Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
J Chem Inf Model ; 64(10): 4158-4167, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38751042

RESUMO

The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the ß-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the ß-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the ß-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the ß-switch conformation.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos , Complexo Glicoproteico GPIb-IX de Plaquetas , Ligação Proteica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Conformação Proteica , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Humanos , Sítios de Ligação
2.
Protein Sci ; 33(3): e4929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380729

RESUMO

Domains known as von Willebrand factor type D (VWD) are found in extracellular and cell-surface proteins including von Willebrand factor, mucins, and various signaling molecules and receptors. Many VWD domains have a glycine-aspartate-proline-histidine (GDPH) amino-acid sequence motif, which is hydrolytically cleaved post-translationally between the aspartate (Asp) and proline (Pro). The Fc IgG binding protein (FCGBP), found in intestinal mucus secretions and other extracellular environments, contains 13 VWD domains, 11 of which have a GDPH cleavage site. In this study, we investigated the structural and biophysical consequences of Asp-Pro peptide cleavage in a representative FCGBP VWD domain. We found that endogenous Asp-Pro cleavage increases the resistance of the domain to exogenous proteolytic degradation. Tertiary structural interactions made by the newly generated chain termini, as revealed by a crystal structure of an FCGBP segment containing the VWD domain, may explain this observation. Notably, the Gly-Asp peptide bond, upstream of the cleavage site, assumed the cis configuration in the structure. In addition to these local features of the cleavage site, a global organizational difference was seen when comparing the FCGBP segment structure with the numerous other structures containing the same set of domains. Together, these data illuminate the outcome of GDPH cleavage and demonstrate the plasticity of proteins with VWD domains, which may contribute to their evolution for function in a dynamic extracellular environment.


Assuntos
Dipeptídeos , Prolina , Fator de von Willebrand , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Ácido Aspártico , Peptídeos
3.
Free Radic Biol Med ; 210: 1-12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956910

RESUMO

Patients with abdominopelvic cancer undergoing radiotherapy commonly develop radiation-induced intestinal injury (RIII); however, its underlying pathogenesis remains elusive. The von Willebrand factor (vWF)/a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in thrombosis, inflammation, and oxidative stress. However, its role in RIII remains unclear. In this study, the effect of radiation on vWF and ADAMTS13 expression was firstly evaluated in patients with cervical cancer undergoing radiotherapy and C57BL/6J mice exposed to different doses of total abdominal irradiation. Then, mice with the specific deletion of vWF in the platelets and endothelium were established to demonstrate the contribution of vWF to RIII. Additionally, the radioprotective effect of recombinant human (rh) ADAMTS13 against RIII was assessed. Results showed that both the patients with cervical cancer undergoing radiotherapy and RIII mouse model exhibited increased vWF levels and decreased ADAMTS13 levels. The knockout of platelet- and endothelium-derived vWF rectified the vWF/ADAMTS13 axis imbalance; improved intestinal structural damage; increased crypt epithelial cell proliferation; and reduced radiation-induced apoptosis, inflammation, and oxidative stress, thereby alleviating RIII. Administration of rhADAMTS13 could equally alleviate RIII. Our results demonstrated that abdominal irradiation affected the balance of the vWF/ADAMTS13 axis. vWF exerted a deleterious role and ADAMTS13 exhibited a protective role in RIII progression. rhADAMTS13 has the potential to be developed into a radioprotective agent.


Assuntos
Neoplasias do Colo do Útero , Fator de von Willebrand , Feminino , Humanos , Camundongos , Animais , Fator de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/prevenção & controle , Estresse Oxidativo
4.
Int Immunopharmacol ; 124(Pt B): 110951, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722258

RESUMO

Collagen is abundant but exposed in tumor due to the abnormal tumor blood vessels, thus is considered as a tumor-specific target. The A3 domain of von Willebrand factor (vWF A3) is a kind of collagen-binding domain (CBD) which could bind collagen specifically. Previously we reported a chemosynthetic CBD-SIRPαFc conjugate, which could block CD47 and derived tumor-targeting ability by CBD. CBD-SIRPαFc conjugate represented improved anti-tumor efficacy with increased MHC II+ M1 macrophages, but the uncertain coupling ratio remained a problem. Herein, we produced a vWF A3-SIRPαFc fusion protein through eukaryotic expression system. It was examined at both molecular and cellular levels with its collagen affinity, uninfluenced original affinity to targets and phagocytosis-promoting function compared to unmodified SIRPαFc. Living imaging showed that vWF A3-SIRPαFc fusion protein derived the improved accumulation and retention in tumor than SIRPαFc. In the MC38 allograft model, vWF A3-SIRPαFc demonstrated a superior tumor-suppressing effect, characterized by increased MHC II+ M1 macrophages and T cells (particularly CD4+ T cells). These results revealed that vWF A3-SIRPαFc fusion protein derived tumor-targeting ability, leading to improved anti-tumor immunotherapeutic efficacy compared to SIRPαFc. Altogether, vWF A3 improved the anti-tumor efficacy and immune-activating function of SIRPαFc, supporting targeting tumor collagen as a possible targeted strategy.


Assuntos
Neoplasias , Fator de von Willebrand , Sítios de Ligação , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Colágeno/metabolismo , Fagocitose , Imunoterapia , Ligação Proteica , Neoplasias/terapia
5.
Blood Transfus ; 21(1): 74-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694218

RESUMO

BACKGROUND: Acquired von Willebrand syndrome (AVWS) has been reported to occur in association with monoclonal gammopathy, usually of undetermined significance (MGUS). It may present as a type 1 or type 2 von Willebrand factor (VWF) defect depending on the patient's representation of large VWF multimers. MATERIALS AND METHODS: The mathematical model by Galvanin et al., already employed for studying inherited von Willebrand disease (VWD), was used to explore the pathogenic mechanisms behind MGUS-associated AVWS. RESULTS: The patients studied showed significantly reduced VWF levels and function; an increased VWF propeptide to VWF antigen ratio; and all VWF multimers present but in reduced quantities, with the low-molecular-weight VWF forms being significantly more represented than those of higher molecular weight. Our mathematical model revealed a significantly increased VWF elimination rate constant, with values similar to those of type Vicenza VWD. An even more increased VWF proteolysis rate constant was observed, with values one order of magnitude higher than in type 2A VWD but, in contrast, no loss of large multimers. The model predicted the same elimination rate for high- and low-molecular-weight VWF multimers, but proteolysis of the high-molecular-weight forms also contributes to the pool of low-molecular-weight oligomers, which explains why they were relatively over-represented. DISCUSSION: In MGUS-associated AVWS the increase of both clearance and proteolysis contributes to the circulating levels and multimer pattern of VWF, with a phenotype that appears to be a combination of type Vicenza and type 2A VWD. Hence, the mechanisms behind the onset of AVWS seem to differ from those of inherited VWD.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Paraproteinemias , Doenças de von Willebrand , Humanos , Doenças de von Willebrand/complicações , Fator de von Willebrand/química , Gamopatia Monoclonal de Significância Indeterminada/complicações , Paraproteinemias/complicações , Fenótipo
6.
Blood Adv ; 7(10): 2117-2128, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-36240294

RESUMO

von Willebrand factor (VWF) is the protective carrier of procoagulant factor VIII (FVIII) in the shear forces of the circulation, prolonging its half-life and delivering it to the developing thrombus. Using force spectroscopy, VWF-FVIII complex formation is characterized by catch-bond behavior in which force first decelerates then accelerates bond dissociation. Patients with mutations in VWF at the FVIII binding site phenocopies hemophilia A and the most common mutations are of cysteine residues involving multiple disulfide bonds. From differential cysteine alkylation and mass spectrometry experiments, 13 VWF disulfide bonds at the FVIII binding site were found to exist in formed and unformed states, and binding of FVIII results in partial formation of 12 of the VWF bonds. Force spectroscopy studies indicate that the VWF-FVIII bond stiffens in response to force and this feature of the interaction is ablated when VWF disulfide bonds are prevented from forming, resulting in slip-only bond behavior. Exposure of VWF to pathological fluid shear forces ex vivo and in vivo causes partial cleavage of all 13 disulfide bonds, further supporting their malleable nature. These findings demonstrate that FVIII binding to VWF involves dynamic changes in the covalent states of several VWF disulfides that are required for productive interaction in physiological shear forces.


Assuntos
Fator VIII , Fator de von Willebrand , Humanos , Cisteína/química , Fator VIII/química , Fator VIII/metabolismo , Hemofilia A/genética , Hemostáticos , Trombose , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
7.
Reprod Biol ; 22(4): 100700, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240670

RESUMO

Von Willebrand Disease (VWD) is a heritable disorder caused by defects of the Von Willebrand Factor (VWF), leading to deficiencies in coagulation and also angiogenesis. Women affected by VWD frequently show bleeding concerning the reproductive tract and may present with increased rates of miscarriages. We used a porcine model representing VWD type 1 and type 3 as well as the wildtype. Samples were obtained from the reproductive tract of non-pregnant sows and sows pregnant at time of placentation. Relative expression of the genes CALR, CCN2, CXCL8, ECE1, EDN1, F8, IGFBP7, and LGALS3 was analyzed. CCN2 and FVIII proteins were additionally analyzed using immunohistochemistry. In uterus and ovary significant upregulation of CCN2 was seen in non-pregnant pigs affected by VWD. This might be caused by the higher VEGFA-levels in these pigs and could have an influence angiogenesis. During pregnancy, CCN2 expression increased in wildtype pig uteri but hardly changed in those of pregnant pigs affected by VWD, presumably because the expression level in the latter pigs already was significantly increased before pregnancy. F8 expression was significantly reduced in uterus and ovary of VWD-affected pigs. VWF is known to protect FVIII from decomposition and a lack of VWF leads to lower levels of FVIII. Our results suggest that a reduced F8 expression primarily might contribute to those reduced FVIII levels in VWD-affected pigs. Additional significant results involving the pregnant pigs were detected for CALR, EDN1, and LGALS3. These genes are promising candidates for more detailed future studies.


Assuntos
Doença de von Willebrand Tipo 1 , Doenças de von Willebrand , Gravidez , Feminino , Suínos , Animais , Doenças de von Willebrand/genética , Fator de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Indutores da Angiogênese , Galectina 3
8.
Phys Chem Chem Phys ; 24(37): 22670-22678, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106495

RESUMO

Binding of platelets on vascular endothelia at the damaged site using von Willebrand factor (vWF) as a bridge is of great significance for platelet adhesion and subsequent arterial thrombosis. Molecular interactions between vWF and a receptor on a platelet surface, GPIbα, were studied by molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Key amino acid residues were identified based on the contribution to the binding of GPIbα and the vWF A1 domain. A vWF-targeting inhibitor library with the amino acid sequence EXEXXDXD (where X represents any of the 20 natural amino acid residues) was then established based on the molecular interactions between GPIbα and the vWF A1 domain, subject to subsequent screening using docking, MD simulations, etc. Two efficient inhibitors including EGEPWDGD and EAEPWDPD were obtained, with experimental validation on their abilities to bind on the vWF and inhibiting platelet adhesion.


Assuntos
Fibrinolíticos , Fator de von Willebrand , Aminoácidos/metabolismo , Plaquetas , Fibrinolíticos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
9.
Phys Chem Chem Phys ; 24(24): 14857-14865, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35698887

RESUMO

von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.


Assuntos
COVID-19 , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Fator de von Willebrand , Plaquetas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
10.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216161

RESUMO

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Assuntos
Plaquetas/fisiologia , Peptídeos/química , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células Cultivadas , Cavalos , Humanos , Microfluídica , Peptídeos/metabolismo , Ligação Proteica , Estresse Mecânico , Fator de von Willebrand/metabolismo
11.
Exp Parasitol ; 232: 108190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848245

RESUMO

As a widely distributed arthropod and vector for various pathogens, Hyalomma asiaticum presents great risk and potential losses in animal husbandry. Effective measures, including the use of vaccines, are necessary for controlling ticks and tick-borne diseases. A concise understanding of the tick-host interaction associated molecules and pathways is required for vaccine development. In the present study, a protein containing a single-domain von Willebrand factor type C (HaSVC) was isolated from H. asiaticum and was subjected to functional identification. As a result, the full-length sequence of the HaSVC (506 bp) gene was obtained, which putatively encodes 100 amino acids with a predicted molecular mass of 11 kDa, excluding the 23-amino acid signal peptide. HaSVC contains 8 cysteines to form 4 disulfide bonds. The native HaSVC protein was detected in multiple tick organs. HaSVC neither attenuated the anti-coagulation process nor directly affected the blood feeding of adult ticks. However, the purified recombinant protein HaSVC (rHaSVC/GST) significantly increased the proliferation of mice spleen cells. This might suggest a regulatory function for HaSVC on inflammation, thus providing new information that may explain the "crosstalk" between ticks and hosts.


Assuntos
Vetores Aracnídeos/química , Ixodidae/química , Fator de von Willebrand/química , Sequência de Aminoácidos , Animais , Anticorpos/análise , Anticorpos/metabolismo , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Western Blotting , DNA Complementar/química , Feminino , Interações Hospedeiro-Parasita , Masculino , Camundongos , Interferência de RNA , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/química , Alinhamento de Sequência , Baço/citologia , Baço/efeitos dos fármacos , Fator de von Willebrand/genética , Fator de von Willebrand/isolamento & purificação
12.
J Thromb Haemost ; 20(2): 316-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758185

RESUMO

BACKGROUND: An appropriate clinical diagnosis of von Willebrand disease (VWD) can be challenging because of a variable bleeding pattern and laboratory phenotype. Genotyping is a powerful diagnostic tool and may have an essential role in the diagnostic field of VWD. OBJECTIVES: To unravel the clinical and laboratory heterogeneity of genetically confirmed VWD type 2M patients and to investigate their relationship. METHODS: Patients with a confirmed VWD type 2M genetic variant in the A1 or A3 domain of von Willebrand factor (VWF) and normal or only slightly aberrant VWF multimers were selected from all subjects genotyped at the Radboud university medical center because of a high suspicion of VWD. Bleeding scores and laboratory results were analyzed. RESULTS: Fifty patients had a clinically relevant genetic variant in the A1 domain. Median bleeding score was 5. Compared with the nationwide Willebrand in the Netherlands study type 2 cohort, bleeding after surgery or delivery was reported more frequently and mucocutaneous bleedings less frequently. Median VWF activity/VWF antigen (VWF:Act/VWF:Ag) ratio was 0.32, whereas VWF collagen binding activity/VWF antigen (VWF:CB/VWF:Ag) ratio was 0.80. Variants in the A3 domain were only found in two patients with low to normal VWF:Act/VWF:Ag ratios (0.45, 1.03) and low VWF:CB/VWF:Ag ratios (0.45, 0.63). CONCLUSION: Genetically confirmed VWD type 2M patients have a relatively mild clinical phenotype, except for bleeding after surgery and delivery. Laboratory phenotype is variable and depends on the underlying genetic variant. Addition of genotyping to the current phenotypic characterization may improve diagnosis and classification of VWD.


Assuntos
Doença de von Willebrand Tipo 2 , Doenças de von Willebrand , Genótipo , Humanos , Fenótipo , Doença de von Willebrand Tipo 2/diagnóstico , Doença de von Willebrand Tipo 2/genética , Doenças de von Willebrand/diagnóstico , Doenças de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/genética
13.
J Mol Biol ; 433(13): 166954, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33771572

RESUMO

Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.


Assuntos
Proteína ADAMTS13/metabolismo , Processamento de Proteína Pós-Traducional , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Reagentes de Ligações Cruzadas/química , Humanos , Cinética , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Soluções , Fator de von Willebrand/isolamento & purificação
14.
Angiogenesis ; 24(3): 505-517, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33449299

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with endotheliitis and microthrombosis. OBJECTIVES: To correlate endothelial dysfunction to in-hospital mortality in a bi-centric cohort of COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with laboratory-confirmed COVID-19 were enrolled. A panel of endothelial biomarkers and von Willebrand factor (VWF) multimers were measured in each patient ≤ 48 h following admission. RESULTS: Study enrolled 208 COVID-19 patients of whom 23 were mild outpatients and 189 patients hospitalized after admission. Most of endothelial biomarkers tested were found increased in the 89 critical patients transferred to intensive care unit. However, only von Willebrand factor antigen (VWF:Ag) scaled according to clinical severity, with levels significantly higher in critical patients (median 507%, IQR 428-596) compared to non-critical patients (288%, 230-350, p < 0.0001) or COVID-19 outpatients (144%, 133-198, p = 0.007). Moreover, VWF high molecular weight multimers (HMWM) were significantly higher in critical patients (median ratio 1.18, IQR 0.86-1.09) compared to non-critical patients (0.96, 1.04-1.39, p < 0.001). Among all endothelial biomarkers measured, ROC curve analysis identified a VWF:Ag cut-off of 423% as the best predictor for in-hospital mortality. The accuracy of VWF:Ag was further confirmed in a Kaplan-Meier estimator analysis and a Cox proportional Hazard model adjusted on age, BMI, C-reactive protein and D-dimer levels. CONCLUSION: VWF:Ag is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that VWF, including excess of HMWM forms, drives microthrombosis in COVID-19.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Pandemias , SARS-CoV-2 , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/química , COVID-19/fisiopatologia , Estudos Transversais , Endotélio Vascular/fisiopatologia , Feminino , Mortalidade Hospitalar , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Peso Molecular , Paris/epidemiologia , Modelos de Riscos Proporcionais , Multimerização Proteica , Índice de Gravidade de Doença , Trombose/sangue , Trombose/etiologia , Fator de von Willebrand/química
16.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031746

RESUMO

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Assuntos
Biopolímeros/metabolismo , Mucinas/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Dissulfetos/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestrutura , Peptídeos/química , Domínios Proteicos , Multimerização Proteica , Fator de von Willebrand/química , Fator de von Willebrand/ultraestrutura
17.
Med Hypotheses ; 144: 110030, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758876

RESUMO

Novel Coronavirus (SARS CoV-2), the etiological agent for the highly contagious Corona virus disease-2019 (COVID-19) pandemic has threatened global health and economy infecting around 5.8 million people and causing over 359,200 deaths (as of 28th May 2020, https://www.worldometers.info/coronavirus/). The clinical manifestations of infected patients generally range from asymptomatic or mild to severe illness, or even death. The ability of the virus to evade the host immune response have been major reasons for high morbidity and mortality. One of the important clinical observations under conditions of critical illness show increased risk of developing disseminated intravascular coagulation. Molecular mechanisms of how SARS CoV-2 induces such conditions still remain unclear. This report describes the presence of two unique motifs in the SARS CoV-2 nucleocapsid phosphoprotein (N-protein) that can potentially interact with fibrinogen and possibly prothrombin. This is based on an established function of secretory proteins in Staphylococcus aureus (S. aureus)-coagulase, Efb (Extracellular fibrinogen binding) and vWBP (von Willebrand factor Binding Protein), which are known to regulate the blood clotting cascade and the functions of host immune response. It is hypothesized that having protein interaction motifs that are homologous to these S. aureus proteins, the N-protein of this virus can mimic their functions, which may in turn play a crucial role in formation of blood clots in the host and help the virus evade host immune response. However, this hypothesis needs to be tested in vitro. Considering the overwhelming increase in the incidence of SARS CoV-2 infection globally, this information may be useful for further investigation and could help in deducing new therapeutic strategies to combat advanced stages of this disease.


Assuntos
Proteínas de Bactérias/química , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Fibrinogênio/química , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2 , Motivos de Aminoácidos , COVID-19/metabolismo , Humanos , Sistema Imunitário , Modelos Teóricos , Peptídeos/química , Fosfoproteínas/química , Ligação Proteica , Domínios Proteicos , Staphylococcus aureus/enzimologia , Fator de von Willebrand/química
18.
Sci Adv ; 5(8): eaaw6081, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453327

RESUMO

Serum albumin (SA) is used as a carrier to deliver cytotoxic agents to tumors via passive targeting. To further improve SA's tumor targeting capacity, we sought to develop an approach to retain SA-drug conjugates within tumors through a combination of passive and active targeting. SA was recombinantly fused with a collagen-binding domain (CBD) of von Willebrand factor to bind within the tumor stroma after extravasation due to tumor vascular permeability. Doxorubicin (Dox) was conjugated to the CBD-SA via a pH-sensitive linker. Dox-CBD-SA treatment significantly suppressed tumor growth compared to both Dox-SA and aldoxorubicin treatment in a mouse model of breast cancer. Dox-CBD-SA efficiently stimulated host antitumor immunity, resulting in the complete eradication of MC38 colon carcinoma when used in combination with anti-PD-1 checkpoint inhibitor. Dox-CBD-SA decreased adverse events compared to aldoxorubicin. Thus, engineered CBD-SA could be a versatile and clinically relevant drug conjugate carrier protein for treatment of solid tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Albumina Sérica/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Feminino , Hidrazonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Domínios Proteicos , Fator de von Willebrand/química
19.
Proc Natl Acad Sci U S A ; 116(38): 18798-18807, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31462494

RESUMO

Single-molecule force spectroscopy has provided unprecedented insights into protein folding, force regulation, and function. So far, the field has relied primarily on atomic force microscope and optical tweezers assays that, while powerful, are limited in force resolution, throughput, and require feedback for constant force measurements. Here, we present a modular approach based on magnetic tweezers (MT) for highly multiplexed protein force spectroscopy. Our approach uses elastin-like polypeptide linkers for the specific attachment of proteins, requiring only short peptide tags on the protein of interest. The assay extends protein force spectroscopy into the low force (<1 pN) regime and enables parallel and ultra-stable measurements at constant forces. We present unfolding and refolding data for the small, single-domain protein ddFLN4, commonly used as a molecular fingerprint in force spectroscopy, and for the large, multidomain dimeric protein von Willebrand factor (VWF) that is critically involved in primary hemostasis. For both proteins, our measurements reveal exponential force dependencies of unfolding and refolding rates. We directly resolve the stabilization of the VWF A2 domain by Ca2+ and discover transitions in the VWF C domain stem at low forces that likely constitute the first steps of VWF's mechano-activation. Probing the force-dependent lifetime of biotin-streptavidin bonds, we find that monovalent streptavidin constructs with specific attachment geometry are significantly more force stable than commercial, multivalent streptavidin. We expect our modular approach to enable multiplexed force-spectroscopy measurements for a wide range of proteins, in particular in the physiologically relevant low-force regime.


Assuntos
Dobramento de Proteína , Fator de von Willebrand/química , Aminoácidos , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Elastina/química , Magnetismo , Fenômenos Mecânicos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Imagem Individual de Molécula
20.
J Thromb Haemost ; 17(12): 2099-2109, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31393047

RESUMO

BACKGROUND: ADAMTS13, a plasma metalloprotease, cleaves von Willebrand factor (VWF) to regulate its function. Additionally, ADAMTS13 is thought to regulate lateral association of VWF multimers to form fibrillar structures through its free thiols. OBJECTIVE: The purpose of the present study is to obtain direct evidence for ADAMTS13 to engage in thiol/disulfide exchange reactions. METHODS: Covalent complexes between ADAMTS13 and VWF were determined by agarose gel electrophoresis under nonreducing conditions. Free thiols in ADAMST13 were identified by a reversed phase high-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry system. RESULTS: We demonstrate formation of covalent linkage between ADAMTS13 and VWF, which is time, concentration, temperature, and shear dependent. This interaction is independent of proteolytic activity of ADAMTS13 but depends on the C-terminal domains comprising the fifth through eighth thrombospondin type 1 repeats and C1r/C1s, Uegf, Bmp1 (CUB) domains. The interaction can be blocked by thiol-reactive agents, indicating that association is accomplished through disulfide bridge formation. Several partially reduced free thiols are identified in ADAMTS13, with cysteines 1254 and 1275 being the most prominent, although a point mutation (C1275S) in ADAMTS13 does not alter its ability to form covalent linkages with VWF. This suggests functionally relevant disulfide plasticity in ADAMTS13. Interestingly, ADAMTS13 also forms homo-oligomers under the same conditions as required for the generation of hetero-oligomeric complexes of ADAMTS13 and VWF. CONCLUSIONS: Our results suggest that a dynamic network of free thiols in ADAMTS13 undergoing intra- and inter-molecular redox reactions may add another layer of regulation to VWF function under various conditions.


Assuntos
Proteína ADAMTS13/metabolismo , Compostos de Sulfidrila/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/química , Proteína ADAMTS13/genética , Animais , Células CHO , Cricetulus , Cisteína , Humanos , Oxirredução , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteólise , Especificidade por Substrato , Compostos de Sulfidrila/química , Temperatura , Fatores de Tempo , Fator de von Willebrand/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA