Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(14): 6043-6052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33857333

RESUMO

BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Pectinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Raízes de Plantas/química
2.
Mol Med Rep ; 21(3): 1233-1241, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016469

RESUMO

The aim of the present study was to investigate the antioxidant mechanisms of dexmedetomidine against lung injury during intestinal ischemia reperfusion (IIR) in rats. The model of IIR­induced acute lung injury was established by occluding the superior mesenteric artery (SMA) for 1 h and reperfusing for 2 h using Sprague­Dawley rats. Pathological examination was used to assess the extent of the lung injury. Oxidative stress was evaluated by measuring malondialdehyde, myeloperoxidase and superoxide dismutase in the lung and plasma. The proinflammatory cytokines tumor necrosis factor­α and interleukin­6 were determined via an enzyme­linked immunosorbent assay. The mRNA and protein expression of nuclear factor­erythroid 2 related factor 2 (Nrf2) and heme oxygenase 1 (HO­1) were determined using a reverse transcription­quantitative polymerase chain reaction and western blotting. Pretreatment with dexmedetomidine significantly inhibited the oxidative stress response and proinflammatory factor release caused by IIR compared with the normal saline group (MDA and SOD in lung and plasma, P<0.05; MPO, IL­1ß and TNF­α in lung and plasma, P<0.05). Dexmedetomidine improved pulmonary pathological changes in IIR rats compared with the normal saline group. Investigations into the molecular mechanism revealed that dexmedetomidine increased the expression levels of Nrf2 and HO­1 via activating α2 adrenergic receptors compared with the normal saline group. The antagonism of α2 adrenergic receptors may reverse the protective effect of dexmedetomidine on lung injury during IIR, including decreasing the expression levels of Nrf2 and HO­1, elevating the oxidative stress response and increasing the proinflammatory factor release. In conclusion, pretreatment with dexmedetomidine demonstrated protective effects against lung injury during IIR via α2 adrenergic receptors. The Nrf2/HO­1 signaling pathway may serve a function in the protective effect of dexmedetomidine.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Antioxidantes/farmacologia , Dexmedetomidina/farmacologia , Heme Oxigenase-1/metabolismo , Fator de Transcrição NF-E2/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/análise , Fator de Transcrição NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/efeitos dos fármacos
3.
Food Funct ; 10(10): 6374-6384, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31508643

RESUMO

Data indicate that intrauterine growth restriction (IUGR) in newborns can be partly alleviated through the supply of l-arginine (Arg) and N-carbamylglutamate (NCG). The current work aimed to explore whether Arg and NCG promote intestinal function by regulating antioxidant capacity in suckling lambs with IUGR via a nitric oxide (NO)-dependent pathway. Forty eight newly born Hu lambs with normal weights at birth (CON) or suffering from IUGR were randomly divided into 4 groups (n = 12 per group), namely, the CON, IUGR, IUGR + 1% Arg, and IUGR + 0.1% NCG groups. The animals were used for experiments from the age of day 7 to 28. Compared with the lambs in the IUGR group, the lambs in the Arg or NCG group had higher (P < 0.05) final body weights. The plasma insulin, NO, and NO synthase (NOS) concentrations in the IUGR group were higher (P < 0.05) compared with those in IUGR + 1% Arg or IUGR + 0.1% NCG. The jejunal level of the tumor necrosis factor α (TNF-α) in the IUGR lambs was greater (P < 0.05) compared with that in IUGR + 1% Arg or IUGR + 0.1% NCG. The plasma and jejunal total antioxidant capacity (T-AOC) values for the IUGR + 1% Arg or IUGR + 0.1% NCG group were greater (P < 0.05) compared with those for the IUGR group. Compared with the IUGR + 1% Arg or IUGR + 0.1% NCG lambs, the IUGR lambs had lower (P < 0.05) abundance of mRNA and protein abundance of glutathione peroxidase 1 (GPx1), catalase (CAT), superoxide dismutase 2 (SOD2), nuclear factor erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase (HO-1), zonula occludens-1 (ZO-1), occludin, inducible NOS (iNOS), and epithelial NOS (eNOS). Overall, the data suggest that the Arg or NCG supplementation to suckling lambs with IUGR enhances the intestinal function by regulating the oxidant status via the NO-dependent pathway.


Assuntos
Antioxidantes/metabolismo , Arginina/administração & dosagem , Retardo do Crescimento Fetal/veterinária , Glutamatos/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Doenças dos Ovinos/tratamento farmacológico , Ovinos/crescimento & desenvolvimento , Ração Animal/análise , Animais , Catalase/genética , Catalase/metabolismo , Suplementos Nutricionais/análise , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Masculino , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Ovinos/metabolismo , Doenças dos Ovinos/genética , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Cell Rep ; 28(3): 746-758.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315052

RESUMO

The Keap1-Nrf2 system plays a central role in the oxidative stress response; however, the identity of the reactive oxygen species sensor within Keap1 remains poorly understood. Here, we show that a Keap1 mutant lacking 11 cysteine residues retains the ability to target Nrf2 for degradation, but it is unable to respond to cysteine-reactive Nrf2 inducers. Of the 11 mutated cysteine residues, we find that 4 (Cys226/613/622/624) are important for sensing hydrogen peroxide. Our analyses of multiple mutant mice lines, complemented by MEFs expressing a series of Keap1 mutants, reveal that Keap1 uses the cysteine residues redundantly to set up an elaborate fail-safe mechanism in which specific combinations of these four cysteine residues can form a disulfide bond to sense hydrogen peroxide. This sensing mechanism is distinct from that used for electrophilic Nrf2 inducers, demonstrating that Keap1 is equipped with multiple cysteine-based sensors to detect various endogenous and exogenous stresses.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo/genética , Animais , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/fisiologia
5.
Blood Adv ; 2(23): 3418-3427, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504234

RESUMO

The NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição NF-E2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Plaquetas/citologia , Códon de Terminação , Fibrinogênio/metabolismo , Mutação da Fase de Leitura , Edição de Genes , Humanos , Larva/metabolismo , Fator de Transcrição NF-E2/química , Fator de Transcrição NF-E2/genética , Alinhamento de Sequência , Trombopoese , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
6.
Food Funct ; 9(4): 2469-2479, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632944

RESUMO

The effects of administering omega-3 (ω-3) polyunsaturated fatty acid (PUFA)-rich oils on visible-light-induced retinal damage were investigated in rabbits. The mole percentages of α-linolenic acid in sea buckthorn berry oil, sea buckthorn oil (SO), sea buckthorn seed oil and flaxseed oil (FO) were 2.12%, 12.98%, 31.56% and 55.41%, respectively. Algal oil (AO) contains 33.34% docosahexaenoic acid. SO has the highest total phenolic content (63.42 ± 0.59 mg SAE per 100 g) amongst these oils. The administration of SO, FO and AO provided structural and functional protection to the retina. In the retina, we observed a significant increase in the levels of DHA in the AO group compared with the normal group. The mechanism of retinal protection by SO, FO and AO involves up-regulating the expression of nuclear factor erythroid-2 related factor 2 and haem oxygenase-1. The levels of interleukin-1 ß, tumour necrosis factor-alpha, interleukin-8, and cyclooxygenase 2 in the retina were significantly reduced with AO treatment. The administration of AO resulted in the down-regulation of nuclear factor kappa B mRNA expression. In addition, the treatment with AO significantly attenuated the light-induced apoptosis and angiogenesis in the retina. These results suggest that dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Heme Oxigenase-1/metabolismo , Luz/efeitos adversos , Fator de Transcrição NF-E2/metabolismo , Retina/efeitos dos fármacos , Retina/efeitos da radiação , Doenças Retinianas/prevenção & controle , Animais , Suplementos Nutricionais/análise , Heme Oxigenase-1/genética , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Fator de Transcrição NF-E2/genética , Coelhos , Doenças Retinianas/etiologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Biofactors ; 44(1): 36-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29193412

RESUMO

Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018.


Assuntos
Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Estilbenos/farmacologia , Animais , Catalase/genética , Catalase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
Stem Cell Reports ; 9(1): 5-11, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648895

RESUMO

Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG) mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated) and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Linfopoese , Fator de Transcrição NF-E2/metabolismo , Receptor Notch1/metabolismo , Linfócitos T/citologia , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Inativação Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos SCID , Fator de Transcrição NF-E2/genética , Receptor Notch1/genética , Linfócitos T/metabolismo
9.
J Neurochem ; 141(5): 750-765, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345128

RESUMO

The retina is highly sensitive to oxidative stress because of its high consumption of oxygen associated with the phototransductional processes. Recent findings have suggested that oxidative stress is involved in the pathology of age-related macular degeneration, a progressive degeneration of the central retina. A well-known environmental risk factor is light exposure, as excessive and continuous light exposure can damage photoreceptors. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that controls antioxidative responses and phase 2 enzymes. Thus, we hypothesized that RS9, a specific activator of Nrf2, decreases light-induced retinal cell death in vivo and in vitro. Nrf2 was detected in the nucleus of the 661W cells exposed to RS9 and also after light exposure, and the Nrf2-antioxidant response element binding was increased in 661W cells after exposure to RS9. Consequentially, the expression of the phase 2 enzyme's mRNAs of Ho-1, Nqo-1, and Gclm genes was increased in 661W cells after exposure to RS9. Furthermore, RS9 decreased the light-induced death of 661W cells (2500 lux, 24 h), and also reduced the functional damages and the histological degeneration of the nuclei in the outer nuclear layer or the retina in the in vivo studies (8000 lux, 3 h). Heme oxygenase-1 was increased after light exposure, and Nrf2 was translocated into the nucleus after light exposure in vivo. Silencing of Ho-1 reduced the protective effects of RS9 against light-induced death of 661W cells. These findings indicate that RS9 has therapeutic potential for retinal diseases that are aggravated by light exposure.


Assuntos
Morte Celular/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Luz/efeitos adversos , Células Fotorreceptoras/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Transformada , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos da radiação , Citosol/efeitos dos fármacos , Citosol/efeitos da radiação , Células Ependimogliais/citologia , Células Ependimogliais/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Técnicas In Vitro , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Células Fotorreceptoras/efeitos da radiação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Retina/citologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/prevenção & controle , Fatores de Tempo , Triterpenos/química
10.
Haematologica ; 101(9): 1054-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479815

RESUMO

We have recently demonstrated that the transcription factor nuclear factor-erythroid 2, which is critical for erythroid maturation and globin gene expression, plays an important role in the pathophysiology of myeloproliferative neoplasms. Myeloproliferative neoplasm patients display elevated levels of nuclear factor-erythroid 2 and transgenic mice overexpressing the transcription factor develop myeloproliferative neoplasm, albeit, surprisingly without erythrocytosis. Nuclear factor-erythroid 2 transgenic mice show both a reticulocytosis and a concomitant increase in iron deposits in the spleen, suggesting both enhanced erythrocyte production and increased red blood cell destruction. We therefore hypothesized that elevated nuclear factor-erythroid 2 levels may lead to increased erythrocyte destruction by interfering with organelle clearance during erythroid maturation. We have previously shown that nuclear factor-erythroid 2 overexpression delays erythroid maturation of human hematopoietic stem cells. Here we report that increased nuclear factor-erythroid 2 levels also impede murine maturation by retarding mitochondrial depolarization and delaying mitochondrial elimination. In addition, ribosome autophagy is delayed in transgenics. We demonstrate that the autophagy genes NIX and ULK1 are direct novel nuclear factor-erythroid 2 target genes, as these loci are bound by nuclear factor-erythroid 2 in chromatin immunoprecipitation assays. Moreover, Nix and Ulk1 expression is increased in transgenic mice and in granulocytes from polycythemia vera patients. This is the first report implying a role for nuclear factor-erythroid 2 in erythroid maturation by affecting autophagy.


Assuntos
Autofagia , Células Eritroides/citologia , Células Eritroides/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Animais , Autofagia/genética , Biomarcadores , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Fenil-Hidrazinas/farmacologia , Policitemia Vera/genética , Policitemia Vera/metabolismo , Reticulócitos/citologia , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Ribossomos/metabolismo
11.
Cell Mol Life Sci ; 72(12): 2323-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25721735

RESUMO

The NFE2 transcription factor was identified over 25 years ago. The NFE2 protein forms heterodimers with small MAF proteins, and the resulting complex binds to regulatory elements in a large number of target genes. In contrast to other CNC transcription family members including NFE2L1 (NRF1), NFE2L2 (NRF2) and NFE2L3 (NRF3), which are widely expressed, earlier studies had suggested that the major sites of NFE2 expression are hematopoietic cells. Based on cell culture studies it was proposed that this protein acts as a critical regulator of globin gene expression. However, the knockout mouse model displayed only mild erythroid abnormalities, while the major phenotype was a defect in megakaryocyte biogenesis. Indeed, absence of NFE2 led to severely impaired platelet production. A series of recent data, also summarized here, shed new light on the various functional roles of NFE2 and the regulation of its activity. NFE2 is part of a complex regulatory network, including transcription factors such as GATA1 and RUNX1, controlling megakaryocytic and/or erythroid cell function. Surprisingly, it was recently found that NFE2 also has a role in non-hematopoietic tissues, such as the trophoblast, in which it is also expressed, as well as the bone, opening the door to new research areas for this transcription factor. Additional data showed that NFE2 function is controlled by a series of posttranslational modifications. Important strides have been made with respect to the clinical significance of NFE2, linking this transcription factor to hematological disorders such as polycythemias.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Fator de Transcrição NF-E2/metabolismo , Trofoblastos/metabolismo , Animais , Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Fator de Transcrição NF-E2/genética , Trofoblastos/citologia
12.
Free Radic Biol Med ; 80: 33-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542137

RESUMO

Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin in animals and humans. Porcine circovirus-associated disease (PCVAD), including porcine dermatitis and nephropathy syndrome, is a worldwide swine disease. To date, little is known concerning the relationship between OTA and porcine circovirus type 2 (PCV2), the primary causative agent of PCVAD. The effects of OTA on PCV2 replication and their mechanisms were investigated in vitro and in vivo. The results in vitro showed that low doses of OTA significantly increased PCV2 DNA copies and the number of infected cells. Maximum effects were observed at 0.05 µg/ml OTA. The results in vivo showed that PCV2 replication was significantly increased in serum and tissues of pigs fed 75 µg/kg OTA compared with the control group and pigs fed 150 µg/kg OTA. In addition, low doses of OTA significantly depleted reduced glutathione and mRNA expression of NF-E2-related factor 2 and γ-glutamylcysteine synthetase; increased reactive oxygen species, oxidants, and malondialdehyde; and induced p38 and ERK1/2 phosphorylation in PK15 cells. Adding N-acetyl-L-cysteine reversed the changes induced by OTA. Knockdown of p38 and ERK1/2 by their respective specific siRNAs or inhibition of p38 and ERK1/2 phosphorylation by their respective inhibitors (SB203580 and U0126) eliminated the increase in PCV2 replication induced by OTA. These data indicate that low doses of OTA promoted PCV2 replication in vitro and in vivo via the oxidative stress-mediated p38/ERK1/2 MAPK signaling pathway. This suggests that low doses of OTA are potentially harmful to animals, as they enhance virus replication, and partly explains why the morbidity and severity of PCVAD vary significantly in different pig farms.


Assuntos
Circovirus/efeitos dos fármacos , DNA Viral/biossíntese , Ocratoxinas/toxicidade , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Circovirus/patogenicidade , Circovirus/fisiologia , DNA Viral/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/virologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/virologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Ocratoxinas/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Síndrome Definhante Multissistêmico de Suínos Desmamados/tratamento farmacológico , Síndrome Definhante Multissistêmico de Suínos Desmamados/metabolismo , Síndrome Definhante Multissistêmico de Suínos Desmamados/patologia , Síndrome Definhante Multissistêmico de Suínos Desmamados/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Suínos , Desmame , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Neurotox Res ; 23(2): 189-99, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22903344

RESUMO

Methamphetamine (METH) is a highly addictive drug that is commonly abused worldwide. This psychostimulant drug causes the disturbances in the dopaminergic and serotonergic neurons of several brain areas. Exposure to METH has been shown to induce oxidative stress, reactive oxygen species, reactive nitrogen species, and neuroinflammation. However, the mechanism underlying METH-induced inflammation in neurons is still unclear. In this study, we investigated whether METH caused inflammatory effects in human dopaminergic neuroblastoma SH-SY5Y cells and whether this effect involved the nuclear factor-κB (NF-κB) transcription factor pathway. The present results showed that METH significantly increased inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner and significantly increased the levels of tumor necrosis factor (TNF)-α mRNA and phosphorylated NF-κB, which is translocated into the nucleus. Moreover, our results also show that METH downregulated another transcription factor, the nuclear factor erythroid 2-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Furthermore, we also examined the anti-inflammatory effect of melatonin against these METH-induced neuroinflammatory functions. The results show that melatonin significantly decreases the iNOS protein expression and TNF-α mRNA levels caused by METH. The activation and the level of pNF-κB were decreased while Nrf2 expression was increased when cells were pre-incubated with 100 nM of melatonin. In order to show the relationship between cell death and the increase of iNOS, 100 µM of L-NAME, an iNOS inhibitor pretreatment significantly prevented cell death caused by METH. These results demonstrate, for the first time, that METH directly induces inflammation in neurons via an NF-κB-dependent pathway and that the anti-neuroinflammatory effects of melatonin result from the inhibition of activated NF-κB in parallel with potentiated antioxidant/detoxificant defense by activated Nrf2 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Citocinas/metabolismo , Dopamina/metabolismo , Melatonina/farmacologia , Metanfetamina/farmacologia , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Neuroblastoma/patologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Quinase Induzida por NF-kappaB
14.
J Exp Med ; 209(1): 35-50, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22231305

RESUMO

The molecular pathophysiology of myeloproliferative neoplasms (MPNs) remains poorly understood. Based on the observation that the transcription factor NF-E2 is often overexpressed in MPN patients, independent of the presence of other molecular aberrations, we generated mice expressing an NF-E2 transgene in hematopoietic cells. These mice exhibit many features of MPNs, including thrombocytosis, leukocytosis, Epo-independent colony formation, characteristic bone marrow histology, expansion of stem and progenitor compartments, and spontaneous transformation to acute myeloid leukemia. The MPN phenotype is transplantable to secondary recipient mice. NF-E2 can alter histone modifications, and NF-E2 transgenic mice show hypoacetylation of histone H3. Treatment of mice with the histone deacetylase inhibitor (HDAC-I) vorinostat restored physiological levels of histone H3 acetylation, decreased NF-E2 expression, and normalized platelet numbers. Similarly, MPN patients treated with an HDAC-I exhibited a decrease in NF-E2 expression. These data establish a role for NF-E2 in the pathophysiology of MPNs and provide a molecular rationale for investigating epigenetic alterations as novel targets for rationally designed MPN therapies.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Transtornos Mieloproliferativos/genética , Fator de Transcrição NF-E2/genética , Animais , Contagem de Células Sanguíneas , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Progressão da Doença , Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Fenótipo
15.
Immunogenetics ; 62(8): 543-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20614118

RESUMO

In teleost fish, a novel gene G6F-like was identified, encoding a type I transmembrane molecule with four extracellular Ig-like domains and a cytoplasmic tail with putative tyrosine phosphorylation motifs including YxN and an immunoreceptor tyrosine-based activation motif (ITAM). G6F-like maps to a teleost genomic region where stretches corresponding to human chromosomes 6p (with the MHC), 12p (with CD4 and LAG-3), and 19q are tightly linked. This genomic organization resembles the ancestral "Ur-MHC" proposed for the jawed vertebrate ancestor. The deduced G6F-like molecule shows sequence similarity with members of the CD4/LAG-3 family and with the human major histocompatibility complex-encoded thrombocyte marker G6F. Despite some differences in molecular organization, teleost G6F-like and tetrapod G6F seem orthologous as they map to similar genomic location, share typical motifs in transmembrane and cytoplasmic regions, and are both expressed by thrombocytes/platelets. In the crucian carps goldfish (Carassius auratus auratus) and ginbuna (Carassius auratus langsdorfii), G6F-like was found expressed not only by thrombocytes but also by erythrocytes, supporting that erythroid and thromboid cells in teleost fish form a hematopoietic lineage like they do in mammals. The ITAM-bearing of G6F-like suggests that the molecule plays an important role in cell activation, and G6F-like expression by erythrocytes suggests that these cells have functional overlap potential with thrombocytes.


Assuntos
Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peixes/genética , Peixes/imunologia , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade , Sequência de Aminoácidos , Animais , Plaquetas/imunologia , Mapeamento Cromossômico , Eritrócitos/imunologia , Evolução Molecular , Proteínas de Peixes/química , Fator de Transcrição GATA1/genética , Expressão Gênica , Carpa Dourada/genética , Carpa Dourada/imunologia , Humanos , Imunoglobulinas/química , Dados de Sequência Molecular , Fator de Transcrição NF-E2/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Oryzias/genética , Oryzias/imunologia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
16.
Oncol Rep ; 19(1): 211-6, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18097597

RESUMO

Aberrant promoter methylation is an important mechanism for gene silencing. Inflammation-related reactive oxygens contribute to this CpG island methylation. The nuclear factor-erythroid 2-related factor 2 gene (Nrf2) is known to regulate the expression of detoxifying and antioxidant genes. We investigated the relationship between promoter polymorphisms of Nrf2 gene and the CpG island methylation in non-cancerous gastric mucosa. The study was performed in 85 subjects (46 without gastric malignancies, non-GC group, and 39 with gastric cancer, GC group). The promoter methylation status of p14(ARF), p16(INK4a) and p21(Waf1) genes was determined by methylation-specific-polymerase chain reaction. The Nrf2 gene genotypes were determined by the PCR-SSCP method. In the 85 subjects, CpG island methylation was found in 25.9% for p14, 15.3% for p16, none for p21. The frequency of the methylated genes was significantly higher in GC group than non-GC group (OR, 2.67; 95% CI, 1.10-6.49; p=0.029). In particular, the frequency of p16 gene methylation was much higher in GC group (p=0.0023). The Nrf2 -686/-684 G/G haplotype was positively associated and A/G haplotype was inversely associated with the development of CpG island methylation, especially p14 gene methylation (OR, 3.28; 95% CI, 1.26-8.59; p=0.015, and OR, 0.38; 95% CI, 0.15-0.96; p=0.040, respectively). In Helicobacter pylori (H. pylori) infected subjects, the number of -686/-684 G/G allele was positively correlated and that of A/G allele was inversely correlated to the methylation status, especially p14 methylation, by the adjusted analysis (OR, 2.90; 95% CI, 1.14-7.36; p=0.026, and OR, 0.33; 95% CI, 0.13-0.88; p=0.027, respectively). Our results suggested that the promoter polymorphisms of Nrf2 gene may affect the methylation status of tumor-related genes, especially the p14 gene, under the influence of H. pylori-induced gastric inflammation.


Assuntos
Metilação de DNA , Mucosa Gástrica/fisiologia , Fator de Transcrição NF-E2/genética , Polimorfismo Conformacional de Fita Simples , Neoplasias Gástricas/genética , Idoso , Ilhas de CpG , Feminino , Gastrite/genética , Gastrite/microbiologia , Infecções por Helicobacter/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Proteína Supressora de Tumor p14ARF/genética
17.
Cancer Res ; 66(16): 8293-6, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16912211

RESUMO

Sulforaphane, a dietary isothiocyanate, possesses potent chemopreventive effects through the induction of cellular detoxifying/antioxidant enzymes via the transcription factor nuclear factor E2-related factor 2 (Nrf2). To investigate carcinogenesis mechanisms related to the regulation of Nrf2, we examined the tumor incidence and tumor numbers per mouse in Nrf2 wild-type (+/+) and Nrf2 knockout (-/-) mice. 7,12-Dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatments resulted in an increase in the incidence of skin tumors and tumor numbers per mouse in both genotypes; however, both indices were markedly higher in Nrf2(-/-) mice as compared with Nrf2(+/+) mice. Western blot analysis revealed that Nrf2 as well as heme oxygenase-1, a protein regulated by Nrf2 were not expressed in skin tumors from mice of either genotype, whereas expression of heme oxygenase-1 in Nrf2(+/+) mice was much higher than that in Nrf2(-/-) mice in nontumor skin samples. Next, we examined the chemopreventive efficacy of sulforaphane in mice with both genotypes. Topical application of 100 nmol of sulforaphane once a day for 14 days prior to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate applications decreased the incidence of skin tumor in the Nrf2(+/+) mice when compared with the vehicle-treated group. Importantly, there was no chemoprotective effect elicited by sulforaphane pretreatment in the Nrf2(-/-) mice group. Taken together, our results show for the first time that Nrf2(-/-) mice are more susceptible to skin tumorigenesis and that the chemopreventive effects of sulforaphane are mediated, at least in part, through Nrf2.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Anticarcinógenos/uso terapêutico , Fator de Transcrição NF-E2/fisiologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/prevenção & controle , Tiocianatos/uso terapêutico , Animais , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Suscetibilidade a Doenças , Isotiocianatos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição NF-E2/deficiência , Fator de Transcrição NF-E2/genética , Reação em Cadeia da Polimerase , Neoplasias Cutâneas/patologia , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA