0010235 acted as a sponge for miR-379-5p to elevate the expression of its target E2F7. Rescue experiments showed that miR-379-5p inhibition attenuated circ_0010235 knockdown-evoked reduction on DDP resistance of DDP-resistant cancer cells. In addition, miR-379-5p re-expression elevated DDP sensitivity and suppressed the malignant phenotype of DDP-resistant lung cancer cells through miR-379-5p. CONCLUSION: Circ_0010235 knockdown reduced DDP resistance and tumor growth via miR-379-5p/ E2F7 axis in lung cancer, suggesting an effective therapeutic target for lung cancer patients.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Apoptose , Contagem de Células , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F7 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo
8.
FASEB J ; 37(7): e23058, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358838

RESUMO

Dysregulation of the autotaxin (ATX, Enpp2)-lysophosphatidic acid (LPA) signaling in cancerous cells contributes to tumorigenesis and therapy resistance. We previously found that ATX activity was elevated in p53-KO mice compared to wild-type (WT) mice. Here, we report that ATX expression was upregulated in mouse embryonic fibroblasts from p53-KO and p53R172H mutant mice. ATX promoter analysis combined with yeast one-hybrid testing revealed that WT p53 directly inhibits ATX expression via E2F7. Knockdown of E2F7 reduced ATX expression and chromosome immunoprecipitation showed that E2F7 promotes Enpp2 transcription through cooperative binding to two E2F7 sites (promoter region -1393 bp and second intron 996 bp). Using chromosome conformation capture, we found that chromosome looping brings together the two E2F7 binding sites. We discovered a p53 binding site in the first intron of murine Enpp2, but not in human ENPP2. Binding of p53 disrupted the E2F7-mediated chromosomal looping and repressed Enpp2 transcription in murine cells. In contrast, we found no disruption of E2F7-mediated ENPP2 transcription via direct p53 binding in human carcinoma cells. In summary, E2F7 is a common transcription factor that upregulates ATX in human and mouse cells but is subject to steric interference by direct intronic p53 binding only in mice.


Assuntos
Fibroblastos , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Cromossomos , Lisofosfolipídeos/metabolismo , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo
9.
J Biol Chem ; 299(5): 104677, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028765

RESUMO

The N6-methyladenosine (m6A) modification possesses new and essential roles in tumor initiation and progression by regulating mRNA biology. However, the role of aberrant m6A regulation in nasopharyngeal carcinoma (NPC) remains unclear. Here, through comprehensive analyses of NPC cohorts from the GEO database and our internal cohort, we identified that VIRMA, an m6A writer, is significantly upregulated in NPC and plays an essential role in tumorigenesis and metastasis of NPC, both in vitro and in vivo. High VIRMA expression served as a prognostic biomarker and was associated with poor outcomes in patients with NPC. Mechanistically, VIRMA mediated the m6A methylation of E2F7 3'-UTR, then IGF2BP2 bound, and maintained the stability of E2F7 mRNA. An integrative high-throughput sequencing approach revealed that E2F7 drives a unique transcriptome distinct from the classical E2F family in NPC, which functioned as an oncogenic transcriptional activator. E2F7 cooperated with CBFB-recruited RUNX1 in a non-canonical manner to transactivate ITGA2, ITGA5, and NTRK1, strengthening Akt signaling-induced tumor-promoting effect.


Assuntos
Carcinogênese , Fator de Transcrição E2F7 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas de Ligação a RNA , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima
10.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765037

RESUMO

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma/genética , Diferenciação Celular/genética , Oncogenes/genética , Fator de Transcrição E2F7/genética
11.
Hum Cell ; 36(2): 738-751, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627545

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Uncontrolled angiogenesis plays a critical role in hepatocellular tumor growth and metastasis. In this study, we aimed to investigate the effects of circular RNA hsa_circ_0000519 and the potential involvement of microRNA (miR)-1296 and E2F transcription factor 7 (E2F7) in HCC development. Hsa_circ_0000519 was highly expressed in HCC cells and hepatocellular tumor tissues, and correlated with poor prognosis of HCC patients. Knockdown of hsa_circ_0000519 significantly reduced HCC cell viability, suppressed cell proliferation, and induced cell cycle arrest in G0/G1. Downregulation of hsa_circ_0000519 also inhibited formation of capillary-like endothelial structures in vitro and impeded microvessel formation in mice bearing HCC tumors. The migration and invasive capacities of HCC cells were markedly reduced by hsa_circ_0000519 knockdown. Hsa_circ_0000519 possessed a binding site for microRNA (miR)-1296. Upregulation of hsa_circ_0000519 significantly decreased the miR-1296 expression in both HCC cells and mouse xenografts. Furthermore, E2F7 was a target of miR-1296. Hsa_circ_0000519 positively regulated E2F7 via acting as a miR-1296 sponge. Upregulation of E2F7 abolished the inhibitory effects of hsa_circ_0000519 knockdown on HCC cell proliferation and angiogenesis. In conclusion, hsa_circ_0000519 promoted tumor progression and angiogenesis in HCC through the miR-1296/E2F7 axis. These data suggest the potential clinical application of hsa_circ_0000519 in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Neovascularização Patológica , RNA Circular , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Neovascularização Patológica/genética , RNA Circular/genética
12.
Kaohsiung J Med Sci ; 39(4): 390-403, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36718915

RESUMO

Dexmedetomidine (DEX), a common anesthetic, has significant effects on the biological features of cancer cells. Although numerous studies have been published on the impact of DEX on the biological characteristics of GC cells, the mechanism remains unknown. This study aimed to explore the effect of DEX on the biological properties of GC cells. DEX suppressed the viability and increased the apoptosis of GC cells in vitro and inhibited tumor growth in vivo. Besides, DEX raised the levels of reactive oxygen species (ROS) and iron, but decreased the levels of glutathione (GSH), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in GC cells, which were abolished by Ferrostatin-1 (the inhibitor of ferroptosis) treatment. In addition, the level of circ0008035 and E2F7 were downregulated, but miR-302a level was upregulated in DEX-treated GC cells. Circ0008035 increased the expression of E2F2 by acting as a sponge for miR-302a. Circ0008035 inhibited DEX-induced ferroptotic cell death in GC cells, which was reversed by miR-302a overexpression or E2F7 reduction. Taken together, DEX mediated ferroptotic cell death in GC through regulating the circ0008035/miR-302a/E2F7 axis, suggesting a feasible therapy option for GC.


Assuntos
Dexmedetomidina , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Dexmedetomidina/farmacologia , Morte Celular , Apoptose/genética , Glutationa , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Fator de Transcrição E2F7
13.
Appl Biochem Biotechnol ; 195(5): 3096-3108, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36525235

RESUMO

Endometrial cancer (EC) ranks fourth among the most common gynecologic malignancies. Despite advances in medical technology, the pathogenesis is still unclear. Numerous reports have identified the involvement of lncRNA in the malignant progression of endometrial cancer. The aim of the study was to investigate the expression level of lncRNA ENST00000585827 (lncRNA E27) in endometrial cancer and the molecular mechanism that regulates the development of endometrial cancer. Combined with the results of the previous study, PCR analysis confirmed that lncRNA E27 was significantly upregulated in endometrial cancer cell lines. The results of CCK-8, wound healing assay, and transwell experiments showed that lncRNA E27 could significantly inhibit cell proliferation, migration, and invasion. Flow cytometry results confirmed that lncRNA E27 could promote apoptosis. Furthermore, based on bioinformatics predictions, dual-luciferase assay and RT-qPCR analysis confirmed that miR-424, as its downstream molecule, competitively regulates the expression of E2F6/E2F7. Rescue experiments further supported that lncRNA E27 inhibited proliferation, migration, invasion, and promoted apoptosis of endometrial cancer through miR-424/E2F6/E2F7 signaling axis. Conclusively, our findings revealed the role of lncRNA E27 in regulating the miR-424/E2F6/E2F7 signaling axis during EC progression, opening up new strategies for the treatment of endometrial cancer.


Assuntos
Neoplasias do Endométrio , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Fator de Transcrição E2F6/genética , Fator de Transcrição E2F6/metabolismo
14.
Folia Neuropathol ; 60(3): 346-354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382488

RESUMO

INTRODUCTION: The paper aimed to explore the mechanism of miR-137 in modulating glioma. MATERIAL AND METHODS: qRT-PCR detected miR-137 and E2F7 mRNA expression in cells. The protein expression of E2F7 was measured using Western blot assay. Cell proliferation, scratch healing, transwell and programmed cell death assays were conducted to examine the influences of the genes on the biological function of glioma cells. The dual-luciferase assay verified the interaction between miR-137 and E2F7. RESULTS: MiR-137 was lowly expressed in glioma cells, and E2F7 was highly expressed. MiR-137 suppressed progression and promoted programmed cell death of glioma cells. MiR-137 could target and negatively regulate E2F7 expression to further accelerate programmed cell death of glioma cells. CONCLUSIONS: It was found that miR-137 could target E2F7 to restrain cell progression and accelerate programmed cell death of glioma cells, which is helpful to search for new molecular therapeutic targets for glioma.


Assuntos
Glioma , MicroRNAs , Humanos , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Proliferação de Células/genética , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo
15.
Medicine (Baltimore) ; 101(33): e29253, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984189

RESUMO

Adenocarcinoma is the most common pathological type of lung cancer. The E2F7 transcription factor has been confirmed to be related to the occurrence and development of a variety of solid tumors, but the relationship with the prognosis of lung cancer is still unclear. Therefore, we conducted this study to explore the prognostic value of E2F7 for lung adenocarcinoma (LUAD) patients. In this study, we analyzed samples from the Cancer Genome Atlas (TCGA) to study the correlation between the expression of E2F7 and clinical features, the difference in expression between tumors and normal tissues, the prognostic and diagnostic value, and Enrichment analysis of related genes. All statistical analysis uses R statistical software (version 3.6.3). The result shows that the expression level of E2F7 in LUAD was significantly higher than that of normal lung tissue (P = 1e-34). High expression of E2F7 was significantly correlated with gender (P = .034), pathologic stage (P = .046) and M stage (P = .025). Multivariate Cox analysis confirmed that E2F7 is an independent risk factor for OS in LUAD patients (P = .027). Genes related to cell cycle checkpoints, DNA damage telomere stress-induced senescence, DNA methylation, chromosome maintenance and mitotic prophase showed differential enrichment in the E2F7 high expression group. In short, high expression of E2F7 is an independent risk factor for OS in LUAD patients and has a high diagnostic value.


Assuntos
Adenocarcinoma de Pulmão , Fator de Transcrição E2F7 , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Fator de Transcrição E2F7/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
16.
Mol Carcinog ; 61(11): 975-988, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35924788

RESUMO

E2F family participates in most human malignancies by activating the transcription of the cell cycle-related genes. Whereas, as a specifical atypical member of this family, E2F7 was described as a repressor against its downstream genes and exerted oscillatory and controversial functions in cancers. Our previous study identified a molecular interaction promoting hepatocellular carcinoma (HCC) growth induced by SOX4 and Anillin. Meanwhile, we preliminarily identified SP1 as the upstream activator of SOX4. Intriguingly, we observed that the repressive E2F7 presents a remarkable high expression in HCC, and is positively correlated and involved in the same pathway with the potentially SP1/SOX4/Anillin axis. However, their exact interaction or mechanism controlling tumor progress between these genes has not been illustrated. Thus, we focused on this point in this study and attempted to improve the potential regulating axis in HCC cell proliferation and tumor growth for promoting tumor prevention and control. The expression profile of E2F7 in HCC tissues and tumor cells was detected along with the related candidate genes, through real-time quantitative polymerase chain reaction assay, the Western blot analysis, and the immunohistochemistry assay, combined with bioinformatics analysis of the HCC information from the the Cancer Genome Altas and Gene Expression Omnibus data sets. The correlation between E2F7 and HCC patients' clinicopathologic features was explored. Gain-of and loss-of-function assays were conducted both in vitro and in vivo along with the rescue experiment, for revealing the relative genes' functions in HCC progress. The ChIP and the dual-luciferase reporter assays were performed to verify the transcriptional regulating profile between E2F7 and SP1/SOX4/Anillin axis. E2F7 was upregulated in HCC and significantly correlated with SP1/SOX4/Anillin axis. High E2F7 expression is associated with dismal clinicopathologic features and poor survival of the patients. E2F7 depletion potently impaired SP1/SOX4/Anillin expression and significantly inhibited HCC growth. Furthermore, intensive exploration demonstrated that E2F7 preserves high SP1 levels by abrogating miR-383-5p in a transcriptional way. Atypical E2F7 is an important repressive transcription factor commonly upregulated in the HCC environment. E2F7 facilitates HCC growth by repressing miR-383-5p transcription and sequentially promoting SP1/SOX4/Anillin axis. Our findings provide us with probable targets for HCC prevention and therapeutic treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Contráteis , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/genética
17.
Am J Transplant ; 22(10): 2323-2336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35729702

RESUMO

The mammalian target of rapamycin (mTOR) pathway is frequently deregulated and has critical roles in cancer progression. mTOR inhibitor has been widely used in several kinds of cancers and is strongly recommended in patients with hepatocellular carcinoma (HCC) after liver transplantation (LT). However, the poor response to mTOR inhibitors due to resistance remains a challenge. Hypoxia-associated resistance limits the therapeutic efficacy of targeted drugs. The present study established models of HCC clinical samples and cell lines resistance to mTOR inhibitor sirolimus and screened out E2F7 as a candidate gene induced by hypoxia and promoting sirolimus resistance. E2F7 suppressed mTOR complex 1 via directly binding to the promoter of the TSC1 gene and stabilizes hypoxia-inducible factor-1α activating its downstream genes, which are responsible for E2F7-dependent mTOR inhibitor resistance. Clinically, low E2F7 expression could be an effective biomarker for recommending patients with HCC for anti-mTOR-based therapies after LT. Targeting E2F7 synergistically inhibited HCC growth with sirolimus in vivo. E2F7 is a promising target to reverse mTOR inhibition resistance. Collectively, our study points to a role for E2F7 in promoting mTOR inhibitor resistance in HCC and emphasizes its potential clinical significance in patients with HCC after LT.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F7 , Humanos , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Inibidores de MTOR , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
18.
Inflamm Res ; 71(4): 449-460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279736

RESUMO

OBJECTIVE: Chronic nonbacterial prostatitis (CNP) has remained one of the most prevalent urological diseases, particularly in older men. Dihydroartemisinin (DHA) has been identified as a semi-synthetic derivative of artemisinin that exhibits broad protective effects. However, the role of DHA in inhibiting CNP inflammation and prostatic epithelial cell proliferation remains largely unknown. MATERIALS AND METHODS: CNP animal model was induced by carrageenan in C57BL/6 mouse. Enzyme linked immunosorbent assay (ELISA), Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to examine inflammatory cytokines and proliferation genes expression. Immunofluorescence and immunochemistry staining were used to detect and E2F7 expression. Human prostatic epithelial cells (HPECs) and RWPE-1 was induced by lipopolysaccharide (LPS) to mimic CNP model in vitro. Cell proliferation was determined using MTS assay. RESULTS: DHA significantly alleviated the rough epithelium and inhibited multilamellar cell formation in the prostatic gland cavity and prostatic index induced by carrageenan. In addition, DHA decreased the expression of TNF-α and IL-6 inflammatory factors in prostatitis tissues and in LPS-induced epithelial cells. Upregulation of transcription factor E2F7, which expression was inhibited by DHA, was found in CNP tissues, human BPH tissues and LPS-induced epithelial cells inflammatory response. Mechanically, we found that depletion of E2F7 by shRNA inhibited epithelial cell proliferation and LPS-induced inflammation while DHA further enhance these effects. Furthermore, HIF1α was transcriptional regulated by E2F7 and involved in E2F7-inhibited CNP and cellular inflammatory response. Interestingly, we found that inhibition of HIF1α blocks E2F7-induced cell inflammatory response but does not obstruct E2F7-promoted cell growth. CONCLUSION: The results revealed that DHA inhibits the CNP and inflammation by blocking the E2F7/HIF1α pathway. Our findings provide new evidence for the mechanism of DHA and its key role in CNP, which may provide an alternative solution for the prevention and treatment of CNP.


Assuntos
Prostatite , Idoso , Animais , Artemisininas , Carragenina/efeitos adversos , Fator de Transcrição E2F7 , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prostatite/induzido quimicamente , Prostatite/tratamento farmacológico , Prostatite/genética
19.
Cell Death Dis ; 13(2): 174, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197448

RESUMO

Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.


Assuntos
Fator de Transcrição E2F7 , Neuroblastoma , Proteínas Nucleares , Transporte Ativo do Núcleo Celular , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
20.
J Microbiol Biotechnol ; 31(8): 1098-1108, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34226413

RESUMO

The literature indicates that LINC00174 promotes the growth of colorectal cancer (CRC) cells, but its research needs to be enriched. We tried to explore the function and mechanism of LINC00174 in CRC cell proliferation and migration. Bioinformatics analysis predicted the binding relationship and expressions of lncRNA, miRNA and mRNA. Clinical study analyzes the relationship between LINC00174 and clinical data characteristics of CRC patients. The expressions of LINC00174, miR-3127-5p and E2F7 were verified by RT-qPCR, and the combination of the two was verified by dual luciferase analysis and RNA immunoprecipitation as needed. Western blot was used to detect the expression of EMT-related protein and E2F7 protein. Functional experiments were used to evaluate the function of the target gene on CRC cells. LINC00174 was up-regulated in CRC clinical samples and cells and was related to the clinical characteristics of CRC patients. High-expression of LINC00174, contrary to the effect of siLINC00174, promoted cell viability, proliferation, migration and invasion, up-regulated the expressions of N-Cadherin, Vimentin, E2F7, and inhibited the expression of E-Cadherin. MiR-3127-5p was one of the targeted miRNAs of LINC00174 and was down-regulated in CRC samples. In addition, miR-3127-5p mimic partially reversed the malignant phenotype of CRC cells induced by LINC00174. Besides, E2F7 was a target gene of miR-3127-5p, and LINC00174 repressed miR-3127-5p to regulate E2F7. Our research reveals that LINC00174 affected the biological characteristics of CRC cells through regulated miR-3127-5p/ E2F7 axis.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Fator de Transcrição E2F7/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Fator de Transcrição E2F7/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA