Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067571

RESUMO

This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 µg/mL) or N-Acetyl-L-cysteine (NAC) (20 µM) for 24 h, and then incubated with 200 µM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 µM) or PCs (4, 8 or 16 µg/mL) in the absence or presence of 300 µM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.


Assuntos
Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Acetilcisteína/farmacologia , Animais , Elementos de Resposta Antioxidante , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator de Transcrição NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
2.
J Sci Food Agric ; 101(14): 6043-6052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33857333

RESUMO

BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Pectinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Raízes de Plantas/química
3.
Poult Sci ; 99(6): 3092-3101, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32475446

RESUMO

We characterized the mechanism underlying star anise (Illicium verum Hook.f) oil (SAO)-mediated antioxidant status during subclinical Escherichia coli (E. coli) challenge. A total of 512 male birds (White Leghorn) at 30 wk of age with similar body weight (2.14 ± 0.02 kg) were randomly divided into 2 groups with 1 group being orally challenged with E. coli (every other day from day 15 to day 27) during the experiment. Each group of birds was then randomly allocated to dietary treatment of SAO supplementation at 0, 200, 400, or 600 mg/kg of basal diet (8 replicate cages during each treatment). The treatments were arranged a 4 × 2 factorial arrangement. The experiment comprised 1 wk of adaptation and 3 wks of data collection. There was no interaction (P > 0.05) between SAO supplementation and E. coli challenge for final body weight and average daily feed intake of birds. However, E. coli challenge resulted in a significant decrease (P < 0.001) in final body weight of birds as compared with unchallenged birds. There were interactions between SAO supplementation and E. coli challenge for the activity of glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) concentration in serum and for the activity of GSH-Px in the liver of birds. Supplementation of SAO enhanced the activities of antioxidant enzymes but decreased the MDA content in the serum and liver of birds, and it also enhanced the expression of genes including superoxide dismutase, catalase, and nuclear factor E2-related factor 2 (Nrf2) in the liver of the birds. Meanwhile, supplementation of SAO can also reduce E. coli challenge-induced oxidative stress in the serum and liver of birds, and the efficacy of SAO in birds during subclinical E. coli challenge is dose-dependent. In conclusion, the enhancement of antioxidant capacity by star anise or its effective compounds is through upregulation of Nrf2 signaling pathway. The optimum supplementation dose of SAO for protecting birds against E. coli challenge is 400 mg/kg.


Assuntos
Antioxidantes/metabolismo , Proteínas Aviárias/fisiologia , Galinhas/fisiologia , Illicium/química , Fator de Transcrição NF-E2/fisiologia , Óleos Voláteis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Masculino , Óleos Voláteis/administração & dosagem , Doenças das Aves Domésticas/microbiologia , Distribuição Aleatória
4.
Mol Med Rep ; 21(3): 1233-1241, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016469

RESUMO

The aim of the present study was to investigate the antioxidant mechanisms of dexmedetomidine against lung injury during intestinal ischemia reperfusion (IIR) in rats. The model of IIR­induced acute lung injury was established by occluding the superior mesenteric artery (SMA) for 1 h and reperfusing for 2 h using Sprague­Dawley rats. Pathological examination was used to assess the extent of the lung injury. Oxidative stress was evaluated by measuring malondialdehyde, myeloperoxidase and superoxide dismutase in the lung and plasma. The proinflammatory cytokines tumor necrosis factor­α and interleukin­6 were determined via an enzyme­linked immunosorbent assay. The mRNA and protein expression of nuclear factor­erythroid 2 related factor 2 (Nrf2) and heme oxygenase 1 (HO­1) were determined using a reverse transcription­quantitative polymerase chain reaction and western blotting. Pretreatment with dexmedetomidine significantly inhibited the oxidative stress response and proinflammatory factor release caused by IIR compared with the normal saline group (MDA and SOD in lung and plasma, P<0.05; MPO, IL­1ß and TNF­α in lung and plasma, P<0.05). Dexmedetomidine improved pulmonary pathological changes in IIR rats compared with the normal saline group. Investigations into the molecular mechanism revealed that dexmedetomidine increased the expression levels of Nrf2 and HO­1 via activating α2 adrenergic receptors compared with the normal saline group. The antagonism of α2 adrenergic receptors may reverse the protective effect of dexmedetomidine on lung injury during IIR, including decreasing the expression levels of Nrf2 and HO­1, elevating the oxidative stress response and increasing the proinflammatory factor release. In conclusion, pretreatment with dexmedetomidine demonstrated protective effects against lung injury during IIR via α2 adrenergic receptors. The Nrf2/HO­1 signaling pathway may serve a function in the protective effect of dexmedetomidine.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Antioxidantes/farmacologia , Dexmedetomidina/farmacologia , Heme Oxigenase-1/metabolismo , Fator de Transcrição NF-E2/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/análise , Fator de Transcrição NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/efeitos dos fármacos
5.
Biofactors ; 46(2): 239-245, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31617634

RESUMO

The trace element selenium (Se) is an essential component of selenoproteins and plays a critical role in redox signaling via regulating the activity of selenoenzymes such as thioredoxin reductase-1 and glutathione peroxidases. Se compounds and its metabolites possess a wide range of biological functions including anticancer and cytoprotection effects, modulation of hormetic genes and antioxidant enzyme activities. Radiation-induced injury of normal tissues is a significant side effect for cancer patients who receive radiotherapy in the clinic and the development of new and effective radioprotectors is an important goal of research. Others and we have shown that seleno-compounds have the potential to protect ionizing radiation-induced toxicities in various tissues and cells both in in vitro and in vivo studies. In this review, we discuss the potential utilization of Se compounds with redox-dependent hormetic activity as novel radio-protective agents to alleviate radiation toxicity. The cellular and molecular mechanisms underlying the radioprotection effects of these seleno-hormetic agents are also discussed. These include Nrf2 transcription factor modulation and the consequent upregulation of the adaptive stress response to IR in bone marrow stem cells and hematopoietic precursors.


Assuntos
Hormese , Fator de Transcrição NF-E2/metabolismo , Protetores contra Radiação/metabolismo , Selenoproteínas/metabolismo , Humanos
6.
Food Funct ; 10(10): 6374-6384, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31508643

RESUMO

Data indicate that intrauterine growth restriction (IUGR) in newborns can be partly alleviated through the supply of l-arginine (Arg) and N-carbamylglutamate (NCG). The current work aimed to explore whether Arg and NCG promote intestinal function by regulating antioxidant capacity in suckling lambs with IUGR via a nitric oxide (NO)-dependent pathway. Forty eight newly born Hu lambs with normal weights at birth (CON) or suffering from IUGR were randomly divided into 4 groups (n = 12 per group), namely, the CON, IUGR, IUGR + 1% Arg, and IUGR + 0.1% NCG groups. The animals were used for experiments from the age of day 7 to 28. Compared with the lambs in the IUGR group, the lambs in the Arg or NCG group had higher (P < 0.05) final body weights. The plasma insulin, NO, and NO synthase (NOS) concentrations in the IUGR group were higher (P < 0.05) compared with those in IUGR + 1% Arg or IUGR + 0.1% NCG. The jejunal level of the tumor necrosis factor α (TNF-α) in the IUGR lambs was greater (P < 0.05) compared with that in IUGR + 1% Arg or IUGR + 0.1% NCG. The plasma and jejunal total antioxidant capacity (T-AOC) values for the IUGR + 1% Arg or IUGR + 0.1% NCG group were greater (P < 0.05) compared with those for the IUGR group. Compared with the IUGR + 1% Arg or IUGR + 0.1% NCG lambs, the IUGR lambs had lower (P < 0.05) abundance of mRNA and protein abundance of glutathione peroxidase 1 (GPx1), catalase (CAT), superoxide dismutase 2 (SOD2), nuclear factor erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase (HO-1), zonula occludens-1 (ZO-1), occludin, inducible NOS (iNOS), and epithelial NOS (eNOS). Overall, the data suggest that the Arg or NCG supplementation to suckling lambs with IUGR enhances the intestinal function by regulating the oxidant status via the NO-dependent pathway.


Assuntos
Antioxidantes/metabolismo , Arginina/administração & dosagem , Retardo do Crescimento Fetal/veterinária , Glutamatos/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Doenças dos Ovinos/tratamento farmacológico , Ovinos/crescimento & desenvolvimento , Ração Animal/análise , Animais , Catalase/genética , Catalase/metabolismo , Suplementos Nutricionais/análise , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Masculino , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Ovinos/metabolismo , Doenças dos Ovinos/genética , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
BMC Mol Cell Biol ; 20(1): 39, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455213

RESUMO

BACKGROUND: A study has shown that miR-423-5p is highly expressed in proliferative diabetic retinopathy. However, the exact biological functions and mechanisms of miR-423-5p in diabetic retinopathy (DR) progression are currently unclear. This study aimed to investigate the role of miR-423-5p in DR and the underlying mechanism. RESULTS: Our data demonstrate that the expression of miR-423-5p is significantly increased in HG-induced RPE cells and DR patient plasma. Moreover, the overexpression of miR-423-5p exacerbates HG-induced apoptosis. Mechanistically, our results provide evidence that miR-423-5p directly targets TFF1. MiR-423-5p exerts its effect on HG-induced apoptosis in RPE cells through TFF1, and the NF-κB pathway is involved in the regulatory mechanism. Further analysis revealed that the transcription factor NFE2 regulates miR-423-5p promoter activity. In addition, NFE2 regulates the levels of TFF1 and NF-κB pathway-associated proteins by regulating the expression of miR-423-5p. CONCLUSION: The NFE2-miR-423-5p-TFF1 axis is a novel molecular mechanism and provides a new direction for the study and treatment of DR.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/toxicidade , MicroRNAs/metabolismo , Fator de Transcrição NF-E2/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator Trefoil-1/metabolismo , Sequência de Bases , Linhagem Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Epiteliais/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Cell Rep ; 28(3): 746-758.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315052

RESUMO

The Keap1-Nrf2 system plays a central role in the oxidative stress response; however, the identity of the reactive oxygen species sensor within Keap1 remains poorly understood. Here, we show that a Keap1 mutant lacking 11 cysteine residues retains the ability to target Nrf2 for degradation, but it is unable to respond to cysteine-reactive Nrf2 inducers. Of the 11 mutated cysteine residues, we find that 4 (Cys226/613/622/624) are important for sensing hydrogen peroxide. Our analyses of multiple mutant mice lines, complemented by MEFs expressing a series of Keap1 mutants, reveal that Keap1 uses the cysteine residues redundantly to set up an elaborate fail-safe mechanism in which specific combinations of these four cysteine residues can form a disulfide bond to sense hydrogen peroxide. This sensing mechanism is distinct from that used for electrophilic Nrf2 inducers, demonstrating that Keap1 is equipped with multiple cysteine-based sensors to detect various endogenous and exogenous stresses.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo/genética , Animais , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/fisiologia
9.
Blood Adv ; 2(23): 3418-3427, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504234

RESUMO

The NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição NF-E2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Plaquetas/citologia , Códon de Terminação , Fibrinogênio/metabolismo , Mutação da Fase de Leitura , Edição de Genes , Humanos , Larva/metabolismo , Fator de Transcrição NF-E2/química , Fator de Transcrição NF-E2/genética , Alinhamento de Sequência , Trombopoese , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
10.
Toxicol Lett ; 299: 104-117, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30244016

RESUMO

DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group). In the present study, we addressed whether these structural differences affect levels of intracellular reactive oxygen species in HepG2 cells, and if intracellular GSH levels influence toxic effects induced by DON, NX-3 and BUT. Pre-treatment with an inhibitor of GSH bio-synthesis, L-buthionine-[S,R]-sulfoximine, aggravated substantially BUT-induced cytotoxicity (≥50 µM, 24 h), but only marginally affected the cytotoxicity of DON and NX-3 indicating that GSH-mediated detoxification is of minor importance in HepG2 cells. We further investigated whether BUT, a compound inducing alone low oral toxicity, might affect the toxicity of DON. Under different experimental designs with respect to pre- and/or co-incubations, BUT was found to contribute to the combinatorial cytotoxicity, exceeding the toxic effect of DON alone. The observed combinatorial effects underline the potential contribution of secondary metabolites like BUT, considered to be alone of low toxicological relevance, to the toxicity of DON or structurally related trichothecenes, arguing for further studies on the toxicological relevance of naturally occurring mixtures.


Assuntos
Acetamidas/toxicidade , Furanos/toxicidade , Fusarium , Glutationa/metabolismo , Tricotecenos/toxicidade , Elementos de Resposta Antioxidante/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Life Sci ; 207: 23-29, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29802941

RESUMO

AIMS: Little is known regarding whether the NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver mediates exercise allured alleviation of insulin resistance connected with diet-induced obesity. This research inquired the influence of exercise on liver insulin sensitivity and whole body insulin resistance in high-fat diet fed rats. MATERIALS AND METHODS: Forty male Sprague-Dawley rats at seven-week-old were assigned to four groups at random: standard diet as normal control group (NC, n = 10), high-fat diet group (HFD, n = 10), high-fat diet with chronic exercise intervention group (HFD-CE, n = 10) and high-fat diet with acute exercise intervention group (HFD-AE, n = 10). KEY FINDINGS: Compared with rats fed with a standard diet, eight-week high-fat diet feeding lead to elevated body weight, visceral fat content and serum FFAs, and decreased insulin sensitivity index. Moreover, high-fat diet enhanced NFE2 protein expression and miR-423-5p level, decreased FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. In contrast, physical exercise, both chronic and acute exercise alleviated whole body insulin resistance, reduced hepatic NFE2 and miR-423-5p expression, and serum FFAs level, meanwhile enhanced FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. The current findings indicated that exercise in diet-induced obesity, both chronic and acute, induce a momentous regulation in NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver, and improve hepatic insulin sensitivity and whole body insulin resistance. SIGNIFICANCE: All these results supply crucial evidence in our comprehending of the molecular mechanism that connected exercise to an alleviation of insulin resistance.


Assuntos
Citocinas/metabolismo , Resistência à Insulina , Insulina/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição NF-E2/metabolismo , Condicionamento Físico Animal , Trifosfato de Adenosina/metabolismo , Animais , Área Sob a Curva , Dieta , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Fígado/metabolismo , Masculino , Obesidade/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Food Funct ; 9(4): 2469-2479, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632944

RESUMO

The effects of administering omega-3 (ω-3) polyunsaturated fatty acid (PUFA)-rich oils on visible-light-induced retinal damage were investigated in rabbits. The mole percentages of α-linolenic acid in sea buckthorn berry oil, sea buckthorn oil (SO), sea buckthorn seed oil and flaxseed oil (FO) were 2.12%, 12.98%, 31.56% and 55.41%, respectively. Algal oil (AO) contains 33.34% docosahexaenoic acid. SO has the highest total phenolic content (63.42 ± 0.59 mg SAE per 100 g) amongst these oils. The administration of SO, FO and AO provided structural and functional protection to the retina. In the retina, we observed a significant increase in the levels of DHA in the AO group compared with the normal group. The mechanism of retinal protection by SO, FO and AO involves up-regulating the expression of nuclear factor erythroid-2 related factor 2 and haem oxygenase-1. The levels of interleukin-1 ß, tumour necrosis factor-alpha, interleukin-8, and cyclooxygenase 2 in the retina were significantly reduced with AO treatment. The administration of AO resulted in the down-regulation of nuclear factor kappa B mRNA expression. In addition, the treatment with AO significantly attenuated the light-induced apoptosis and angiogenesis in the retina. These results suggest that dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Heme Oxigenase-1/metabolismo , Luz/efeitos adversos , Fator de Transcrição NF-E2/metabolismo , Retina/efeitos dos fármacos , Retina/efeitos da radiação , Doenças Retinianas/prevenção & controle , Animais , Suplementos Nutricionais/análise , Heme Oxigenase-1/genética , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Fator de Transcrição NF-E2/genética , Coelhos , Doenças Retinianas/etiologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Exp Biol Med (Maywood) ; 243(5): 428-436, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29436846

RESUMO

Dimethyl fumarate is an FDA-approved oral immunomodulatory drug with anti-inflammatory properties that induces the upregulation of the anti-oxidant transcription factor, nuclear factor erythroid-derived factor 2. The aim of this study was to determine the efficacy of dimethyl fumarate on interstitial inflammation and renal cyst growth in a preclinical model of nephronophthisis. Four-week-old female Lewis polycystic kidney disease (a genetic ortholog of human nephronophthisis-9) rats received vehicle (V), 10 mg/kg (D10) or 30 mg/kg (D30) ( n = 8-9 each) dimethyl fumarate in drinking water for eight weeks. Age-matched Lewis control rats were also studied ( n = 4 each). Nuclear factor erythroid-derived factor 2 was quantified by whole-slide image analysis of kidney sections. Renal nuclear factor erythroid-derived factor 2 activation was partially reduced in vehicle-treated Lewis polycystic kidney disease rats compared to Lewis control (21.4 ± 1.7 vs. 27.0 ± 1.6%, mean ± SD; P < 0.01). Dimethyl fumarate upregulated nuclear factor erythroid-derived factor 2 in both Lewis Polycystic Kidney Disease (D10: 35.9 ± 3.8; D30: 33.6 ± 3.4%) and Lewis rats (D30: 34.4 ± 1.3%) compared to vehicle-treated rats ( P < 0.05). Dimethyl fumarate significantly reduced CD68+ cell accumulation in Lewis polycystic kidney disease rats (V: 31.7 ± 2.4; D10: 23.0 ± 1.1; D30: 21.5 ± 1.9; P < 0.05). In Lewis polycystic kidney disease rats, dimethyl fumarate did not alter the progression of kidney enlargement (V: 6.4 ± 1.6; D10: 6.9 ± 1.2; D30: 7.3 ± 1.3%) and the percentage cystic index (V: 59.1 ± 2.7; D10: 55.7 ± 3.5; D30: 58.4 ± 2.9%). Renal dysfunction, as determined by the serum creatinine (Lewis + V: 26 ± 4 vs. LPK + V: 60 ± 25 P < 0.01; LPK + D10: 47 ± 7; LPK + D30: 47 ± 9 µmol/L), and proteinuria were also unaffected by dimethyl fumarate treatment. In conclusion, the upregulation of nuclear factor erythroid-derived factor 2 by dimethyl fumarate reduced renal macrophage infiltration in nephronophthisis without adverse effects, suggesting that it could potentially be used in combination with other therapies that reduce the rate of renal cyst growth. Impact statement This is the first study to investigate the effects of dimethyl fumarate in a model of cystic kidney disease. The study assessed the therapeutic efficacy of dimethyl fumarate in upregulating renal nuclear factor erythroid-derived factor 2 expression, reducing macrophage accumulation and cyst progression in a Lewis polycystic kidney disease rat model. This study demonstrates that dimethyl fumarate significantly upregulated renal nuclear factor erythroid-derived factor 2 expression and attenuates renal macrophage infiltration, but had no effect on renal cyst progression, cardiac enlargement, and improving renal function.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Imunossupressores/uso terapêutico , Fator de Transcrição NF-E2/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Cardiomegalia/tratamento farmacológico , Creatinina/sangue , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Feminino , Rim/patologia , Macrófagos/imunologia , Fator de Transcrição NF-E2/biossíntese , NF-kappa B/biossíntese , Doenças Renais Policísticas/genética , Proteinúria/sangue , Ratos , Ratos Endogâmicos Lew
14.
Biofactors ; 44(1): 36-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29193412

RESUMO

Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018.


Assuntos
Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Estilbenos/farmacologia , Animais , Catalase/genética , Catalase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
15.
Cancer Res ; 77(23): 6746-6758, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021138

RESUMO

Many cancers appear to activate intrinsic antioxidant systems as a means to counteract oxidative stress. Some cancers, such as clear cell renal cell carcinoma (ccRCC), require exogenous glutamine for growth and exhibit reprogrammed glutamine metabolism, at least in part due to the glutathione pathway, an efficient cellular buffering system that counteracts reactive oxygen species and other oxidants. We show here that ccRCC xenograft tumors under the renal capsule exhibit enhanced oxidative stress compared with adjacent normal tissue and the contralateral kidney. Upon glutaminase inhibition with CB-839 or BPTES, the RCC cell lines SN12PM-6-1 (SN12) and 786-O exhibited decreased survival and pronounced apoptosis associated with a decreased GSH/GSSG ratio, augmented nuclear factor erythroid-related factor 2, and increased 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of DNA damage. SN12 tumor xenografts showed decreased growth when treated with CB-839. Furthermore, PET imaging confirmed that ccRCC tumors exhibited increased tumoral uptake of 18F-(2S,4R)4-fluoroglutamine compared with the kidney in the orthotopic mouse model. This technique can be utilized to follow changes in ccRCC metabolism in vivo Further development of these paradigms will lead to new treatment options with glutaminase inhibitors and the utility of PET to identify and manage patients with ccRCC who are likely to respond to glutaminase inhibitors in the clinic. Cancer Res; 77(23); 6746-58. ©2017 AACR.


Assuntos
Benzenoacetamidas/farmacologia , Carcinoma de Células Renais/patologia , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Tiadiazóis/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/fisiologia , Carcinoma de Células Renais/tratamento farmacológico , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Camundongos , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Stem Cell Reports ; 9(1): 5-11, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648895

RESUMO

Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG) mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated) and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Linfopoese , Fator de Transcrição NF-E2/metabolismo , Receptor Notch1/metabolismo , Linfócitos T/citologia , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Inativação Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos SCID , Fator de Transcrição NF-E2/genética , Receptor Notch1/genética , Linfócitos T/metabolismo
17.
J Neurochem ; 141(5): 750-765, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345128

RESUMO

The retina is highly sensitive to oxidative stress because of its high consumption of oxygen associated with the phototransductional processes. Recent findings have suggested that oxidative stress is involved in the pathology of age-related macular degeneration, a progressive degeneration of the central retina. A well-known environmental risk factor is light exposure, as excessive and continuous light exposure can damage photoreceptors. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that controls antioxidative responses and phase 2 enzymes. Thus, we hypothesized that RS9, a specific activator of Nrf2, decreases light-induced retinal cell death in vivo and in vitro. Nrf2 was detected in the nucleus of the 661W cells exposed to RS9 and also after light exposure, and the Nrf2-antioxidant response element binding was increased in 661W cells after exposure to RS9. Consequentially, the expression of the phase 2 enzyme's mRNAs of Ho-1, Nqo-1, and Gclm genes was increased in 661W cells after exposure to RS9. Furthermore, RS9 decreased the light-induced death of 661W cells (2500 lux, 24 h), and also reduced the functional damages and the histological degeneration of the nuclei in the outer nuclear layer or the retina in the in vivo studies (8000 lux, 3 h). Heme oxygenase-1 was increased after light exposure, and Nrf2 was translocated into the nucleus after light exposure in vivo. Silencing of Ho-1 reduced the protective effects of RS9 against light-induced death of 661W cells. These findings indicate that RS9 has therapeutic potential for retinal diseases that are aggravated by light exposure.


Assuntos
Morte Celular/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Luz/efeitos adversos , Células Fotorreceptoras/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Transformada , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos da radiação , Citosol/efeitos dos fármacos , Citosol/efeitos da radiação , Células Ependimogliais/citologia , Células Ependimogliais/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Técnicas In Vitro , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Células Fotorreceptoras/efeitos da radiação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Retina/citologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/prevenção & controle , Fatores de Tempo , Triterpenos/química
18.
Anim Sci J ; 88(6): 873-881, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27753186

RESUMO

Reactive oxygen species (ROS) have been shown to have a role in inflammation. We investigated whether Forsythia suspensa extract (FSE) could exert its antioxidant potential against lipopolysaccharide (LPS)-induced inflammatory liver injury in rats. Rats were orally fed FSE once daily for 7 consecutive days prior to LPS (Escherichia coli, serotype O55:B5) injection. LPS treatment caused liver dysfunction as evidenced by massive histopathological changes and increased serum alanine aminotransferase and aspartate aminotransferase activities which were ameliorated by FSE pretreatment. FSE attenuated LPS-induced depletion of cytosolic nuclear factor-erythroid 2-related factor 2 (Nrf2) and suppression of Nrf2 nuclear translocation in liver, and the generation of ROS and malondialdehyde in serum and liver. FSE increased the Nrf2-mediated induction of heme oxygenase-1 in liver, as well as superoxide dismutase and glutathione peroxidase activities in serum and liver. Importantly, FSE attenuated LPS-induced nuclear factor-кB (NF-кB) nuclear translocation in liver, and subsequently decreased tumor necrosis factor-α, interleukin (IL)-1ß and IL-6 levels in serum and liver, which were associated with FSE-induced activation of Nrf2 in liver. These results indicate that the protective mechanisms of FSE may be involved in the attenuation of oxidative stress and the inhibition of the NF-кB-mediated inflammatory response by modulating the Nrf2-mediated antioxidant response against LPS-induced inflammatory liver injury.


Assuntos
Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Forsythia/química , Lipopolissacarídeos/efeitos adversos , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Haematologica ; 101(9): 1054-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479815

RESUMO

We have recently demonstrated that the transcription factor nuclear factor-erythroid 2, which is critical for erythroid maturation and globin gene expression, plays an important role in the pathophysiology of myeloproliferative neoplasms. Myeloproliferative neoplasm patients display elevated levels of nuclear factor-erythroid 2 and transgenic mice overexpressing the transcription factor develop myeloproliferative neoplasm, albeit, surprisingly without erythrocytosis. Nuclear factor-erythroid 2 transgenic mice show both a reticulocytosis and a concomitant increase in iron deposits in the spleen, suggesting both enhanced erythrocyte production and increased red blood cell destruction. We therefore hypothesized that elevated nuclear factor-erythroid 2 levels may lead to increased erythrocyte destruction by interfering with organelle clearance during erythroid maturation. We have previously shown that nuclear factor-erythroid 2 overexpression delays erythroid maturation of human hematopoietic stem cells. Here we report that increased nuclear factor-erythroid 2 levels also impede murine maturation by retarding mitochondrial depolarization and delaying mitochondrial elimination. In addition, ribosome autophagy is delayed in transgenics. We demonstrate that the autophagy genes NIX and ULK1 are direct novel nuclear factor-erythroid 2 target genes, as these loci are bound by nuclear factor-erythroid 2 in chromatin immunoprecipitation assays. Moreover, Nix and Ulk1 expression is increased in transgenic mice and in granulocytes from polycythemia vera patients. This is the first report implying a role for nuclear factor-erythroid 2 in erythroid maturation by affecting autophagy.


Assuntos
Autofagia , Células Eritroides/citologia , Células Eritroides/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Animais , Autofagia/genética , Biomarcadores , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Fenil-Hidrazinas/farmacologia , Policitemia Vera/genética , Policitemia Vera/metabolismo , Reticulócitos/citologia , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Ribossomos/metabolismo
20.
Dig Dis Sci ; 61(10): 2784-2803, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411555

RESUMO

Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.


Assuntos
Hepatite Autoimune/imunologia , Fígado/imunologia , Fator de Transcrição NF-E2/imunologia , Estresse Oxidativo/imunologia , Fator de Crescimento Transformador beta/imunologia , Antioxidantes/metabolismo , Autofagia/imunologia , Glutationa/imunologia , Glutationa/metabolismo , Hepatite Autoimune/metabolismo , Hepatócitos/imunologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , NADPH Oxidases/antagonistas & inibidores , Fator de Transcrição NF-E2/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitrosação , Processamento de Proteína Pós-Traducional/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/imunologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/imunologia , Tiorredoxinas/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Resposta a Proteínas não Dobradas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA