Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genome Biol ; 22(1): 197, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225769

RESUMO

BACKGROUND: Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS: Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS: By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Animais , Diferenciação Celular , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Células Eritroides/citologia , Feto , Fator de Transcrição GATA1/deficiência , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Humanos , Cinética , Fígado/citologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
2.
Blood ; 136(6): 698-714, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350520

RESUMO

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Assuntos
Leucemia Eritroblástica Aguda/genética , Proteínas de Neoplasias/fisiologia , Fatores de Transcrição/fisiologia , Transcriptoma , Adulto , Animais , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Dioxigenases , Eritroblastos/metabolismo , Eritropoese/genética , Feminino , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Técnicas de Introdução de Genes , Heterogeneidade Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , RNA-Seq , Quimera por Radiação , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/fisiologia , Sequenciamento do Exoma , Adulto Jovem
3.
J Cell Mol Med ; 22(9): 4274-4282, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29971909

RESUMO

Allogeneic stem cell transplantation is currently the only curative therapy for primary myelofibrosis (MF), while the JAK2 inhibitor, ruxolitinib. Has been approved only for palliation. Other therapies are desperately needed to reverse life-threatening MF. However, the cell(s) and cytokine(s) that promote MF remain unclear. Several reports have demonstrated that captopril, an inhibitor of angiotensin-converting enzyme that blocks the production of angiotensin II (Ang II), mitigates fibrosis in heart, lung, skin and kidney. Here, we show that captopril can mitigate the development of MF in the Gata1low mouse model of primary MF. Gata1low mice were treated with 79 mg/kg/d captopril in the drinking water from 10 to 12 months of age. At 13 months of age, bone marrows were examined for fibrosis, megakaryocytosis and collagen expression; spleens were examined for megakaryocytosis, splenomegaly and collagen expression. Treatment of Gata1low mice with captopril in the drinking water was associated with normalization of the bone marrow cellularity; reduced reticulin fibres, splenomegaly and megakaryocytosis; and decreased collagen expression. Our findings suggest that treating with the ACE inhibitors captopril has a significant benefit in overcoming pathological changes associated with MF.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antineoplásicos/farmacologia , Captopril/farmacologia , Fator de Transcrição GATA1/genética , Mielofibrose Primária/tratamento farmacológico , Esplenomegalia/tratamento farmacológico , Administração Oral , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Colágeno/antagonistas & inibidores , Colágeno/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Água Potável/administração & dosagem , Reposicionamento de Medicamentos , Feminino , Fator de Transcrição GATA1/deficiência , Expressão Gênica , Masculino , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Reticulina/antagonistas & inibidores , Reticulina/genética , Reticulina/metabolismo , Esplenomegalia/genética , Esplenomegalia/metabolismo , Esplenomegalia/patologia
4.
Expert Rev Hematol ; 11(3): 169-184, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400094

RESUMO

INTRODUCTION: GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed. GATA1 is indispensable mainly for erythroid and megakaryocyte differentiation. In erythroid cells, GATA1 regulates early stages of differentiation, and its deficiency results in apoptosis. In megakaryocytes, GATA1 controls terminal maturation and its deficiency induces proliferation. GATA1 alterations are often found in diseases involving these two lineages, such as congenital erythroid and/or megakaryocyte deficiencies, including Diamond Blackfan Anemia (DBA), and acquired neoplasms, such as acute megakaryocytic leukemia (AMKL) and the myeloproliferative neoplasms (MPNs). Expert commentary: Since the first discovery of GATA1 mutations in AMKL, the number of diseases that are associated with impaired GATA1 function has increased to include DBA and MPNs. With respect to the latter, we are only just now appreciating the link between enhanced JAK/STAT signaling, GATA1 deficiency and disease pathogenesis.


Assuntos
Anemia de Diamond-Blackfan , Fator de Transcrição GATA1/deficiência , Neoplasias Hematológicas , Leucemia Megacarioblástica Aguda , Proteínas de Neoplasias/deficiência , Mielofibrose Primária , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Hematopoese , Humanos , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Leucemia Megacarioblástica Aguda/patologia , Megacariócitos/metabolismo , Megacariócitos/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Transdução de Sinais/genética
6.
Haematologica ; 102(4): 695-706, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082341

RESUMO

Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.


Assuntos
Proteínas Sanguíneas/genética , Elementos Facilitadores Genéticos , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Alelos , Plaquetas/metabolismo , Diferenciação Celular/genética , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Expressão Gênica , Genes Recessivos , Genes Reporter , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Megacariócitos/ultraestrutura , Mutação , Fenótipo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Trombocitopenia/sangue , Trombocitopenia/genética , Trombocitopenia/patologia
7.
Pediatr Blood Cancer ; 62(9): 1597-600, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25946618

RESUMO

BACKGROUND: Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous ribosomopathy and inherited bone marrow failure syndrome characterized by anemia, reticulocytopenia, and decreased erythroid precursors in the bone marrow with an increased risk of malignancy and, in approximately 50%, physical abnormalities. METHODS: We retrospectively analyzed clinical data from 77 patients with DBA born in the Russian Federation from 1993 to 2014. In 74 families there was one clinically affected individual; in only three instances a multiplex family was identified. Genomic DNA from 57 DBA patients and their first-degree relatives was sequenced for mutations in RPS19, RPS10, RPS24, RPS26, RPS7, RPS17, RPL5, RPL11, RPL35a, and GATA1. RESULTS: Severe anemia presented before 8 months of age in all 77 patients; before 2 months in 61 (78.2%); before 4 months in 71 (92.2%). Corticosteroid therapy was initiated after 1 year of age in the majority of patients. Most responded initially to steroids, while 5 responses were transient. Mutations in RP genes were detected in 35 of 57 patients studied: 15 in RPS19, 6 in RPL5, 3 in RPS7, 3 each in RPS10, RPS26, and RPL11 and 1 each in RPS24 and RPL35a; 24 of these mutations have not been previously reported. One patient had a balanced chromosomal translocation involving RPS19. No mutations in GATA1 were found. CONCLUSION: In our cohort from an ethnically diverse population the distribution of mutations among RP genes was approximately the same as was reported by others, although within genotypes most of the mutations had not been previously reported.


Assuntos
Anemia de Diamond-Blackfan/genética , Fator de Transcrição GATA1/genética , Mutação , Proteínas Ribossômicas/genética , Anormalidades Múltiplas/genética , Adolescente , Anemia de Diamond-Blackfan/epidemiologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Análise Mutacional de DNA , Feminino , Fator de Transcrição GATA1/deficiência , Heterogeneidade Genética , Genótipo , Cardiopatias Congênitas/genética , Humanos , Lactente , Masculino , Fenótipo , Estudos Retrospectivos , Proteínas Ribossômicas/deficiência , Federação Russa/epidemiologia , Análise de Sequência de DNA , Adulto Jovem
8.
Blood ; 126(6): 807-16, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25995324

RESUMO

The thrombopoietic environment of the neonate is established during prenatal life; therefore, a comprehensive understanding of platelet-forming cell development during embryogenesis is critical to understanding the etiology of early-onset thrombocytopenia. The recent discovery that the first platelet-forming cells of the conceptus are not megakaryocytes (MKs) but diploid platelet-forming cells (DPFCs) revealed a previously unappreciated complexity in thrombopoiesis. This raises important questions, including the following. When do conventional MKs appear? Do pathogenic genetic lesions of adult MKs affect DPFCs? What role does myeloproliferative leukemia virus (MPL), a key regulator of adult megakaryopoiesis, play in prenatal platelet-forming lineages? We performed a comprehensive study to determine the spatial and temporal appearance of prenatal platelet-forming lineages. We demonstrate that DPFCs originate in the yolk sac and then rapidly migrate to other extra- and intraembryonic tissues. Using gene disruption models of Gata1 and Nfe2, we demonstrate that perturbing essential adult MK genes causes an analogous phenotype in the early embryo before the onset of hematopoietic stem/progenitor cell-driven (definitive) hematopoiesis. Finally, we present the surprising finding that DPFC and MK commitment from their respective precursors is MPL independent in vivo but that completion of MK differentiation and establishment of the prenatal platelet mass is dependent on MPL expression.


Assuntos
Plaquetas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Megacariócitos/metabolismo , Receptores de Trombopoetina/genética , Trombopoese/genética , Saco Vitelino/metabolismo , Animais , Plaquetas/citologia , Diferenciação Celular , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Deleção de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/citologia , Camundongos , Camundongos Knockout , Subunidade p45 do Fator de Transcrição NF-E2/deficiência , Subunidade p45 do Fator de Transcrição NF-E2/genética , Receptores de Trombopoetina/metabolismo , Transcrição Gênica , Saco Vitelino/citologia , Saco Vitelino/crescimento & desenvolvimento
9.
J Cell Physiol ; 230(4): 783-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205203

RESUMO

GATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone.


Assuntos
Fator de Transcrição GATA1/deficiência , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Animais , Reabsorção Óssea/genética , Fêmur/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteogênese/genética , Osteoprotegerina/deficiência
10.
Cell Death Dis ; 5: e988, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24407241

RESUMO

GATA1 mutations are tightly associated with transient myeloproliferative disorder (TMD) and acute megakaryoblstic leukemia (AMKL) in children with Down syndrome. Numerous genes are altered in GATA-1-deficient megakaryocytes, which may contribute to the hyperproliferation and abnormal terminal differentiation of these malignant cells. In this study, we demonstrate that Pstpip2 is a GATA-1-repressed gene that controls megakaryopoiesis. Ectopic expression of PSTPIP2 impaired megakaryocytic differentiation as evidenced by a decrease of CD41 expression and reduced DNA content in K562 cells. PSTPIP2 overexpression also caused enhanced activation of Src family kinases and subsequently reduced ERK phosphorylation. Consistently, PSTPIP2 knockdown showed the opposite effect on differentiation and signaling. Moreover, the W232A mutant of PSTPIP2, defective in its interaction with PEST family phosphatases that recruit c-Src terminal kinase (CSK) to suppress Src family kinases, failed to inhibit differentiation and lost its ability to enhance Src family kinases or reduce ERK phosphorylation. In fact, the W232A mutant of PSTPIP2 promoted megakaryocyte differentiation. These observations suggest that PSTPIP2 recruiting PEST phosphatases somehow blocked CSK activity and led to enhanced activation of Src family kinases and reduced ERK phosphorylation, which ultimately repressed megakaryocyte differentiation. Supporting this idea, PSTPIP2 interacted with LYN and the expression of a dominant negative LYN (LYN DN) overwhelmed the inhibitory effect of PSTPIP2 on differentiation and ERK signaling. In addition, a constitutively active LYN (LYN CA) normalized the enhanced megakaryocyte differentiation and repressed ERK signaling in PSTPIP2 knockdown cells. Finally, we found that PSTPIP2 repressed ERK signaling, differentiation, and proliferation and verified that PSTPIP2 upregulation repressed megakaryocyte development in primary mouse bone marrow cells. Our study thus reveals a novel mechanism by which dysregulation of PSTPIP2 due to GATA-1 deficiency may contribute to abnormal megakaryocyte proliferation and differentiation in pathogenesis of related diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica , Humanos , Células K562 , Megacariócitos/enzimologia , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais , Quinases da Família src/genética
11.
PLoS One ; 6(11): e27486, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110660

RESUMO

BACKGROUND: Acute megakaryocytic leukemia (AMkL) in Down syndrome (DS) children is uniformly associated with somatic GATA1 mutations, which result in the synthesis of a shorter protein (GATA1s) with altered transactivation activity compared to the wild-type GATA1. It is not fully established whether leukemogenesis and therapeutic responses in DS AMkL patients are due to loss of the wild-type GATA1 or due to a unique function of GATA1s. METHODOLOGY: Stable clones of CMK cells with decreased GATA1s or Bcl-2 levels were generated by using GATA1- or BCL-2-specific lentivirus shRNAs. In vitro ara-C, daunorubicin, and VP-16 cytotoxicities of the shRNA stable clones were determined by using the Cell Titer-blue reagent. Apoptosis and cell cycle distribution were determined by flow cytometry analysis. Changes in gene transcript levels were determined by gene expression microarray and/or real-time RT-PCR. Changes in protein levels were measured by Western blotting. In vivo binding of GATA1s to IL1A promoter was determined by chromatin immunoprecipitation assays. RESULTS: Lentivirus shRNA knockdown of the GATA1 gene in the DS AMkL cell line, CMK (harbors a mutated GATA1 gene and only expresses GATA1s), resulting in lower GATA1s protein levels, promoted cell differentiation towards the megakaryocytic lineage and repressed cell proliferation. Increased basal apoptosis and sensitivities to ara-C, daunorubicin, and VP-16 accompanied by down-regulated Bcl-2 were also detected in the CMK GATA1 shRNA knockdown clones. Essentially the same results were obtained when Bcl-2 was knocked down with lentivirus shRNA in CMK cells. Besides Bcl-2, down-regulation of GATA1s also resulted in altered expression of genes (e.g., IL1A, PF4, and TUBB1) related to cell death, proliferation, and differentiation. CONCLUSION: Our results suggest that GATA1s may facilitate leukemogenesis and potentially impact therapeutic responses in DS AMkL by promoting proliferation and survival, and by repressing megakaryocytic lineage differentiation, potentially by regulating expression of Bcl-2 protein and other relevant genes.


Assuntos
Síndrome de Down/complicações , Fator de Transcrição GATA1/metabolismo , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citarabina/farmacologia , Citarabina/uso terapêutico , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Interleucina-1alfa/genética , Lentivirus/genética , Leucemia Megacarioblástica Aguda/complicações , Leucemia Megacarioblástica Aguda/metabolismo , Megacariócitos/efeitos dos fármacos , Megacariócitos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética
12.
J Thromb Haemost ; 9(8): 1572-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21668739

RESUMO

BACKGROUND: Transcription factors are essential for blood cell formation. Mice expressing low levels of c-Myb (c-Myb(low)) have an increased number of bone marrow megakaryocytes (MKs) and corresponding thrombocytosis. In contrast, mice engineered to express low levels of GATA-1 (GATA-1(low)) in the megakaryocytic lineage exhibit aberrant megakaryocytopoiesis with hyperproliferation of progenitors and defective terminal differentiation leading to thrombocytopenia. These seemingly opposite roles may affect platelet turnover and thus be of clinical relevance. OBJECTIVE: To determine how these two transcription factors act together to control megakaryocytopoiesis and platelet formation. METHODS: We used a combination of cellular and molecular in vitro assays to examine the ability of bone marrow cells from mice expressing low levels of both c-Myb and GATA-1 (referred to as double(low)) to produce MKs and platelets. RESULTS: Double(low) cells, or those with low GATA-1 levels in which c-Myb is conditionally deleted, lack the hyperproliferative capacity of GATA-1(low) cells, allowing the cells to proceed towards more committed MKs that are, however, impaired in their capacity to produce fully differentiated cells, as confirmed by the abundance of morphologically aberrant cells that lack the ability to form proplatelets. CONCLUSION: c-Myb and GATA-1 act in concert to achieve correct megakaryocytic differentiation. GATA-1 regulates both the proliferation of megakaryocytic progenitors and their terminal maturation. c-Myb also acts at the level of the progenitor by influencing its commitment to differentiation, but in contrast to GATA-1 it does not have any effect on the process of terminal differentiation.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Transdução de Sinais , Trombopoese , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas c-myb/deficiência , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais/genética , Trombocitopenia/sangue , Trombocitopenia/genética , Trombocitose/sangue , Trombocitose/genética
13.
Blood ; 115(22): 4367-76, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20339093

RESUMO

Previously, we have shown that overexpression of an activated mutant of signal transducer and activator of transcription-5 (STAT5) induces erythropoiesis, impaired myelopoiesis, and an increase in long-term proliferation of human hematopoietic stem/progenitor cells. Because GATA1 is a key transcription factor involved in erythropoiesis, the involvement of GATA1 in STAT5-induced phenotypes was studied by shRNA-mediated knockdown of GATA1. CD34(+) cord blood cells were double transduced with a conditionally active STAT5 mutant and a lentiviral vector expressing a short hairpin against GATA1. Erythropoiesis was completely abolished in the absence of GATA1, indicating that STAT5-induced erythropoiesis is GATA1-dependent. Furthermore, the impaired myelopoiesis in STAT5-transduced cells was restored by GATA1 knockdown. Interestingly, early cobblestone formation was only modestly affected, and long-term growth of STAT5-positive cells was increased in the absence of GATA1, whereby high progenitor numbers were maintained. Thus, GATA1 down-regulation allowed the dissection of STAT5-induced differentiation phenotypes from the effects on long-term expansion of stem/progenitor cells. Gene expression profiling allowed the identification of GATA1-dependent and GATA1-independent STAT5 target genes, and these studies revealed that several proliferation-related genes were up-regulated by STAT5 independent of GATA1, whereas several erythroid differentiation-related genes were found to be GATA1 as well as STAT5 dependent.


Assuntos
Eritropoese/genética , Eritropoese/fisiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição STAT5/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Baixo , Sangue Fetal/citologia , Fator de Transcrição GATA1/antagonistas & inibidores , Fator de Transcrição GATA1/deficiência , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Recém-Nascido , Mielopoese/genética , Mielopoese/fisiologia , Interferência de RNA , Fator de Transcrição STAT5/genética , Transdução Genética
14.
Mol Cell Biol ; 29(18): 5168-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620289

RESUMO

GATA-2 is an essential transcription factor that regulates multiple aspects of hematopoiesis. Dysregulation of GATA-2 is a hallmark of acute megakaryoblastic leukemia in children with Down syndrome, a malignancy that is defined by the combination of trisomy 21 and a GATA1 mutation. Here, we show that GATA-2 is required for normal megakaryocyte development as well as aberrant megakaryopoiesis in Gata1 mutant cells. Furthermore, we demonstrate that GATA-2 indirectly controls cell cycle progression in GATA-1-deficient megakaryocytes. Genome-wide microarray analysis and chromatin immunoprecipitation studies revealed that GATA-2 regulates a wide set of genes, including cell cycle regulators and megakaryocyte-specific genes. Surprisingly, GATA-2 also negatively regulates the expression of crucial myeloid transcription factors, such as Sfpi1 and Cebpa. In the absence of GATA-1, GATA-2 prevents induction of a latent myeloid gene expression program. Thus, GATA-2 contributes to cell cycle progression and the maintenance of megakaryocyte identity of GATA-1-deficient cells, including GATA-1s-expressing fetal megakaryocyte progenitors. Moreover, our data reveal that overexpression of GATA-2 facilitates aberrant megakaryopoiesis.


Assuntos
Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA2/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Animais , Apoptose , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação para Baixo/genética , Fator de Transcrição GATA1/metabolismo , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Reprodutibilidade dos Testes , Transativadores/metabolismo
15.
PLoS Biol ; 7(6): e1000123, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19513100

RESUMO

How cell proliferation subsides as cells terminally differentiate remains largely enigmatic, although this phenomenon is central to the existence of multicellular organisms. Here, we show that GATA-1, the master transcription factor of erythropoiesis, forms a tricomplex with the retinoblastoma protein (pRb) and E2F-2. This interaction requires a LXCXE motif that is evolutionary conserved among GATA-1 orthologs yet absent from the other GATA family members. GATA-1/pRb/E2F-2 complex formation stalls cell proliferation and steers erythroid precursors towards terminal differentiation. This process can be disrupted in vitro by FOG-1, which displaces pRb/E2F-2 from GATA-1. A GATA-1 mutant unable to bind pRb fails to inhibit cell proliferation and results in mouse embryonic lethality by anemia. These findings clarify the previously suspected cell-autonomous role of pRb during erythropoiesis and may provide a unifying molecular mechanism for several mouse phenotypes and human diseases associated with GATA-1 mutations.


Assuntos
Fator de Transcrição E2F2/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Proteína do Retinoblastoma/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Divisão Celular , Proliferação de Células , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/deficiência , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína do Retinoblastoma/deficiência , Fatores de Transcrição/metabolismo
16.
Blood ; 114(5): 983-94, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19491391

RESUMO

GATA-1 and PU.1 are essential hematopoietic transcription factors that control erythromegakaryocytic and myelolymphoid differentiation, respectively. These proteins antagonize each other through direct physical interaction to repress alternate lineage programs. We used immortalized Gata1(-) erythromegakaryocytic progenitor cells to study how PU.1/Sfpi1 expression is regulated by GATA-1 and GATA-2, a related factor that is normally expressed at earlier stages of hematopoiesis. Both GATA factors bind the PU.1/Sfpi1 gene at 2 highly conserved regions. In the absence of GATA-1, GATA-2 binding is associated with an undifferentiated state, intermediate level PU.1/Sfpi1 expression, and low-level expression of its downstream myeloid target genes. Restoration of GATA-1 function induces erythromegakaryocytic differentiation. Concomitantly, GATA-1 replaces GATA-2 at the PU.1/Sfpi1 locus and PU.1/Sfpi1 expression is extinguished. In contrast, when GATA-1 is not present, shRNA knockdown of GATA-2 increases PU.1/Sfpi1 expression by 3-fold and reprograms the cells to become macrophages. Our findings indicate that GATA factors act sequentially to regulate lineage determination during hematopoiesis, in part by exerting variable repressive effects at the PU.1/Sfpi1 locus.


Assuntos
Eritropoese/genética , Fator de Transcrição GATA1/fisiologia , Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Repressoras/biossíntese , Trombopoese/genética , Transativadores/biossíntese , Animais , Linhagem da Célula , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Citocinas/farmacologia , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/citologia , Camundongos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/fisiologia
17.
Blood ; 111(8): 4375-85, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18258797

RESUMO

The transcription factor Gata1 is expressed in several hematopoietic lineages and plays essential roles in normal hematopoietic development during embryonic stages. The lethality of Gata1-null embryos has precluded determination of its role in adult erythropoiesis. Here we have examined the effects of Gata1 loss in adult erythropoiesis using conditional Gata1 knockout mice expressing either interferon- or tamoxifen-inducible Cre recombinase (Mx-Cre and Tx-Cre, respectively). Mx-Cre-mediated Gata1 recombination, although incomplete, resulted in maturation arrest of Gata1-null erythroid cells at the proerythroblast stage, thrombocytopenia, and excessive proliferation of megakaryocytes in the spleen. Tx-Cre-mediated Gata1 recombination resulted in depletion of the erythroid compartment in bone marrow and spleen. Formation of the early and late erythroid progenitors in bone marrow was significantly reduced in the absence of Gata1. Furthermore, on treatment with a hemolytic agent, these mice failed to activate a stress erythropoietic response, despite the rising erythropoietin levels. These results indicate that, in addition to the requirement of Gata1 in adult megakaryopoiesis, Gata1 is necessary for steady-state erythropoiesis and for erythroid expansion in response to anemia. Thus, ablation of Gata1 in adult mice results in a condition resembling aplastic crisis in human.


Assuntos
Anemia Aplástica/genética , Eritropoese , Fator de Transcrição GATA1/deficiência , Deleção de Genes , Animais , Animais Recém-Nascidos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Eritropoese/efeitos dos fármacos , Integrases/metabolismo , Interferons/farmacologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/patologia , Camundongos , Modelos Biológicos , Baço/efeitos dos fármacos , Baço/patologia , Tamoxifeno/farmacologia , Trombocitopenia/patologia
18.
J Exp Med ; 205(3): 611-24, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18299398

RESUMO

The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment.


Assuntos
Fator de Transcrição GATA1/antagonistas & inibidores , Fator de Transcrição GATA2/antagonistas & inibidores , Mastócitos/citologia , Mastócitos/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saco Vitelino/citologia , Saco Vitelino/metabolismo
19.
Haematologica ; 92(5): 597-604, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17488682

RESUMO

BACKGROUND AND OBJECTIVES: Myelofibrotic bone marrow displays abnormal angiogenesis but the pathogenic mechanisms of this are poorly understood. Since pericyte abnormalities are described on solid tumor vessels we studied whether vessel morphology and pericyte coverage in bone marrow samples from patients with myelofibrosis differed from that in samples from controls. DESIGN AND METHODS: We assessed the microvascular density (MVD), vessel morphology and pericyte coverage in bone marrows from 19 myelofibrosis patients and nine controls. We also studied the same parameters in two mouse models of myelofibrosis, with genetic alterations affecting megakaryocyte differentiation (i.e. one model with low GATA-1 expression and the other with over-expression of thrombopoietin). RESULTS: In myelofibrotic marrows, MVD was 3.8-fold greater than in controls (p<0.001) and vessels displayed 5.9-fold larger mean perimeters (p<0.001). MVD was 1.8-fold greater in JAK2 V617F-positive than in negative patients (p=0.026). Moreover, 92+/-11 % of vessels in patients with myelofibrosis were pericyte-coated but only 51+/-20 % of vessels in controls (p<0.001). In the two mouse models of myelofibrosis caused by targeting megakaryocytopoesis, wide, pericyte-coated and morphologically aberrant vessels were detected. MVD was significantly greater in bone marrow and spleen samples from animals with myelofibrosis than in wild-type mice. INTERPRETATION AND CONCLUSIONS: We conclude that angiogenesis is similarly abnormal in human and murine myelofibrosis with intense pericyte coating, presumably related to abnormal megakaryocytopoiesis.


Assuntos
Medula Óssea/patologia , Megacariócitos/patologia , Neovascularização Patológica/patologia , Pericitos/patologia , Mielofibrose Primária/patologia , Células Estromais/patologia , Actinas/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Medula Óssea/irrigação sanguínea , Capilares/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Fator de Transcrição GATA1/deficiência , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica/etiologia , Pericitos/química , Mielofibrose Primária/genética , Quimera por Radiação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Baço/irrigação sanguínea , Baço/patologia , Células Estromais/imunologia , Trombopoetina/biossíntese , Trombopoetina/genética , Fator de Crescimento Transformador beta1/genética
20.
Blood ; 109(12): 5199-207, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17317855

RESUMO

Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.


Assuntos
Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Fator de Transcrição GATA1/fisiologia , Megacariócitos/citologia , Poliploidia , Animais , Ciclina D , Quinase 4 Dependente de Ciclina/genética , Ciclinas/genética , Fator de Transcrição GATA1/deficiência , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos , Complexos Multiproteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA