Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Sci Rep ; 10(1): 13870, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807803

RESUMO

Although many advances have been achieved to treat aggressive tumours, cancer remains a leading cause of death and a public health problem worldwide. Among the main approaches for the discovery of new bioactive agents, the prospect of microbial secondary metabolites represents an effective source for the development of drug leads. In this study, we investigated the actinobacterial diversity associated with an endemic Antarctic species, Deschampsia antarctica, by integrated culture-dependent and culture-independent methods and acknowledged this niche as a reservoir of bioactive strains for the production of antitumour compounds. The 16S rRNA-based analysis showed the predominance of the Actinomycetales order, a well-known group of bioactive metabolite producers belonging to the Actinobacteria phylum. Cultivation techniques were applied, and 72 psychrotolerant Actinobacteria strains belonging to the genera Actinoplanes, Arthrobacter, Kribbella, Mycobacterium, Nocardia, Pilimelia, Pseudarthrobacter, Rhodococcus, Streptacidiphilus, Streptomyces and Tsukamurella were identified. The secondary metabolites were screened, and 17 isolates were identified as promising antitumour compound producers. However, the bio-guided assay showed a pronounced antiproliferative activity for the crude extracts of Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653. The TGI and LC50 values revealed the potential of these natural products to control the proliferation of breast (MCF-7), glioblastoma (U251), lung/non-small (NCI-H460) and kidney (786-0) human cancer cell lines. Cinerubin B and actinomycin V were the predominant compounds identified in Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653, respectively. Our results suggest that the rhizosphere of D. antarctica represents a prominent reservoir of bioactive actinobacteria strains and reveals it as an important environment for potential antitumour agents.


Assuntos
Actinobacteria , Técnicas de Cultura/métodos , Descoberta de Drogas , Neoplasias/patologia , Actinobacteria/metabolismo , Actinomycetales/metabolismo , Regiões Antárticas , Antraciclinas/isolamento & purificação , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Fatores Biológicos/biossíntese , Fatores Biológicos/isolamento & purificação , Fatores Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dactinomicina/biossíntese , Dactinomicina/isolamento & purificação , Dactinomicina/farmacologia , Humanos , Streptomyces/metabolismo
2.
Mol Biochem Parasitol ; 238: 111298, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32621939

RESUMO

Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.


Assuntos
Bactérias/metabolismo , Fatores Biológicos/biossíntese , Insetos/parasitologia , Nematoides/microbiologia , Infecções por Nematoides/parasitologia , Simbiose/fisiologia , Animais , Bactérias/crescimento & desenvolvimento , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Helminto/metabolismo , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Insetos/microbiologia , Nematoides/enzimologia , Nematoides/patogenicidade , Infecções por Nematoides/microbiologia , Fosfolipases A2/metabolismo
4.
Environ Microbiol Rep ; 10(3): 231-238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457705

RESUMO

The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications.


Assuntos
Actinobacteria/genética , Fatores Biológicos/biossíntese , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Fatores Biológicos/genética
5.
J Appl Microbiol ; 120(1): 1-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26369300

RESUMO

Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications.


Assuntos
Actinobacteria/metabolismo , Fatores Biológicos/biossíntese , Microbiologia Industrial , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
J Orthop Sci ; 20(2): 380-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542223

RESUMO

BACKGROUND: The healing mechanism of ruptured or injured tendons is poorly understood. To date, some lineage-specific factors, such as scleraxis and tenomodulin, have been reported as markers of tenocyte differentiation. Because few studies have focused on tenocyte lineage-related factors with respect to the repaired tissue of healing tendons, the aim of this study was to investigate their expression during the tendon healing process. METHODS: Defects were created in the patellar tendons of rats, and the patellae and patellar tendons were harvested at 3 days and at 1, 2, 3, 6, 12, and 20 weeks after surgery. They were studied using micro-computed tomography, and paraffin-embedded sections were then prepared for histological evaluation. Reverse transcription-polymerase chain reactions were performed to analyze the expression of genes related to the tenocyte lineage, chondrogenesis, and ossification. RESULTS: Repaired tissue became increasingly fibrous over time and contained a greater number of vessels than normal tendons, even in the later period. Safranin O staining revealed the existence of proteoglycan at 1 week and its persistence through 20 weeks. Ossification was detected in all tendons at 12 weeks. The expression of tenocyte lineage-related genes was high at 1 and 2 weeks. Chondrogenic genes were up-regulated until 6 weeks. Runt-related transcription factor 2, an osteogenic gene, was up-regulated at 20 weeks. CONCLUSIONS: In our tendon defect model, cells participating in the tendon healing process appeared to differentiate toward tenocyte lineage only in the early phase, and chondrogenesis seemed to occur from the early phase onward. To improve tendon repair, it will be necessary to promote and maintain tenogenesis and to inhibit chondrogenesis, especially in the early phase, in order to avoid erroneous differentiation of stem cells.


Assuntos
Tendões/citologia , Tendões/fisiologia , Animais , Fatores Biológicos/biossíntese , Diferenciação Celular , Masculino , Ratos , Ratos Sprague-Dawley , Tendões/irrigação sanguínea , Cicatrização
7.
J Cardiovasc Pharmacol ; 61(3): 176-87, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23249676

RESUMO

Endothelium-derived hyperpolarizing factors (EDHFs) regulate vascular tone by contributing to the vasorelaxations to shear stress and endothelial agonists such as bradykinin and acetylcholine. 15(S)-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA) and 11(R),12(S),15(S)-trihydroxyeicosatrienoic acid (11,12,15-THETA) are endothelial metabolites of the 15-lipoxygenase (15-LO) pathway of arachidonic acid metabolism and are EDHFs. 11,12,15-THETA activates small conductance, calcium-activated potassium channels on smooth muscle cells causing membrane hyperpolarization, and relaxation. Expression levels of 15-LO in the endothelium regulate the activity of the 15-LO/15-H-11,12-EETA/11,12,15-THETA pathway and its contribution to vascular tone. Regulation of its expression is by transcriptional, translational, and epigenetic mechanisms. Hypoxia, hypercholesterolemia, atherosclerosis, anemia, estrogen, interleukins, and possibly other hormones increase 15-LO expression. An increase in 15-LO results in increased synthesis of 15-H-11,12-EETA and 11,12,15-THETA, increased membrane hyperpolarization, and enhanced contribution to relaxation by endothelial agonists. Thus, the 15-LO pathway represents the first example of an inducible EDHF. In addition to 15-LO metabolites, a number of chemicals have been identified as EDHFs and their contributions to vascular tone vary with species and vascular bed. The reason for multiple EDHFs has evaded explanation. However, EDHF functioning as constitutive EDHFs or inducible EDHFs may explain the need for chemically and biochemically distinct pathways for EDHF activity and the variation in EDHFs between species and vascular beds. This new EDHF classification provides a framework for understanding EDHF activity in physiological and pathological conditions.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Fatores Biológicos/metabolismo , Endotélio Vascular/metabolismo , Transdução de Sinais , Regulação para Cima , Animais , Araquidonato 15-Lipoxigenase/biossíntese , Ácido Araquidônico/metabolismo , Fatores Biológicos/biossíntese , Endotélio Vascular/enzimologia , Humanos , Peptídeo Natriurético Tipo C/metabolismo , Vasodilatação
8.
Antibiot Khimioter ; 58(7-8): 3-11, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24757827

RESUMO

On the base of previously developed microbial models high effective scheme for screening of inhibitors of sterol biosynthesis (ISB) is proposed. It is based on cultivation of halophilic bacteria Halobacterium salinarum (former Halobacterium halobium), possessing mevalonate pathway of sterol biosynthesis, and cultivation of fungus Acremonium fusidioides (former Fusidium coccineum), that is producer of steroid antibiotic fusidin (fusidic acid), which biosynthesis has great similarity (with coincidence of its initial steps till squalene formation) to cholesterol biosynthesis in human organism. In H. salinarum model ISB are revealed as compounds that inhibit test-culture growth, whereas in A. fusidioides test-system they are revealed as compounds that strongly reduce fusidin production without any visible influence on producer's growth. Mevalonate that is one of the crucial intermediates of sterol biosynthesis remove inhibition induced by many microbial metabolites that is the evidence of their action at early stages of sterol biosynthetic pathway, including HMG-CoA reductase step. Both test-systems are developed as micromethod and could be easily mechanized due to miniaturization of microbiological procedures, cultivation in sterile 96-well plates and usage of automatic micropipettes and dispensers. Effectiveness of both test-systems, as well as their sensitiveness, laboriousness and ability to give false-positive or false-negative results in ISB screening work is compared. The proposed scheme of screening of ISB includes microbial models at early steps of screening procedures and Hep G2 test-system at the late step. The preliminary screening of microbial metabolites possessing antifungal activity at initial step is compulsory. Miniaturization and mechanization of microbial processes and purification of producers' culture broth with micro- and ultrafiltration are under consideration as well.


Assuntos
Acremonium/efeitos dos fármacos , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Fatores Biológicos/farmacologia , Halobacterium salinarum/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Esteróis/antagonistas & inibidores , Acremonium/crescimento & desenvolvimento , Acremonium/metabolismo , Antibacterianos/biossíntese , Antimetabólitos/metabolismo , Automação Laboratorial , Fatores Biológicos/biossíntese , Halobacterium salinarum/crescimento & desenvolvimento , Halobacterium salinarum/metabolismo , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Modelos Biológicos , Esteróis/biossíntese
9.
Mikrobiol Z ; 74(5): 66-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23120988

RESUMO

Streptomyces globisporus 1912, a producer of the antitumor antibiotic landomycin E, forms the new low-molecular signaling molecule N-methylphenylalanyl-dehydrobutyrine diketopiperazine (BDD) and its complex and unstable by-product which restore, like the A-factor in Streptomyces griseus 773, landomycin E and streptomycin biosynthesis, and sporulation of the defective mutants S. globisporus 1912-B2 and S. griseus 1439, respectively. Here, we report the purification and structure elucidation of two compounds with R(f)0.8 by HPLC, LC/MS and 1HMR analysis. These compounds have m/z 338 and 384, accordingly, and each of them is presented by two stereoisomers containing BDD in their structure. A hypothesis explaining the composition and regulatory properties of these unstable compounds is presented.


Assuntos
Aminoglicosídeos/biossíntese , Fatores Biológicos/isolamento & purificação , Piperazinas/isolamento & purificação , Streptomyces/metabolismo , Aminoglicosídeos/genética , Antibióticos Antineoplásicos , Fatores Biológicos/biossíntese , Fatores Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Espectrometria de Massas , Peso Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Piperazinas/metabolismo , Piperazinas/farmacologia , Transdução de Sinais/genética , Estereoisomerismo , Streptomyces/efeitos dos fármacos , Streptomyces/genética
10.
Int J Med Mushrooms ; 14(3): 211-39, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22577974

RESUMO

Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a contribution for the research and development of new pharmaceutical products from mushrooms. A brief overview of the metabolic diversity and bioactive compounds of mushrooms produced by submerged cultures is also given.


Assuntos
Agaricales/metabolismo , Agricultura/métodos , Fatores Biológicos/biossíntese , Agaricales/crescimento & desenvolvimento , Reatores Biológicos , Polissacarídeos/metabolismo
11.
Hypertens Res ; 35(8): 849-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476229

RESUMO

This study was designed to determine whether a high-salt diet would alter endothelial function and, if so, the relative contributions of endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide (NO) to any changes in vasomotor responses. Male Dahl salt-sensitive (DS) rats were given either a high-salt diet (8% NaCl, DS-H) or a low-salt diet (0.4% NaCl, DS-L) for 6 weeks. Membrane potentials and contractile responses were recorded from the isolated superior mesenteric arteries. After salt loading, DS-H developed hypertension, while DS-L remained normotensive. No difference was found in acetylcholine (ACh)-induced, endothelium-dependent relaxation between the groups. However, after treatment with indomethacin and NO synthase inhibitor, EDHF-like relaxation was significantly greater in DS-H than in DS-L. In contrast, NO-mediated relaxation was significantly smaller in DS-Hthan in DS-L. Iberiotoxin (IbTx), a specific blocker of large-conductance calcium-dependent potassium (BKCa) channels, attenuated EDHF-like relaxation in DS-H but not in DS-L. IbTx marginally inhibited EDHF-mediated hyperpolarization only in DS-H. Endothelium-independent relaxation in response to sodium nitroprusside or levcromakalim was similar in both groups. In conclusion, EDHF-like relaxation is upregulated through the activation of BKCa channels in the mesenteric arteries of DS-H. As the overall relaxation in response to ACh did not differ between the groups, the upregulation of EDHF appears to compensate for the loss of NO in the mesenteric arteries of DS-H.


Assuntos
Fatores Biológicos/metabolismo , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Óxido Nítrico/metabolismo , Acetilcolina/farmacologia , Animais , Fatores Biológicos/biossíntese , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal , Fenômenos Eletrofisiológicos , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/genética , Contração Isométrica , Masculino , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Peptídeos/farmacologia , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/fisiologia , Ratos , Ratos Endogâmicos Dahl , Sódio na Dieta/farmacologia , Vasodilatadores/farmacologia
12.
Dig Dis Sci ; 57(5): 1152-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22359192

RESUMO

BACKGROUND: Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis. AIM: The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM. METHODS: Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC. Quiescent or activated HSC were subsequently plated on PP or NM and cultured for an additional 4 days at which time their gene expression, stress fiber development, and growth factor production were determined. For long-term culture, HSC were grown on NM for 20 days and the cells then replated on PP and cultured for another 10 days. RESULTS: Expression of marker genes for HSC activation, stress fiber development, and growth factor production were significantly lower in both quiescent and activated HSC cultured on NM than in those cultured on PP. After long-term culture on NM, activation marker gene expression and stress fiber development were still significantly lower in HSC than in PP, and HSC still retained the ability to activate when replated onto PP. CONCLUSIONS: HSC cultured on NM retained quiescent characteristics after both short- and long-term culture while activated HSC reverted toward a quiescent state when cultured on NM. Cultures of HSC grown on NM are a useful in vitro model to investigate the mechanisms of activation and deactivation.


Assuntos
Células Estreladas do Fígado/citologia , Nanofibras , Plásticos , Cultura Primária de Células/instrumentação , Animais , Fatores Biológicos/biossíntese , Fatores Biológicos/genética , Adesão Celular , Movimento Celular , Endotelina-1/genética , Perfilação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Cultura Primária de Células/métodos , Ratos , Ratos Wistar , Fibras de Estresse/genética , Fatores de Tempo , Fator de Crescimento Transformador beta2/genética
13.
J Am Chem Soc ; 133(13): 4746-9, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21391603

RESUMO

The tetramic acid (2,4-pyrrolidinedione) scaffold has been recognized as an important structural feature because of its mycotoxic, antibacterial, antiviral, and antioxidant activities. This important class of natural products is reportedly produced by the type-I polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) hybrid megaenzyme systems. In contrast, the benzalacetone synthase (BAS) from Rheum palmatum is a structurally simple, plant-specific type-III PKS that catalyzes the one-step decarboxylative condensation of malonyl-CoA with 4-coumaroyl-CoA. The type-III PKS exhibits unusually broad substrate specificity and notable catalytic versatility. Here we report that R. palmatum BAS efficiently produces a series of unnatural, novel tetramic acid derivatives by the condensation of malonyl-CoA with aminoacyl-CoA thioesters chemically synthesized from L- and D-amino acids. Remarkably, the novel tetramic acid dimer D-5 formed from D-phenylalanoyl-CoA showed moderate antiproliferative activity against murine leukemia P388 cells.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Fatores Biológicos/farmacologia , Policetídeo Sintases/metabolismo , Pirrolidinonas/farmacologia , Rheum/química , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Bactérias/efeitos dos fármacos , Biocatálise , Fatores Biológicos/biossíntese , Fatores Biológicos/química , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Policetídeo Sintases/química , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Rheum/enzimologia , Rheum/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
14.
Adv Pharmacol ; 60: 133-75, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21081218

RESUMO

The Mediterranean diet has been associated with greater longevity and quality of life in epidemiological studies. Indeed, because of the abundance of fruits and vegetables and a moderate consumption of wine, the Mediterranean diet provides high amounts of polyphenols thought to be essential bioactive compounds that might provide health benefits in terms of cardiovascular diseases and mortality. Several polyphenol-rich sources, such as grape-derived products, cocoa, and tea, have been shown to decrease mean blood pressure in patients with hypertension. The improvement of the endothelial function is likely to be one of the mechanisms by which polyphenols may confer cardiovascular protection. Indeed, polyphenols are able to induce nitric oxide (NO)-mediated endothelium-dependent relaxations in a large number of arteries including the coronary artery; they can also induce endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations in some of these arteries. Altogether, these mechanisms might contribute to explain the antihypertensive and cardio-protective effects of polyphenols in vivo. The aim of this review was to provide a nonexhaustive analysis of the effect of several polyphenol-rich sources and isolated compounds on the endothelium in in vitro, ex vivo, and in vivo models as well as in humans.


Assuntos
Fatores Biológicos/biossíntese , Flavonoides/farmacologia , Óxido Nítrico/metabolismo , Fenóis/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Humanos , Polifenóis , Vasodilatação/fisiologia
15.
J Am Chem Soc ; 132(36): 12733-40, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20722388

RESUMO

Stephacidin and notoamide natural products belong to a group of prenylated indole alkaloids containing a core bicyclo[2.2.2]diazaoctane ring system. These bioactive fungal secondary metabolites have a range of unusual structural and stereochemical features but their biosynthesis has remained uncharacterized. Herein, we report the first biosynthetic gene cluster for this class of fungal alkaloids based on whole genome sequencing of a marine-derived Aspergillus sp. Two central pathway enzymes catalyzing both normal and reverse prenyltransfer reactions were characterized in detail. Our results establish the early steps for creation of the prenylated indole alkaloid structure and suggest a scheme for the biosynthesis of stephacidin and notoamide metabolites. The work provides the first genetic and biochemical insights for understanding the structural diversity of this important family of fungal alkaloids.


Assuntos
Antineoplásicos/metabolismo , Aspergillus/genética , Fatores Biológicos/biossíntese , Genoma , Alcaloides Indólicos/metabolismo , Animais , Antineoplásicos/química , Aspergillus/metabolismo , Fatores Biológicos/química , Fatores Biológicos/metabolismo , Alcaloides Indólicos/química , Conformação Molecular , Prenilação , Estereoisomerismo
16.
Ther Deliv ; 1(3): 387-96, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22816142

RESUMO

Cell encapsulation can be defined as a living cell approach for the long-term delivery of therapeutic products. It consists of the immobilization of therapeutically active cells within a general polymer matrix that permits the ingress of nutrients and oxygen and the egress of therapeutic protein products but impedes the immune contact of the enclosed cells. In recent decades many attempts have evaluated the potential of this technology to release therapeutic agents for the treatment of different pathologies and disorders. At present, cell encapsulation may be used as a technological platform to improve knowledge and clinical use of stem cells. This review describes the main issues related to this cell-based approach and summarizes some of the most interesting therapeutic applications.


Assuntos
Fatores Biológicos/biossíntese , Transplante de Células/tendências , Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Terapia Genética/tendências , Animais , Órgãos Bioartificiais/tendências , Materiais Biocompatíveis , Fatores Biológicos/genética , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Humanos , Transplante de Células-Tronco/tendências , Alicerces Teciduais/tendências
17.
Radiat Environ Biophys ; 49(2): 133-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20020152

RESUMO

A large number of studies have revealed that irradiated subjects produce soluble factors found in their blood plasma which, when transferred into cell cultures from non-irradiated individuals, show clastogenic (chromosome breaking) activity. Increased yields of chromatid-type aberrations have been characteristic in most of these studies. Exposed cohorts of various origins have revealed to possess this feature: from A-bomb survivors to patients treated with radiotherapy. It is apparent that the plasma factors are sustainable for long time periods. On the other hand, they seem to be produced very fast after exposure. Considerable variation in the effect has been found between individuals with similar radiation exposure. Further, the phenomenon is not restricted to irradiated populations. Clastogenic plasma has also been observed in patients with inflammatory diseases or congenital chromosome breakage syndromes as well in subjects exposed to other agents than ionizing radiation. Chromosomal aberration inducing substances have been detected not only in vivo, but also in vitro. A common feature to all the conditions is that they are associated with oxidative stress. Studies on the biochemical nature of the clastogenic factor(s) have been conducted, and tumor necrosis factor alpha and lipid peroxidation products, among others, have been suggested as good candidates. The relevance of the plasma factors to health effects remains open. The aim of the paper is to give a short overview on the phenomenon of clastogenic factors--their occurrence and formation as well as possible effectors.


Assuntos
Fatores Biológicos/metabolismo , Quebra Cromossômica/efeitos da radiação , Plasma/metabolismo , Plasma/efeitos da radiação , Animais , Fatores Biológicos/biossíntese , Fatores Biológicos/química , Fatores Biológicos/farmacologia , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos da radiação , Estudos de Coortes , Humanos , Inflamação/sangue , Inflamação/genética , Plasma/química
19.
Nat Prod Rep ; 24(4): 735-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17653357

RESUMO

Nonribosomal peptides and polyketides have attracted considerable attention in basic and applied research and have given rise to a multitude of therapeutic agents. The biological activity of many of these complex natural products, including for example the peptide antibiotics daptomycin and bacitracin or the polyketide anticancer agents epothilone and geldanamycin, specifically relies on the macrocyclization of linear acyl chains that form the backbone of these highly valuable molecules. The construction of the linear acyl precursors is accomplished by modular protein templates that follow comparable assembly line logic. As an enzymatic key step, macrocyclization is introduced after the consecutive condensation of amino acid or acyl-CoA building blocks by dedicated catalysts, and the mature product is released from the biosynthetic machinery. The diverse chain termination strategies of nonribosomal peptide and polyketide assembly lines, the structures and mechanisms of the versatile macrocyclization catalysts, and chemoenzymatic approaches for the development of new therapeutics are the focus of this review. Further, it is illustrated that macrocyclization is not restricted to secondary metabolites, but represents a commonly found structural motif of other biologically active proteins and peptides.


Assuntos
Fatores Biológicos/biossíntese , Biopolímeros/biossíntese , Macrolídeos/metabolismo , Peptídeos/metabolismo , Animais , Fatores Biológicos/química , Biopolímeros/química , Ciclização , Macrolídeos/química , Estrutura Molecular , Peptídeos/química
20.
Nat Chem Biol ; 3(7): 387-95, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17576426

RESUMO

Terpenoids are a diverse class of natural products that have many functions in the plant kingdom and in human health and nutrition. Their chemical diversity has led to the discovery of over 40,000 different structures, with several classes serving as important pharmaceutical agents, including the anticancer agents paclitaxel (Taxol) and terpenoid-derived indole alkaloids. Many terpenoid compounds are found in low yield from natural sources, so plant cell cultures have been investigated as an alternate production strategy. Metabolic engineering of whole plants and plant cell cultures is an effective tool to both increase terpenoid yield and alter terpenoid distribution for desired properties such as enhanced flavor, fragrance or color. Recent advances in defining terpenoid metabolic pathways, particularly in secondary metabolism, enhanced knowledge concerning regulation of terpenoid accumulation, and application of emerging plant systems biology approaches, have enabled metabolic engineering of terpenoid production. This paper reviews the current state of knowledge of terpenoid metabolism, with a special focus on production of important pharmaceutically active secondary metabolic terpenoids in plant cell cultures. Strategies for defining pathways and uncovering rate-influencing steps in global metabolism, and applying this information for successful terpenoid metabolic engineering, are emphasized.


Assuntos
Fatores Biológicos/biossíntese , Fatores Biológicos/química , Engenharia Genética , Plantas/química , Terpenos/química , Células Cultivadas , Engenharia Genética/tendências , Estrutura Molecular , Paclitaxel/biossíntese , Paclitaxel/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA