Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Nat Cell Biol ; 26(10): 1759-1772, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232216

RESUMO

Human pancreatic cancer is characterized by the molecular diversity encompassing native duct-like and squamous cell-like identities, but mechanisms underlying squamous transdifferentiation have remained elusive. To comprehensively capture the molecular diversity of human pancreatic cancer, we here profiled 65 patient-derived pancreatic cancer organoid lines, including six adenosquamous carcinoma lines. H3K27me3-mediated erasure of the ductal lineage specifiers and hijacking of the TP63-driven squamous-cell programme drove squamous-cell commitment, providing survival benefit in a Wnt-deficient environment and hypoxic conditions. Gene engineering of normal pancreatic duct organoids revealed that GATA6 loss and a Wnt-deficient environment, in concert with genetic or hypoxia-mediated inactivation of KDM6A, facilitate squamous reprogramming, which in turn enhances environmental fitness. EZH2 inhibition counterbalanced the epigenetic bias and curbed the growth of adenosquamous cancer organoids. Our results demonstrate how an adversarial microenvironment dictates the molecular and histological evolution of human pancreatic cancer and provide insights into the principles and significance of lineage conversion in human cancer.


Assuntos
Carcinoma Ductal Pancreático , Proteína Potenciadora do Homólogo 2 de Zeste , Fator de Transcrição GATA6 , Organoides , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Organoides/metabolismo , Organoides/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Histonas/metabolismo , Histonas/genética , Camundongos , Proteínas Supressoras de Tumor , Histona Desmetilases
2.
Transl Res ; 273: 137-147, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39154856

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. This study aims to correlate molecular subtypes in metastatic PDAC with FOLFIRINOX responses using real-world data, providing assistance in counselling patients. We collected 131 RNA-sequenced metastatic biopsies and applied a network-based meta-analysis using published PDAC classifiers. Subsequent survival analysis was performed using the most suitable classifier. For validation, we developed an immunohistochemistry (IHC) classifier using GATA6 and keratin-17 (KRT17), and applied it to 86 formalin-fixed paraffin-embedded samples of advanced PDAC. Lastly, GATA6 knockdown models were generated in PDAC organoids and cell lines. We showed that the PurIST classifier was the most suitable classifier. With this classifier, classical tumors had longer PFS and OS than basal-like tumors (PFS: 216 vs. 78 days, p = 0.0002; OS: 251 vs. 195 days, p = 0.049). The validation cohort showed a similar trend. Importantly, IHC GATA6low patients had significantly shorter survival with FOLFIRINOX (323 vs. 746 days, p = 0.006), but no difference in non-treated patients (61 vs. 54 days, p = 0.925). This suggests that GATA6 H-score predicts therapy response. GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Fluoruracila , Fator de Transcrição GATA6 , Irinotecano , Leucovorina , Oxaliplatina , Neoplasias Pancreáticas , Transcriptoma , Humanos , Leucovorina/uso terapêutico , Oxaliplatina/uso terapêutico , Irinotecano/uso terapêutico , Fluoruracila/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Coortes , Idoso , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Metástase Neoplásica , Resultado do Tratamento
3.
FASEB J ; 38(15): e23867, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39101950

RESUMO

There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Queratina-17 , Queratina-5 , Neoplasias Pancreáticas , Proteínas S100 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Masculino , Feminino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Proteínas S100/genética , Proteínas S100/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Idoso , Queratina-17/genética , Queratina-17/metabolismo , Prognóstico , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Adulto , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores Quimiotáticos
4.
Sci Rep ; 14(1): 15598, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971768

RESUMO

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Fator de Transcrição GATA6 , Fator 4 Nuclear de Hepatócito , Imuno-Histoquímica , Neoplasias Pancreáticas , Humanos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Masculino , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Idoso , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/genética , Prognóstico , Queratina-5/metabolismo , Queratina-6/metabolismo , Idoso de 80 Anos ou mais , Adulto , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Fatores de Transcrição , Proteínas Supressoras de Tumor
5.
J Endocrinol Invest ; 47(11): 2873-2884, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38748197

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS: A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS: A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION: HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neovascularização Patológica , RNA Longo não Codificante , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Fator de Transcrição RelA , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Proliferação de Células , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação para Cima , Movimento Celular/genética , Linhagem Celular Tumoral , Hipóxia/metabolismo , Hipóxia/genética , Angiogênese
6.
Cell Rep Med ; 5(5): 101557, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733987

RESUMO

This study underscores GATA6's role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6's prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.


Assuntos
Carcinoma Ductal Pancreático , Fator de Transcrição GATA6 , Neoplasias Pancreáticas , Fenótipo , Humanos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Masculino , Feminino , Prognóstico , Idoso , Pessoa de Meia-Idade , Macrófagos/imunologia , Macrófagos/metabolismo , Resultado do Tratamento , Terapia Neoadjuvante/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
7.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702016

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSC) is associated with high mortality and has limited therapeutic treatment options. Plasminogen activator urokinase (PLAU) plays important roles in tumor cell malignancy. However, the oncogenic role of PLAU in the progression of LUSC remains unknown. GATA-binding factor 6 (GATA6), a key regulator of lung development, inhibits LUSC cell proliferation and migration, but the underlying regulatory mechanism remains to be further explored. Moreover, the regulatory effect of GATA6 on PLAU expression has not been reported. The aim of this study was to identify the role of PLAU and the transcriptional inhibition mechanism of GATA6 on PLAU expression in LUSC. METHODS: To identify the potential target genes regulated by GATA6, differentially expressed genes (DEGs) obtained from GEO datasets analysis and RNA-seq experiment were subjected to Venn analysis and correlation heatmap analysis. The transcriptional regulatory effects of GATA6 on PLAU expression were detected by real-time PCR, immunoblotting, and dual-luciferase reporter assays. The oncogenic effects of PLAU on LUSC cell proliferation and migration were evaluated by EdU incorporation, Matrigel 3D culture and Transwell assays. PLAU expression was detected in tissue microarray of LUSC via immunohistochemistry (IHC) assay. To determine prognostic factors for prognosis of LUSC patients, the clinicopathological characteristics and PLAU expression were subjected to univariate Cox regression analysis. RESULTS: PLAU overexpression promoted LUSC cell proliferation and migration. PLAU is overexpressed in LUSC tissues compared with normal tissues. Consistently, high PLAU expression, which acts as an independent risk factor, is associated with poor prognosis of LUSC patients. Furthermore, the expression of PLAU is transcriptionally regulated by GATA6. CONCLUSION: In this work, it was revealed that PLAU is a novel oncogene for LUSC and a new molecular regulatory mechanism of GATA6 in LUSC was unveiled. Targeting the GATA6/PLAU pathway might help in the development of novel therapeutic treatment strategies for LUSC.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Fator de Transcrição GATA6 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Humanos , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas de Membrana
8.
Cell Rep ; 43(5): 114159, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38676923

RESUMO

The traditional view of hematopoiesis is that myeloid cells derive from a common myeloid progenitor (CMP), whereas all lymphoid cell populations, including B, T, and natural killer (NK) cells and possibly plasmacytoid dendritic cells (pDCs), arise from a common lymphoid progenitor (CLP). In Max41 transgenic mice, nearly all B cells seem to be diverted into the granulocyte lineage. Here, we show that these mice have an excess of myeloid progenitors, but their CLP compartment is ablated, and they have few pDCs. Nevertheless, T cell and NK cell development proceeds relatively normally. These hematopoietic abnormalities result from aberrant expression of Gata6 due to serendipitous insertion of the transgene enhancer (Eµ) in its proximity. Gata6 mis-expression in Max41 transgenic progenitors promoted the gene-regulatory networks that drive myelopoiesis through increasing expression of key transcription factors, including PU.1 and C/EBPa. Thus, mis-expression of a single key regulator like GATA6 can dramatically re-program multiple aspects of hematopoiesis.


Assuntos
Fator de Transcrição GATA6 , Hematopoese , Camundongos Transgênicos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Animais , Camundongos , Linhagem da Célula , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Células Dendríticas/metabolismo , Diferenciação Celular , Linfócitos T/metabolismo , Linfócitos T/citologia , Proteínas Proto-Oncogênicas , Transativadores
9.
J Biol Chem ; 300(5): 107244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556087

RESUMO

Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.


Assuntos
Fator de Transcrição GATA6 , Macrófagos Peritoneais , MicroRNAs , Transcriptoma , Animais , Camundongos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas , Transativadores/genética , Transativadores/metabolismo
10.
Am J Dermatopathol ; 46(4): 223-227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457669

RESUMO

ABSTRACT: Epithelioid hemangioma (EH) is a benign vascular tumor displaying diverse histomorphologies. Among these, one EH subtype comprises cellular sheets of atypical epithelioid cells, posing potential challenges in distinguishing it from malignant vascular lesions. In this case report, we present a cutaneous cellular EH that carries the rare GATA6::FOXO1 gene fusion, a recent discovery. Our aim is to provide an updated insight into the evolving knowledge of EHs while delving into the histologic and molecular characteristics of the primary differential diagnoses.


Assuntos
Hiperplasia Angiolinfoide com Eosinofilia , Hemangioendotelioma Epitelioide , Hemangioma , Neoplasias Vasculares , Humanos , Hiperplasia Angiolinfoide com Eosinofilia/patologia , Hemangioma/patologia , Fusão Gênica , Diagnóstico Diferencial , Hemangioendotelioma Epitelioide/genética , Proteína Forkhead Box O1/genética , Fator de Transcrição GATA6/genética
11.
J Cancer Res Clin Oncol ; 150(3): 126, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483616

RESUMO

PURPOSE: This study aims to explore the role of GATA6 in lung cancer, with a focus on its impact on metabolic processes. METHODS: We assessed GATA6 expression in lung cancer tissues and its association with patient prognosis. In vitro cell function experiments were conducted to investigate the effects of altered GATA6 levels on lung cancer cell proliferation and migration. Mechanistic insights were gained by examining GATA6's influence on glucose metabolism-related genes, particularly its effect on c-Myc mRNA expression. RESULTS: Our study revealed significant down-regulation of GATA6 in lung cancer tissues, and this down-regulation was strongly correlated with unfavorable patient prognosis. Elevating GATA6 levels effectively inhibited the proliferation and migration of lung cancer cells in our cell function experiments. Mechanistically, we found that GATA6 suppressed the expression of c-Myc mRNA, impacting genes related to glucose metabolism. As a result, glucose uptake and metabolism in lung cancer cells were disrupted, ultimately impeding their malignant behaviors. CONCLUSION: Our study provides crucial insights into the metabolic regulation of GATA6 in lung cancer cells. These findings have the potential to offer a solid theoretical foundation for the development of novel clinical treatments for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , RNA Mensageiro/genética , Glucose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição GATA6/genética
12.
Hum Cell ; 37(1): 271-284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37768544

RESUMO

Ovarian cancer is the common cause of cancer-related death in women and is considered the most deadly gynecological cancer. It has been established that GATA-binding protein 6 (GATA6) is abnormally expressed in several types of malignant tumors and acts as an oncogenic protein or a tumor suppressor. However, the underlying mechanism of GATA6 in ovarian cancer progression has not been elucidated. Data in the present study revealed that GATA6 expression was negatively correlated to microRNA-10a-5p (miR-10a-5p) in ovarian cancer tissue and cells and that GATA6 is directly targeted by miR-10a-5p. Notably, upregulated miR-10a-5p dramatically inhibited ovarian cancer cell proliferation, tumorigenic ability, migration, and invasion by targeting GATA6. In vitro and in vivo experiments confirmed that miR-10a-5p-mediated downregulation of GATA6 suppressed Akt pathway activation. Overall, our findings suggest that miR-10a-5p could be a novel therapeutic target for ovarian cancer, and targeting the miR-10a-5p/GATA6/Akt axis could improve outcomes in this patient population.


Assuntos
Fator de Transcrição GATA6 , MicroRNAs , Neoplasias Ovarianas , Fator de Transcrição GATA6/antagonistas & inibidores , Fator de Transcrição GATA6/genética , MicroRNAs/genética , Neoplasias Ovarianas/terapia , Progressão da Doença , Humanos , Linhagem Celular Tumoral , Células HEK293 , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Animais , Camundongos , Lentivirus , Vetores Genéticos , Feminino , Movimento Celular , Proliferação de Células
13.
Kidney Int ; 105(1): 115-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914087

RESUMO

Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.


Assuntos
Insuficiência Renal Crônica , Sirtuínas , Calcificação Vascular , Humanos , Camundongos , Animais , Idoso , Músculo Liso Vascular , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Osteogênese , Células Cultivadas , Insuficiência Renal Crônica/patologia , Dano ao DNA , Senescência Celular/genética , Envelhecimento/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
14.
F S Sci ; 5(1): 92-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972693

RESUMO

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Assuntos
Adenomiose , Fator de Transcrição GATA2 , Fator de Transcrição GATA6 , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adenomiose/genética , Adenomiose/metabolismo , Adenomiose/patologia , Decídua/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/farmacologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Leiomioma , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Prolactina/metabolismo , Prolactina/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição
15.
Mol Biotechnol ; 66(3): 467-474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37204622

RESUMO

Monogenic diabetes caused by GATA6 mutations were almost described as neonatal diabetes, and the phenotypic spectrum has expanded since then. Our study underscores the broad phenotypic spectrum by reporting a de novo GATA6 mutation in a family. Furthermore, we reviewed related literature to summarize the clinical and genetic characteristics of monogenic diabetes with GATA6 mutations (n = 39) in order to improve clinicians' understanding of the disease. We conclude that the GATA6 missense mutation (c. 749G > T, p. Gly250Val) is not reported presently, characterized by adult-onset diabetes with pancreatic dysplasia and located in transcriptional activation region. Carries with GATA6 mutations (n = 55) have a variable spectrum of diabetes, ranging from neonatal (72.7%), childhood-onset (20%) to adults-onset (7.5%). 83.5% of patients with abnormal pancreatic development. Heart and hepatobillary defects are the most common abnormalities of extrapancreatic features. Most mutations with GATA6 are loss of function (LOF, 71.8%) and located in functional region. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, there are various types of diabetes with GATA6 mutations, which can also occur in adult diabetes. Phenotypic defects with GATA6 mutations are most frequently malformations of pancreas and heart. This highlights the importance of comprehensive clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias Congênitas , Recém-Nascido , Adulto , Humanos , Criança , Cardiopatias Congênitas/genética , Pâncreas/anormalidades , Mutação , Fenótipo , Fator de Transcrição GATA6/genética
16.
PeerJ ; 11: e16314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047026

RESUMO

Background: Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), have gained approval for treating patients with castration-resistant prostate cancer (CRPC). Maternally expressed gene 3 (MEG3), a long non-coding RNA (lncRNA), plays a role in inhibiting tumorigenesis through regulating DNA repair genes. This study aimed to investigate the association between the anti-prostate cancer (PCa) effect of niraparib, a representative PARPi, and MEG3 expression, as well as explore the downstream pathway involved. Methods: The levels of MEG3, miR-181-5p, GATA binding protein 6 (GATA6) in clinical samples from PCa patients were accessed by RT-qPCR. PC3 cells were treated with niraparib, and the expression of MEG3, miR-181-5p, GATA6 expression was tested. PC3 cell proliferation, migration, and invasion were tested by CCK-8, wound healing, and Transwell assays, respectively. The bindings between miR-181-5p and MEG3/GATA6 were determined by dual-luciferase reporter gene assay. Furthermore, rescue experiments were conducted to investigate the underlying mechanism of MEG3/miR-181-5p/GATA6 axis in PCa progression. Additionally, mice were injected with PC3 cells transfected with sh-MEG3 and treated with niraparib, and the xenograft tumor growth was observed. Results: MEG3 and GATA6 were upregulated and miR-181-5p was downregulated in PCa patients. Niraparib treatment substantially upregulated MEG3 and GATA6, and downregulated miR-181-5p expression in PCa cells. Niraparib effectively restrained PC3 cell proliferation, migration, and invasion. MiR-181-5p targeted to MEG3, and the inhibitory effects of MEG3 overexpression on PC3 cell proliferation and metastasis were abrogated by miR-181-5p overexpression. Moreover, GATA6 was identified as a target of miR-181-5p, and GATA6 silencing abolished the inhibitory effects of miR-181-5p inhibition on PC3 cell proliferation and metastasis. Besides, MEG3 silencing could abrogate niraparib-mediated tumor growth inhibition in mice. Conclusions: Niraparib restrains prostate cancer cell proliferation and metastasis and tumor growth in mice by regulating the lncRNA MEG3/miR-181-5p/GATA6 pathway.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias da Próstata/tratamento farmacológico , Fator de Transcrição GATA6/genética
17.
J Transl Med ; 21(1): 882, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057853

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a hypoxic microenvironment, a high rate of heterogeneity as well as a high likelihood of recurrence. Mounting evidence has affirmed that long non-coding RNAs (lncRNAs) participate in the carcinogenesis of PDAC cells. In this study, we revealed significantly decreased expression of GATA6-AS1 in PDAC based on the GEO dataset and our cohorts, and showed that low GATA6-AS1 expression was linked to unfavorable clinicopathologic characteristics as well as a poor prognosis. Gain- and loss-of-function studies demonstrated that GATA6-AS1 suppressed the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process of PDAC cells under hypoxia. In vivo data confirm the suppressive roles of GATA6-AS1/SNAI1 in tumor growth and lung metastasis of PDAC. Mechanistically, hypoxia-driven E26 transformation-specific sequence-1 (ETS1), as an upstream modulatory mechanism, was essential for the downregulation of GATA6-AS1 in PDAC cells. GATA6-AS1 inhibited the expression of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) eraser, and repressed SNAI1 mRNA stability in an m6A-dependent manner. Our data suggested that GATA6-AS1 can inhibit PDAC cell proliferation, invasion, migration, EMT process and metastasis under hypoxia, and disrupting the GATA6-AS1/FTO/SNAI1 axis might be a viable therapeutic approach for refractory hypoxic pancreatic cancers.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Microambiente Tumoral , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 732-737, 2023 Dec 13.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105674

RESUMO

A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Criança , Humanos , Pré-Escolar , Lactente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Mutação de Sentido Incorreto , Peptídeo C/genética , China , Insulina/genética , Glucose , Glicemia , Fator de Transcrição GATA6/genética
19.
Mol Biol Rep ; 50(10): 8623-8637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656269

RESUMO

BACKGROUND: The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin ß4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS: The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. ß-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and ß catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION: The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/ß-catenin.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Transcrição GATA6 , Integrina beta4 , MicroRNAs , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Integrina beta4/genética , Integrina beta4/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo
20.
Am J Respir Cell Mol Biol ; 69(5): 521-532, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37494067

RESUMO

The methylation of m6A (N6-position of adenosine) has been found to be associated with inflammatory response. We hypothesize that m6A modification plays a role in the inflammation of airway epithelial cells during lung inflammation. However, the precise changes and functions of m6A modification in airway epithelial cells in acute lung injury (ALI) are not well understood. Here we report that METTL3 (methyltransferase-like 3)-mediated m6A of GATA6 (GATA-binding factor 6) mRNA inhibits ALI and the secretion of proinflammatory cytokines in airway epithelial cells. The expression of METTL3 and m6A levels decrease in lung tissues of mice with ALI. In cocultures, peripheral blood monocytes secreted TNF-α, which reduces METTL3 and m6A levels in the human bronchial epithelial cell line BEAS-2B. Knockdown of METTL3 promotes IL-6 and TNF-α release in BEAS-2B cells. Conversely, overexpression of METTL3 increases total RNA m6A level and reduces the levels of proinflammatory cytokines TNF-α, transforming growth factor-ß, and thymic stromal lymphopoietin. Increasing METTL3 in mouse lungs prevented LPS-induced ALI and reduced the synthesis of proinflammatory cytokines. Mechanistically, sequencing and functional analysis show that METTL3 catalyzes m6A in the 3' untranslated region of GATA6 read by YTH N6-Methyladenosine RNA Binding Protein 2 and triggers mRNA degradation. GATA6 knockdown rescues TNF-α-induced inflammatory cytokine secretion of epithelial cells, indicating that GATA6 is a main substrate of METTL3 in airway epithelial cells. Overall, this study provides evidence of a novel role for METTL3 in the inflammatory cytokine release of epithelial cells and provides an innovative therapeutic target for ALI.


Assuntos
Lesão Pulmonar Aguda , Citocinas , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Fator de Transcrição GATA6/genética , Metilação , Metiltransferases/genética , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA