Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664429

RESUMO

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
Environ Mol Mutagen ; 65 Suppl 1: 72-81, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37545038

RESUMO

DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.


Assuntos
Reparo por Excisão , Xeroderma Pigmentoso , Humanos , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Dano ao DNA/genética , DNA/genética , Nucleotídeos , Transcrição Gênica
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139171

RESUMO

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Assuntos
Neoplasias , Proteínas Repressoras , Humanos , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Processamento Alternativo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
DNA Repair (Amst) ; 132: 103568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977600

RESUMO

The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.


Assuntos
Proteína Grupo D do Xeroderma Pigmentoso , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Reparo do DNA , Xeroderma Pigmentoso/genética , DNA/genética
5.
PLoS One ; 18(3): e0283186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961799

RESUMO

MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1.


Assuntos
Doença de Hodgkin , Linfoma de Células B , Linfoma não Hodgkin , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Hodgkin/patologia , Linhagem Celular , Centro Germinativo/patologia , Linfoma de Células B/genética , Linfoma não Hodgkin/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(11): e2208860120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893274

RESUMO

XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.


Assuntos
Neoplasias Cutâneas , Xeroderma Pigmentoso , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Alelos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Reparo do DNA/genética , Dano ao DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Neoplasias Cutâneas/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
7.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36308430

RESUMO

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Assuntos
Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Mutação , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patologia , Ribossomos/genética , Ribossomos/metabolismo
8.
BMC Cancer ; 22(1): 1181, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384536

RESUMO

BACKGROUND: Repair pathway genes play an important role in the development of lung cancer. The study aimed to assess the correlation between single nucleotide polymorphisms (SNPs) in DNA repair gene (GTF2H1 and RAD54L2) and the risk of lung cancer. METHODS: Five SNPs in GTF2H1 and four SNPs in RAD54L2 in 506 patients with lung cancer and 510 age-and gender-matched healthy controls were genotyped via the Agena MassARRAY platform. The influence of GTF2H1 and RAD54L2 polymorphisms on lung cancer susceptibility was assessed using logistic regression analysis by calculating odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). RESULTS: RAD54L2 rs9864693 GC genotype increased the risk of lung cancer (OR = 1.33, 95%CI: 1.01-1.77, p = 0.045). Stratified analysis found that associations of RAD54L2 rs11720298, RAD54L2 rs4687592, RAD54L2 rs9864693 and GTF2H1 rs4150667 with lung cancer risk were found in subjects aged ≤ 59 years. Precisely, a protective effect of RAD54L2 rs11720298 on the occurrence of lung cancer was observed in non-smokers and drinkers. GTF2H1 rs4150667 was associated with a decreased risk of lung cancer in subjects with BMI ≤ 24 kg/m2. RAD54L2 rs4687592 was associated with an increased risk of lung cancer in drinkers. In addition, GTF2H1 rs3802967 was associated with a reduced risk of lung squamous cell carcinoma. CONCLUSION: Our study first revealed that RAD54L2 rs9864693 was associated with an increased risk of lung cancer in the Chinese Han population. This study may increase the understanding of the effect of RAD54L2 and GTF2H1 polymorphisms on lung cancer occurrence.


Assuntos
DNA Helicases , Predisposição Genética para Doença , Neoplasias Pulmonares , Fator de Transcrição TFIIH , Humanos , Povo Asiático/genética , China/epidemiologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição TFIIH/genética , DNA Helicases/genética
9.
Hum Mutat ; 43(12): 2222-2233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259739

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.


Assuntos
Doenças do Cabelo , Dermatopatias , Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/complicações , Reparo do DNA , Doenças do Cabelo/genética , Transcrição Gênica , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
10.
Bioorg Chem ; 124: 105755, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551043

RESUMO

Drug repositioning is one of the most effective approaches towards drug discovery and development. It involves the identification of new therapeutic indications of existing drugs. The present study evaluated several drugs for their ability to modulate activity of the p8 subunit of TFIIH complex. Negative modulation of p8 subunit activity disrupts protein-protein interactions (PPIs) among the subunits of TFIIH complex, and thereby the TFIIH-associated functions. TFIIH complex has key role in the transcription and nucleotide excision repair activity in cancerous cells. TFIIH complex has emerged as a privileged drug target in anticancer research. Out of 60 drugs, amlopipine (13), diltiazem (16), gemfibrozil (19), levocitrizine dihydrochloride (20), losartan potassium (22), clorthalidone (24), and escitalopram (28) showed interactions with subunit p8 in the ligand-protein binding and chemical shift perturbation studies. The Kd values were found to be between 0.25 and 1 mM. These drugs also caused thermal destabilization of the subunit p8 by negatively shifting the melting temperature by ≥ 2 °C. Molecular docking studies indicated the interaction of these drugs with important residues of p8-p52 complex, such as Glu48, Lys51, Glu496, and Glu455 via non-covalent interactions. This study has thereby identified 7 drugs that can be investigated further as potential anticancer drugs.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Subunidades Proteicas/química , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
11.
Nat Commun ; 12(1): 3338, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099686

RESUMO

The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.


Assuntos
Microscopia Crioeletrônica , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Adutos de DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética
12.
J Cancer Res Clin Oncol ; 147(6): 1609-1622, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792796

RESUMO

PURPOSE: Platelets contain a rich repertoire of RNA species, such as mRNAs and long non-coding RNAs. During the development of tumors, platelets are "educated" by cancer cells, altering their transcriptome and molecular content, thereby, tumor educated platelet (TEP) lncRNA profile has the potential to diagnose lung cancer. The current study was aimed to examine whether TEPs might be a potential biomarker for lung cancer. METHODS: Platelet precipitation was obtained by low-speed centrifugation. TEP linc-GTF2H2-1, RP3-466P17.2, and lnc-ST8SIA4-12 were selected by lncRNA microarray and validated by qPCR in a large cohort of lung cancer patients and healthy donors. Besides, we analyzed the association of their expression levels with clinicopathological features. RESULTS: TEP linc-GTF2H2-1 and RP3-466P17.2 were significantly downregulated, while lnc-ST8SIA4-12 was significantly upregulated in patients with lung cancer or with early-stage lung cancer as compared to healthy donors, possessing AUCs of 0.781, 0.788, 0.725 for lung cancer and 0.704, 0.771, 0.768 for early-stage lung cancer, respectively. Notably, their combination demonstrated the markedly elevated AUCs of 0.921 for lung cancer and 0.895 for early-stage lung cancer. Besides, the combination of TEP linc-GTF2H2-1 was capable to facilitate diagnostic efficiencies of CEA, Cyfra21-1, or NSE to distinguish advanced-stage lung cancer patients from early ones, with an AUC of 0.899 based on the integration of these four factors. CONCLUSION: Our data suggested that lncRNAs sequestered in TEPs enabled blood-based lung cancer diagnosis and progression prediction.


Assuntos
Biomarcadores Tumorais/genética , Plaquetas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/isolamento & purificação , Plaquetas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Detecção Precoce de Câncer/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Prognóstico , RNA Longo não Codificante/isolamento & purificação , RNA Longo não Codificante/metabolismo , Sialiltransferases/genética , Fator de Transcrição TFIIH/genética , Transcriptoma
13.
Cell Mol Life Sci ; 78(7): 3591-3606, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464383

RESUMO

In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas Ribossômicas/metabolismo , Fator de Transcrição TFIIH/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Adutos de DNA , DNA Helicases/genética , Células HeLa , Humanos , Proteínas Ribossômicas/genética , Fator de Transcrição TFIIH/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética
14.
Nucleic Acids Res ; 48(21): 12282-12296, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196848

RESUMO

The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB's ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB's ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.


Assuntos
Adenosina Trifosfatases/química , Chaetomium/química , DNA/genética , Proteínas Fúngicas/química , Subunidades Proteicas/química , Fator de Transcrição TFIIH/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
15.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166411

RESUMO

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Fator de Transcrição TFIIH/ultraestrutura , Sítios de Ligação/efeitos da radiação , Microscopia Crioeletrônica , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/efeitos da radiação , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Fator de Transcrição TFIIH/genética , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura
16.
Protein Expr Purif ; 174: 105660, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32473323

RESUMO

Transcription factor IIH (TFIIH) plays essential roles in both the initiation of RNA Polymerase II-mediated transcription and the Nucleotide Excision Repair (NER) pathway in eukaryotes. In NER, the 7-subunit TFIIH Core sub-complex is responsible for the opening and extension of the DNA bubble created at the lesion site, utilizing the molecular motors XPB and XPD. Mutations in Core subunits are associated with a series of severe autosomal recessive disorders characterised by symptoms such as mild-to-extreme photosensitivity, premature ageing, physical and neurological anomalies, and in some cases an increased susceptibility to cancer. Although TFIIH Core has been successfully obtained in the past, the process has always remained challenging and laborious, involving many steps that severely hindered the amount of pure, active complex obtained. This has limited biochemical and functional studies of the NER process. Here we describe improved and simplified processes for the cloning, expression and purification of the 7-subunit TFIIH Core sub-complex. The combined use of auto-cleavable 2A-like sequences derived from the Foot-and-Mouth Disease Virus (FMDV) and the MultiBac™ cloning system, a powerful baculoviral expression vector specifically conceived for the obtaining of multi-subunit eukaryotic complexes, allowed us to obtain a single, 7-gene plasmid in a short time using regular restriction cloning strategies. Additionally, expression of the construct in High Five™ insect cells paired with a simple 5-step purification protocol allowed the extraction of a pure, active TFIIH Core sub-complex in milligram quantities.


Assuntos
Expressão Gênica , Fator de Transcrição TFIIH , Animais , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera , Fator de Transcrição TFIIH/biossíntese , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/isolamento & purificação
17.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963603

RESUMO

Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.


Assuntos
Modelos Animais de Doenças , Doença/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Mutação , Fator de Transcrição TFIIH/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Fator de Transcrição TFIIH/genética
18.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374204

RESUMO

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Assuntos
Doenças do Cabelo/patologia , Mutação , Treonina-tRNA Ligase/genética , Síndromes de Tricotiodistrofia/patologia , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Doenças do Cabelo/genética , Humanos , Fenótipo , Homologia de Sequência , Fator de Transcrição TFIIH/genética , Síndromes de Tricotiodistrofia/genética
19.
Nat Commun ; 10(1): 2084, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064989

RESUMO

In eukaryotes, the general transcription factors TFIIE and TFIIH assemble at the transcription start site with RNA Polymerase II. However, the mechanism by which these transcription factors incorporate the preinitiation complex and coordinate their action during RNA polymerase II transcription remains elusive. Here we show that the TFIIEα and TFIIEß subunits anchor the TFIIH kinase module (CAK) within the preinitiation complex. In addition, we show that while RNA polymerase II phosphorylation and DNA opening occur, CAK and TFIIEα are released from the promoter. This dissociation is impeded by either ATP-γS or CDK7 inhibitor THZ1, but still occurs when XPB activity is abrogated. Finally, we show that the Core-TFIIH and TFIIEß are subsequently removed, while elongation factors such as DSIF are recruited. Remarkably, these early transcriptional events are affected by TFIIE and TFIIH mutations associated with the developmental disorder, trichothiodystrophy.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Síndromes de Tricotiodistrofia/genética , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Fibroblastos , Humanos , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Fator de Transcrição TFIIH/genética , Fatores de Transcrição TFII/genética , Fatores de Elongação da Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
20.
Nat Commun ; 10(1): 1288, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894545

RESUMO

The TFIIH subunit XPB is involved in combined Xeroderma Pigmentosum and Cockayne syndrome (XP-B/CS). Our analyses reveal that XPB interacts functionally with KAT2A, a histone acetyltransferase (HAT) that belongs to the hSAGA and hATAC complexes. XPB interacts with KAT2A-containing complexes on chromatin and an XP-B/CS mutation specifically elicits KAT2A-mediated large-scale chromatin decondensation. In XP-B/CS cells, the abnormal recruitment of TFIIH and KAT2A to chromatin causes inappropriate acetylation of histone H3K9, leading to aberrant formation of transcription initiation complexes on the promoters of several hundred genes and their subsequent overexpression. Significantly, this cascade of events is similarly sensitive to KAT2A HAT inhibition or to the rescue with wild-type XPB. In agreement, the XP-B/CS mutation increases KAT2A HAT activity in vitro. Our results unveil a tight connection between TFIIH and KAT2A that controls higher-order chromatin structure and gene expression and provide new insights into transcriptional misregulation in a cancer-prone DNA repair-deficient disorder.


Assuntos
Cromatina/química , Síndrome de Cockayne/genética , Histona Acetiltransferases/genética , Histonas/metabolismo , Subunidades Proteicas/genética , Fator de Transcrição TFIIH/genética , Xeroderma Pigmentoso/genética , Acetilação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Histonas/genética , Humanos , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Cultura Primária de Células , Subunidades Proteicas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA