Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Sci Rep ; 14(1): 9458, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658633

RESUMO

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Idoso , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
2.
Biol Chem ; 405(5): 341-349, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38424700

RESUMO

Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.


Assuntos
Etoposídeo , Fator de Transcrição Ikaros , Fator de Transcrição Ikaros/metabolismo , Etoposídeo/farmacologia , Humanos , Proteólise/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
3.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301010

RESUMO

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
4.
Cancer Res Commun ; 4(2): 312-327, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38265263

RESUMO

Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE: We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.


Assuntos
Neoplasias Hematológicas , Linfoma Difuso de Grandes Células B , Piperidonas , Triazóis , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Caseína Quinases/metabolismo , Fator de Transcrição Ikaros/metabolismo
5.
J Med Chem ; 66(24): 16953-16979, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38085607

RESUMO

Lenalidomide achieves its therapeutic efficacy by recruiting and removing proteins of therapeutic interest through the E3 ligase substrate adapter cereblon. Here, we report the design and characterization of 81 cereblon ligands for their ability to degrade the transcription factor Helios (IKZF2) and casein kinase 1 alpha (CK1α). We identified a key naphthamide scaffold that depleted both intended targets in acute myeloid leukemia MOLM-13 cells. Structure-activity relationship studies for degradation of the desired targets over other targets (IKZF1, GSPT1) afforded an initial lead compound DEG-35. A subsequent scaffold replacement campaign identified DEG-77, which selectively degrades IKZF2 and CK1α, and possesses suitable pharmacokinetic properties, solubility, and selectivity for in vivo studies. Finally, we show that DEG-77 has antiproliferative activity in the diffuse large B cell lymphoma cell line OCI-LY3 and the ovarian cancer cell line A2780 indicating that the dual degrader strategy may have efficacy against additional types of cancer.


Assuntos
Caseína Quinase Ialfa , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Lenalidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Caseína Quinase Ialfa/metabolismo , Proteólise , Fator de Transcrição Ikaros/metabolismo
6.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581569

RESUMO

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Lenalidomida , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Medula Óssea , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transativadores/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Clin Transl Med ; 13(6): e1309, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345307

RESUMO

BACKGROUND: Genetic mutations of IKZF1 have been frequently delineated in B-lineage acute leukaemia (B-ALL) but rarely elucidated in acute myeloid leukaemia (AML). IKZF1 mutations confer a poor prognosis in AML, and hotspot mutations of IKZF1, N159Y and N159S tend to occur in B-ALL and AML respectively. However, the pathogenesis of IKZF1 N159S in AML and IKZF1 lineage susceptibility are largely unknown. METHODS: The genetic and clinical characteristics of IKZF1-mutated AML patients were evaluated. Multi-omics analysis and functional assays were performed in vitro using IKZF1 mutations knock-in AML cell lines. RESULTS: 23 (4.84%) small sequence variants of IKZF1 were identified in 475 newly diagnosed AML (non-M3) patients. Based on RNA sequencing, three classes of IKZF1-related AML were defined, including 9 patients (39.13%) with IKZF1 N159S mutations, 10 (43.47%) with CEBPA mutations and 4 others (17.39%). IKZF1 N159S may define a unique subgroup with higher HOXA/B expression and native B-cell immune fractions. Gene expression data of multiple knock-in cell lines indicate that the lymphocyte differentiation-related MME and CD44 kept high expression in IKZF1 N159Y but were downregulated in N159S. CUT&TAG sequencing showed that IKZF1 N159S reshaped the binding profiles of IKZF1. Integration analysis suggested that the pathogenesis of IKZF1 N159S may depend on the deregulation of several cofactors, such as oncogenic MYC and CPNE7 targets. CONCLUSIONS: Collectively, we dissected the molecular spectrum and clinical features of IKZF1-related AML, which may promote an in-depth understanding of the pathogenesis, lineage susceptibility and clinical research of AML.


Assuntos
Fator de Transcrição Ikaros , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Mutação , Transcriptoma , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Membrana/metabolismo
8.
Sci Rep ; 13(1): 8458, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231055

RESUMO

Immune reconstitution after hematopoietic stem cell transplantation (HSCT) is a complex and extremely variable process. The Ikaros transcription factor plays an important role in hematopoiesis in several cell lines, especially in the lymphoid lineage. We hypothesized that Ikaros might influence immune reconstitution, and consequently, the risk of opportunistic infections, relapse, and graft versus host disease (GVHD). Samples were collected from the graft and from the peripheral blood (PB) of the recipients 3 weeks after neutrophil recovery. Real-time polymerase chain reaction (RT-PCR) was performed to analyze the absolute and relative Ikaros expression. Patients were divided into two groups, according to Ikaros expression in the graft and in the recipients' PB based on the ROC curves for moderate/severe cGVHD. A cutoff of 1.48 was used for Ikaros expression in the graft, and a cutoff of 0.79 was used for Ikaros expression in the recipients' PB. Sixty-six patients were included in this study. Median age of patients was 52 years (range 16-80 years), 55% of them were male, and 58% of them had acute leukemia. Median follow-up period was 18 months (range 10-43 months). There was no association between Ikaros expression and the risk of acute GVHD, relapse, or mortality. However, a significant association was observed with the risk of chronic GVHD. Higher Ikaros expression in the graft was associated with a significantly higher cumulative incidence (CI) of moderate/severe chronic GVHD according to the National Institute of Health (NIH) classification at two years (54% vs. 15% for patients with lower expression, P = 0.03). A higher Ikaros expression in the recipients' PB 3 weeks after engraftment was also associated with a significantly higher risk of moderate/severe chronic GVHD (65% vs. 11%, respectively, P = 0.005). In conclusion, Ikaros expression in the graft and in the recipients' PB after transplantation was associated with a higher risk of moderate/severe chronic GVHD. Ikaros expression should be evaluated in larger prospective trials as a potential biomarker for chronic GVHD.


Assuntos
Síndrome de Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Fator de Transcrição Ikaros , Leucemia Mieloide Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Doença Crônica , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leucemia Mieloide Aguda/etiologia , Estudos Prospectivos , Recidiva , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
9.
Cell Signal ; 107: 110679, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37044192

RESUMO

Non-small cell lung cancer (NSCLC) is the predominant cause of cancer-related mortality globally, although many clinical efforts have been developed to improve the outcomes. The Ikaros zing-finger family transcription factors (IKZFs) have been proved to play pivotal roles in lymphopoiesis and myeloma progression, but their roles in solid tumors development remain unclear. We performed integrative bioinformatical analysis to determine the dysregulation expression of IKZFs in multiple tumors and the correlation between IKZF4 and NSCLC tumor environment. We showed that IKZFs were dysregulated in multiple tumors and IKZF4 was significantly decreased in NSCLC tissues and cell lines due to promoter hypermethylation. We found that low IKZF4 expression obviously correlated with patients' poor clinical outcome. We revealed that IKZF4 overexpression inhibited NSCLC cell growth, migration and xenograft tumor growth, supporting the inhibitory role of IKZF4 in NSCLC tumorigenesis. Additionally, integrative bioinformatical analysis showed that IKZF4 was involved in NSCLC tumor microenvironment. Mechanically, RNA-seq results showed that IKZF4 forced-expression remarkably suppressed Notch signaling pathway in NSCLC, which was validated by qRT-PCR and immunoblot assays. Moreover, we screened several potential agonists for IKZF4.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
10.
Clin Exp Immunol ; 212(2): 129-136, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433803

RESUMO

IKAROS/IKZF1 plays a pivotal role in lymphocyte differentiation and development. Germline mutations in IKZF1, which have been shown to be associated with primary immunodeficiency, can be classified through four different mechanisms of action depending on the protein expression and its functional defects: haploinsufficiency, dimerization defective, dominant negative, and gain of function. These different mechanisms are associated with variable degrees of susceptibility to infectious diseases, autoimmune disorders, allergic diseases, and malignancies. To date, more than 30 heterozygous IKZF1 germline variants have been reported in patients with primary immunodeficiency. Here we review recent discoveries and clinical/immunological characterization of IKAROS-associated diseases that are linked to different mechanisms of action in IKAROS function.


Assuntos
Doenças Autoimunes , Fator de Transcrição Ikaros , Neoplasias , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição
11.
J Med Chem ; 65(15): 10611-10625, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895319

RESUMO

Overexpression of nuclear receptor binding SET domain protein 2 (NSD2) is frequent in multiple myeloma (MM). However, existing NSD2 inhibitors are largely ineffective in suppressing MM cell proliferation. Here, we report the discovery of a first-in-class NSD2 proteolysis targeting chimera (PROTAC) degrader, 9 (MS159), and two structurally similar controls, 17 (MS159N1) and 18 (MS159N2), with diminished binding to the cereblon (CRBN) E3 ligase and NSD2, respectively. Compound 9, but not 17 and 18, effectively degraded NSD2 in a concentration-, time-, CRBN-, and proteasome-dependent manner. Compound 9 also effectively degraded CRBN neo-substrates IKZF1 and IKZF3, but not GSPT1. Importantly, compound 9 was much more effective in suppressing the growth in cancer cells than the parent NSD2 binder. Moreover, compound 9 was bioavailable in mice. Altogether, compound 9 and its two controls 17 and 18 are valuable chemical tools for exploring the roles of NSD2 in health and disease.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Fator de Transcrição Ikaros/metabolismo , Domínios PR-SET , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Oncogene ; 41(24): 3328-3340, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525905

RESUMO

WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.


Assuntos
Fator de Transcrição Ikaros , Peptídeos e Proteínas de Sinalização Intracelular , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Carcinogênese , Fator de Transcrição Ikaros/antagonistas & inibidores , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Nat Cancer ; 3(5): 595-613, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534777

RESUMO

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.


Assuntos
Leucemia Mieloide Aguda , Cromatina , Expressão Gênica , Humanos , Fator de Transcrição Ikaros/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Meis1/genética , Fatores de Transcrição/genética
14.
Clin Cancer Res ; 28(15): 3367-3377, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35583604

RESUMO

PURPOSE: Cereblon (CRBN), a substrate receptor of the E3 ubiquitin ligase complex CRL4CRBN, is the target of the small molecules lenalidomide and avadomide. Upon binding of the drugs, Aiolos and Ikaros are recruited to the E3 ligase, ubiquitylated, and subsequently degraded. In diffuse large B-cell lymphoma (DLBCL) cells, Aiolos and Ikaros are direct transcriptional repressors of interferon-stimulated genes (ISG) and degradation of these substrates results in increased ISG protein levels resulting in decreased proliferation and apoptosis. Herein, we aimed to uncover the mechanism(s) Aiolos and Ikaros use to repress ISG transcription and provide a mechanistic rationale for a combination strategy to enhance cell autonomous activities of CRBN modulators (CELMoD). EXPERIMENTAL DESIGN: We conducted paired RNA sequencing with histone modification and Aiolos/Ikaros chromatin immunoprecipitation sequencing to identify genes regulated by these transcription factors and to elucidate correlations to drug sensitivity. We confirmed Aiolos/Ikaros mediated transcriptional complex formation in DLBCL patient samples including those treated with avadomide. RESULTS: In DLBCL, the repression of ISG transcription is accomplished in part through recruitment of large transcriptional complexes such as the nucleosome remodeling and deacetylase, which modify the chromatin landscape of these promoters. A rational combination approach of avadomide with a specific histone deacetylase inhibitor leads to a significant increase in ISG transcription compared with either single agent, and synergistic antiproliferative activity in DLBCL cell lines. CONCLUSIONS: Our results provide a novel role for lineage factors Aiolos and Ikaros in DLBCL as well as further insight into the mechanism(s) of Aiolos and Ikaros-mediated transcriptional repression and unique therapeutic combination strategies.


Assuntos
Inibidores de Histona Desacetilases , Linfoma Difuso de Grandes Células B , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores Imunológicos/uso terapêutico , Lenalidomida/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Front Immunol ; 13: 866582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444653

RESUMO

AIOLOS is encoded by IKZF3 and is a member of the IKAROS zinc finger transcription factor family. Heterozygous missense variants in the second zinc finger of AIOLOS have recently been reported to be found in the families of patients with inborn errors of immunity. The AIOLOSG159R variant was identified in patients with B-lymphopenia and familial Epstein-Barr virus-associated lymphoma. Early B-cell progenitors were significantly reduced in the bone marrow of patients with AIOLOSG159R. Another variant, AIOLOSN160S was identified in the patients presented with hypogammaglobulinemia, susceptibility to Pneumocystis jirovecii pneumonia, and chronic lymphocytic leukemia. Patients with AIOLOSN160S had mostly normal B cell counts but showed increased levels of CD21lo B cells, decreased CD23 expression, and abrogated CD40 response. Both variants were determined to be loss-of-function. Mouse models harboring the corresponding patient's variants recapitulated the phenotypes of the patients. AIOLOS is therefore a novel disease-causing gene in human adaptive immune deficiency.


Assuntos
Infecções por Vírus Epstein-Barr , Fator de Transcrição Ikaros/genética , Síndromes de Imunodeficiência , Leucemia Linfocítica Crônica de Células B , Animais , Linfócitos B , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Síndromes de Imunodeficiência/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Camundongos
16.
Int J Biol Sci ; 18(6): 2515-2526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414773

RESUMO

Rationale: In multiple myeloma (MM), the activities of non-homologous end joining (NHEJ) and homologous recombination repair (HR) are increased compared with healthy controls. Whether and how IKZF1 as an enhancer of MM participates in the DNA repair pathway of tumor cells remains elusive. Methods: We used an endonuclease AsiSI-based system and quantitative chromatin immunoprecipitation assay (qChIP) analysis to test whether IKZF1 is involved in DNA repair. Immunopurification and mass spectrometric (MS) analysis were performed in MM1.S cells to elucidate the molecular mechanism that IKZF1 promotes DNA damage repair. The combination effect of lenalidomide or USP7 inhibitor with PARP inhibitor on cell proliferation was evaluated using MM cells in vitro and in vivo. Results: We demonstrate that IKZF1 specifically promotes homologous recombination DNA damage repair in MM cells, which is regulated by its interaction with CtIP and USP7. In this process, USP7 could regulate the stability of IKZF1 through its deubiquitinating activity. The N-terminal zinc finger domains of IKZF1 and the ubiquitin-like domain of USP7 are necessary for their interaction. Furthermore, targeted inhibition IKZF1 or USP7 could sensitize MM cells to PARP inhibitor treatment in vitro and in vivo. Conclusions: Our findings identify USP7 as a deubiquitinating enzyme for IKZF1 and uncover a new function of IKZF1 in DNA damage repair. In translational perspective, the combination inhibition of IKZF1 or USP7 with PARP inhibitor deserves further evaluation in clinical trials for the treatment of MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Reparo do DNA/genética , Endodesoxirribonucleases , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
17.
Genes Chromosomes Cancer ; 61(7): 437-442, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253299

RESUMO

CRLF2 overexpression has been described as a biomarker of poor prognosis in T-cell acute lymphoblastic leukemia (T-ALL). In the present study, we aimed to unravel the genomic profile underlying CRLF2 overexpression (CRLF2-high) by analyzing RNA-seq, WES, and SNP-array data from 264 T-ALL patients and five cell lines deposited on the TARGET initiative, Cancer Cell Line Encyclopedia and Gene Expression Omnibus. These data allowed us to delineate the genomic landscape of CRLF2-high in T-ALL, which was associated with PTEN, JAK3, PHF6, EZH2, and RUNX1 mutations. We also observed an enrichment of CRLF2-high in early T-precursor (ETP)-ALL (23.08% vs. 4.02%, P = 7.579e-06 ) and a very similar gene upregulation profile between these two entities. The inhibition of BET (iBET) proteins is a strategy previously demonstrated to reverse the gene upregulation pattern of ETP cells through restoration of polycomb repressive complex 2 (PRC2) activity. While CRLF2 expression was rescued by using this strategy in LOUCY (untreated vs. iBET P = 0.0095, DMSO vs. iBET P = 0.0286), a classical ETP-ALL cell line, PRC2 loss was not sufficient to promote CRLF2 upregulation in JURKAT, a more mature T-ALL cell line. Considering the role of IKZF1 in CRLF2 regulation and in recruitment of PCR2, we evaluated IKZF1 status according to CRLF2-expression subgroups. We identified that IKZF1 transcripts with intron retention were upregulated in the CRLF2-high subgroup. Here, we delineated the gene expression profile of CRLF2-high T-ALL samples and unraveled the crucial role of PRC2 in CRLF2 regulation in ETP-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Complexo Repressor Polycomb 2 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfócitos T/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
18.
Mol Cancer Res ; 20(4): 501-514, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980595

RESUMO

Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS: Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Blood ; 139(13): 2024-2037, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34936696

RESUMO

Immunomodulatory (IMiD) agents like lenalidomide and pomalidomide induce the recruitment of IKZF1 and other targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and degradation. These agents are highly active in B-cell lymphomas and a subset of myeloid diseases but have compromised effects in T-cell lymphomas (TCLs). Here, we show that 2 factors determine resistance to IMiDs among TCLs. First, limited CRBN expression reduces IMiD activity in TCLs but can be overcome by newer-generation degrader CC-92480. Using mass spectrometry, we show that CC-92480 selectively degrades IKZF1 and ZFP91 in TCL cells with greater potency than pomalidomide. As a result, CC-92480 is highly active against multiple TCL subtypes and showed greater efficacy than pomalidomide across 4 in vivo TCL models. Second, we demonstrate that ZFP91 functions as a bona fide transcription factor that coregulates cell survival with IKZF1 in IMiD-resistant TCLs. By activating keynote genes from WNT, NF-kB, and MAP kinase signaling, ZFP91 directly promotes resistance to IKZF1 loss. Moreover, lenalidomide-sensitive TCLs can acquire stable resistance via ZFP91 rewiring, which involves casein kinase 2-mediated c-Jun inactivation. Overall, these findings identify a critical transcription factor network within TCLs and provide clinical proof of concept for the novel therapy using next-generation degraders.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Fatores Imunológicos/farmacologia , Linfoma de Células T , Mieloma Múltiplo , Ubiquitina-Proteína Ligases , Humanos , Fator de Transcrição Ikaros/metabolismo , Lenalidomida/farmacologia , Linfoma de Células T/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA