Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511331

RESUMO

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Origem de Replicação , Replicação do DNA , Ciclo Celular , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo
2.
mBio ; 13(1): e0342021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34982597

RESUMO

Persisters represent a small subpopulation of cells that are tolerant of killing by antibiotics and are implicated in the recalcitrance of chronic infections to antibiotic therapy. One general theme has emerged regarding persisters formed by different bacterial species, namely, a state of relative dormancy characterized by diminished activity of antibiotic targets. Within this framework, a number of studies have linked persister formation to stochastic decreases in energy-generating components, leading to low ATP and target activity. In this study, we screen knockouts in the main global regulators of Escherichia coli for their effect on persisters. A knockout in integration host factor (IHF) had elevated ATP and a diminished level of persisters. This was accompanied by an overexpression of isocitrate dehydrogenase (Icd) and a downregulation of isocitrate lyase (AceA), two genes located at the bifurcation between the tricarboxylic acid (TCA) cycle and the glyoxylate bypass. Using a translational ihfA-mVenus fusion, we sort out rare bright cells, and this subpopulation is enriched in persisters. Our results suggest that noise in the expression of ihf produces rare cells with low Icd/high AceA, diverting substrates into the glyoxylate bypass, which decreases ATP, leading to antibiotic-tolerant persisters. We further examine noise in a simple model, the lac operon, and show that a knockout of the lacI repressor increases expression of the operon and decreases persister formation. Our results suggest that noise quenching by overexpression serves as a general approach to determine the nature of persister genes in a variety of bacterial species and conditions. IMPORTANCE Persisters are phenotypic variants that survive exposure to antibiotics through temporary dormancy. Mutants with increased levels of persisters have been identified in clinical isolates, and evidence suggests these cells contribute to chronic infections and antibiotic treatment failure. Understanding the underlying mechanism of persister formation and tolerance is important for developing therapeutic approaches to treat chronic infections. In this study, we examine a global regulator, IHF, that plays a role in persister formation. We find that noise in expression of IHF contributes to persister formation, likely by regulating the switch between the TCA cycle that efficiently produces energy and the glyoxylate bypass. We extend this study to a simple model lac operon and show that when grown on lactose as the sole carbon source, noise in its expression influences ATP levels and determines persister formation. This noise is quenched by overexpression of the lac operon, providing a simple approach to test the involvement of a gene in persister formation.


Assuntos
Escherichia coli , Fatores Hospedeiros de Integração , Infecção Persistente , Humanos , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glioxilatos , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Infecção Persistente/genética , Infecção Persistente/metabolismo , Infecção Persistente/microbiologia
3.
Nucleic Acids Res ; 49(22): 12820-12835, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871419

RESUMO

In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Retroalimentação Fisiológica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Modelos Genéticos , Ligação Proteica , Origem de Replicação/genética , Homologia de Sequência do Ácido Nucleico
4.
Mol Plant Microbe Interact ; 32(3): 325-335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30226395

RESUMO

Dickeya zeae is a globally important pathogenic bacterium that infects many crops, including rice, maize, potato, and banana. Bacterial foot rot of rice caused by D. zeae is one of the most important bacterial diseases of rice in China and some Southeast Asian countries. To investigate the functions of integration host factor (IHF) in D. zeae, we generated knockout mutants of ihfA and ihfB. Phenotypic assays showed that both the ΔihfA and ΔihfB strains had greatly reduced mobility, biofilm formation, extracellular protease, and pectinase activities, and toxin production compared with the wild-type strain. In addition, the mutants did not inhibit the germination of rice seeds, failed to cause soft rot in potatoes and a hypersensitive response in tobacco, and were avirulent in rice. Quantitative reverse-transcription polymerase chain reaction analysis demonstrated that IHF positively regulates the expression of zmsA, hrpN/Y, pelA/B/C, pehX, celZ, prtG, fliC, and DGC (diguanylate cyclase). Electrophoretic mobility shift assays further confirmed that IhfA binds to the promoter region of the DGC gene and may alter the levels of a second bacterial messenger, c-di-GMP, to regulate the pathogenicity or other physiological functions of D. zeae. In summary, IHF is an important integrated regulator of pathogenicity in D. zeae.


Assuntos
Proteínas de Bactérias , Biofilmes , Gammaproteobacteria , Fatores Hospedeiros de Integração , Macrolídeos , Poliaminas , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Gammaproteobacteria/enzimologia , Gammaproteobacteria/patogenicidade , Gammaproteobacteria/fisiologia , Técnicas de Inativação de Genes , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Macrolídeos/metabolismo , Mutação , Poliaminas/metabolismo , Virulência/genética
5.
Nucleic Acids Res ; 46(3): 1007-1020, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29228332

RESUMO

The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.


Assuntos
Proteínas Arqueais/genética , Sistemas CRISPR-Cas , DNA Intergênico/genética , Fatores Hospedeiros de Integração/genética , RNA Guia de Cinetoplastídeos/genética , Sulfolobus solfataricus/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Arqueal , DNA Intergênico/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
6.
Nucleic Acids Res ; 45(21): 12354-12373, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040689

RESUMO

In Escherichia coli, the level of the ATP-DnaA initiator is increased temporarily at the time of replication initiation. The replication origin, oriC, contains a duplex-unwinding element (DUE) flanking a DnaA-oligomerization region (DOR), which includes twelve DnaA-binding sites (DnaA boxes) and the DNA-bending protein IHF-binding site (IBS). Although complexes of IHF and ATP-DnaA assembly on the DOR unwind the DUE, the configuration of the crucial nucleoprotein complexes remains elusive. To resolve this, we analyzed individual DnaA protomers in the complex and here demonstrate that the DUE-DnaA-box-R1-IBS-DnaA-box-R5M region is essential for DUE unwinding. R5M-bound ATP-DnaA predominantly promotes ATP-DnaA assembly on the DUE-proximal DOR, and R1-bound DnaA has a supporting role. This mechanism might support timely assembly of ATP-DnaA on oriC. DnaA protomers bound to R1 and R5M directly bind to the unwound DUE strand, which is crucial in replication initiation. Data from in vivo experiments support these results. We propose that the DnaA assembly on the IHF-bent DOR directly binds to the unwound DUE strand, and timely formation of this ternary complex regulates replication initiation. Structural features of oriC support the idea that these mechanisms for DUE unwinding are fundamentally conserved in various bacterial species including pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Origem de Replicação , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Mutação , Ligação Proteica
7.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28696279

RESUMO

The integration host factor of Mycobacterium tuberculosis (mIHF) consists of a single polypeptide chain, the product of the ihf gene. We previously revealed that mIHF is a novel member of a new class of nucleoid-associated proteins that have important roles in DNA damage response, nucleoid compaction, and integrative recombination. The mIHF contains a region of 86 amino acids at its N terminus, absent from both α- and ß-subunits of Escherichia coli IHF. However, the functional significance of an extra 86-amino-acid region in the full-length protein remains unknown. Here, we report the structure/function relationship of the DNA-binding and integrative recombination-stimulating activity of mIHF. Deletion mutagenesis showed that an extra 86-amino-acid region at the N terminus is dispensable; the C-terminal region possesses the sequences essential for its known biological functions, including the ability to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents, DNA binding, DNA multimerization-circularization, and stimulation of phage L5 integrase-catalyzed integrative recombination. Single and double alanine substitutions at positions Arg170 and Arg171, located at the mIHF DNA-binding site, abrogated its capacity to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents. The variants encoded by these mutant alleles failed to bind DNA and stimulate integrative recombination. Interestingly, the DNA-binding activity of the mIHF-R173A variant remained largely unaffected; however, it was unable to stimulate integrative recombination, thus revealing a separation-of-function allele of mIHF. The functional and structural characterization of this separation-of-function allele of mIHF could reveal previously unknown functions of IHF.IMPORTANCE The integration host factor of Mycobacterium tuberculosis is a novel nucleoid-associated protein. mIHF plays a vital role in DNA damage response, nucleoid compaction, and integrative recombination. Intriguingly, mIHF contains an extra 86-amino-acid region at its N terminus, absent from both α- and ß-subunits of Escherichia coli IHF, whose functional significance is unknown. Furthermore, a triad of arginine residues located at the mIHF-DNA interface have been implicated in a range of its functions. Here, we reveal the roles of N- and C-terminal regions of mIHF and the individual residues in the Arg triad for their ability to provide protection in vivo against DNA damage, bind DNA, and stimulate integrase-catalyzed site-specific recombination.


Assuntos
Aminoácidos/metabolismo , DNA Bacteriano/metabolismo , Instabilidade Genômica , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Mycobacterium tuberculosis/genética , Recombinação Genética , Aminoácidos/química , Sítios de Ligação , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Integrases/genética , Integrases/metabolismo , Mutagênese , Mycobacterium tuberculosis/fisiologia
8.
J Biol Chem ; 292(4): 1251-1266, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27941026

RESUMO

Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Loci Gênicos/fisiologia , Trifosfato de Adenosina/genética , Proteínas de Bactérias/genética , DNA Girase/genética , DNA Girase/metabolismo , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Novobiocina/farmacologia
9.
Proc Natl Acad Sci U S A ; 113(50): E8021-E8030, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911788

RESUMO

Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.


Assuntos
Replicação do DNA , DNA Bacteriano/química , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Simulação por Computador , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/metabolismo , Domínios e Motivos de Interação entre Proteínas
10.
Org Biomol Chem ; 13(48): 11704-13, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26477860

RESUMO

Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.


Assuntos
Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Desenho de Fármacos , Fatores Hospedeiros de Integração/síntese química , Fatores Hospedeiros de Integração/metabolismo , Platina/química , Biomimética , Quelantes/química , Técnicas de Química Combinatória , Complexos de Coordenação/química , Eletroforese em Gel Bidimensional , Fatores Hospedeiros de Integração/química , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo
11.
Nucleic Acids Res ; 42(21): 13134-49, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378325

RESUMO

In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Cromossomos Bacterianos/química , Sequência Conservada , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo
12.
Microbiology (Reading) ; 159(Pt 3): 475-492, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288541

RESUMO

Legionella pneumophila, an intracellular parasite of protozoa, possesses a distinct dimorphic life cycle that alternates between the vegetative replicative form and the resilient but highly infectious cyst form. Previously, temporally expressed heterodimeric integration host factor (IHF) was shown to be required for differentiation into the cyst form. However, the precise regulatory mechanisms controlling the expression of IHF have not been identified. Microplate kinetic assays with GFP reporter promoter fusion constructs in wild-type, Δihf, ΔrpoS and ΔletA mutant strain backgrounds were employed to assess differences in expression levels of ihfA, ihfB, rsmY and rsmZ. Loss of IHF, RsmY and RsmZ expression in various mutant strain backgrounds was confirmed by quantitative PCR. Here we report that the stationary phase sigma factor RpoS is a positive regulator of IHF, whereas IHF appears to act as a positive autoregulator assisting RpoS. Bioinformatic analyses identified a set of IHF binding sites upstream of one RpoS binding site in the promoter region for both ihfA and ihfB. Recombinant IHF protein bound ihfA and ihfB promoter regions in vitro, confirming the functionality of these IHF binding sites that may assist in the bending of the promoter DNA to facilitate transcription activation of ihfA and ihfB by RpoS. Interestingly, the consensus binding site for IHF is very similar to that of the two-component response regulator LetA. LetA negatively regulates transcription of ihfA and ihfB, implying titrational regulatory control by LetA and IHF. Along with LetA, IHF was found to positively regulate expression of the non-coding regulatory RNAs RsmY and RsmZ responsible for the de-repression of CsrA-repressed transcripts associated with cyst formation, and coordinated post-exponential virulent phenotypes. Taken together, these observations indicate that IHF may have more of an integral role in the global regulatory system governing the transition from replicative to cyst forms than previously thought.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , DNA Bacteriano/metabolismo , Fatores Hospedeiros de Integração/genética , Legionella pneumophila/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Ligação Proteica
13.
Proc Natl Acad Sci U S A ; 110(3): 936-41, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277577

RESUMO

The initiation of chromosomal DNA replication is rigidly regulated to ensure that it occurs in a cell cycle-coordinated manner. To ensure this in Escherichia coli, multiple systems regulate the activity of the replication initiator ATP-DnaA. The level of ATP-DnaA increases before initiation after which it drops via DnaA-ATP hydrolysis, yielding initiation-inactive ADP-DnaA. DnaA-ATP hydrolysis is crucial to regulation of initiation and mainly occurs by a replication-coupled feedback mechanism named RIDA (regulatory inactivation of DnaA). Here, we report a second DnaA-ATP hydrolysis system that occurs at the chromosomal site datA. This locus has been annotated as a reservoir for DnaA that binds many DnaA molecules in a manner dependent upon the nucleoid-associated factor IHF (integration host factor), resulting in repression of untimely initiations; however, there is no direct evidence for the binding of many DnaA molecules at this locus. We reveal that a complex consisting of datA and IHF promotes DnaA-ATP hydrolysis in a manner dependent on specific inter-DnaA interactions. Deletion of datA or the ihf gene increased ATP-DnaA levels to the maximal attainable levels in RIDA-defective cells. Cell-cycle analysis suggested that IHF binds to datA just after replication initiation at a time when RIDA is activated. We propose a model in which cell cycle-coordinated ATP-DnaA inactivation is regulated in a concerted manner by RIDA and datA.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Hidrólise , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Modelos Biológicos , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Domínios e Motivos de Interação entre Proteínas
14.
Environ Microbiol ; 15(1): 49-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22510163

RESUMO

Integration host factor (IHF) sites are largely absent from intergenic regions of ORFs encoding central metabolic functions in Pseudomonas putida mt-2. To gain an insight into this unequal distribution of otherwise abundant IHF-binding sequences, the transcriptome of IHF-plus and IHF-minus cells growing exponentially on glucose as sole carbon source was examined. In parallel, the cognate metabolic fluxes of the wild-type P. putida strain and its ihfA derivative were determined by culturing cells to a steady-state physiological regime with (13)C-labelled glucose. While expression of many transcripts was altered by the lack of IHF, flux balance analysis revealed that the ihfA mutation did not influence central carbon metabolism. Identification of multiple IHF sites adjacent to genes responsive to the factor allowed a refinement of the consensus and the mapping of the preferred binding positions for activation or repression of associated promoters. That few (if any) of the genes affected by IHF involved core pathways suggested that the central carbon metabolism tolerates the loss of the factor. Instead, IHF controlled various cell surface-related functions and downregulated genes encoding ribosomal proteins, the alpha subunit of RNA polymerase and components of the ATP synthase. These results were confirmed with lacZ fusions to a suite of promoters detected in the transcriptome as affected by IHF. Taken together, the data suggest that IHF plays a role in the physiological shift that sets P. putida for entering stationary phase.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Regulon/genética , Trifosfato de Adenosina/biossíntese , Biofilmes , Isótopos de Carbono/análise , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/crescimento & desenvolvimento , Transcriptoma
15.
BMC Med ; 10: 34, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22498430

RESUMO

Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Terapia de Alvo Molecular , HIV/efeitos dos fármacos , Inibidores de Integrase de HIV/química , Humanos , Fatores Hospedeiros de Integração/metabolismo , Relação Quantitativa Estrutura-Atividade
16.
Nucleic Acids Res ; 40(4): 1648-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22053082

RESUMO

In Escherichia coli, the replication origin oriC consists of two functional regions: the duplex unwinding element (DUE) and its flanking DnaA-assembly region (DAR). ATP-DnaA molecules multimerize on DAR, unwinding DUE for DnaB helicase loading. However, DUE-unwinding mechanisms and functional structures in DnaA-oriC complexes supporting those remain unclear. Here, using various in vitro reconstituted systems, we identify functionally distinct DnaA sub-complexes formed on DAR and reveal novel mechanisms in DUE unwinding. The DUE-flanking left-half DAR carrying high-affinity DnaA box R1 and the ATP-DnaA-preferential DnaA box R5, τ1-2 and I1-2 sites formed a DnaA sub-complex competent in DUE unwinding and ssDUE binding, thereby supporting basal DnaB loading activity. This sub-complex is further subdivided into two; the DUE-distal DnaA sub-complex formed on the ATP-DnaA-preferential sites binds ssDUE. Notably, the DUE-flanking, DnaA box R1-DnaA sub-complex recruits DUE to the DUE-distal DnaA sub-complex in concert with a DNA-bending nucleoid protein IHF, thereby promoting DUE unwinding and binding of ssDUE. The right-half DAR-DnaA sub-complex stimulated DnaB loading, consistent with in vivo analyses. Similar features are seen in DUE unwinding of the hyperthermophile, Thermotoga maritima, indicating evolutional conservation of those mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Origem de Replicação , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA de Cadeia Simples , DNA Super-Helicoidal/metabolismo , DnaB Helicases/metabolismo , Escherichia coli/genética , Fatores Hospedeiros de Integração/metabolismo , Ligação Proteica
17.
J Mol Biol ; 377(1): 9-27, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18237740

RESUMO

To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34-base pair (bp) H' DNA sequence to the Escherichia coli DNA-remodeling protein integration host factor (IHF). Isothermal titration calorimetry and fluorescence resonance energy transfer are applied to determine effects of salt concentration [KCl, KF, K glutamate (KGlu)] and of the excluded solute glycine betaine (GB) on the binding thermodynamics at 20 degrees C. Both the binding constant K(obs) and enthalpy Delta H degrees (obs) depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy driven, especially at low [salt] (e.g., Delta H(o)(obs)=-20.2 kcal x mol(-1) in 0.04 M KCl). Delta H degrees (obs) increases linearly with [salt] with a slope (d Delta H degrees (obs)/d[salt]), which is much larger in KCl (38+/-3 kcal x mol(-1) M(-1)) than in KF or KGlu (11+/-2 kcal x mol(-1) M(-1)). At 0.33 M [salt], K(obs) is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SK(obs)=dlnK(obs)/dln[salt] is almost twice as large in magnitude in KCl (-8.8+/-0.7) as in KF or KGlu (-4.7+/-0.6). A novel analysis of the large effects of anion identity on K(obs), SK(obs) and on Delta H degrees (obs) dissects coulombic, Hofmeister, and osmotic contributions to these quantities. This analysis attributes anion-specific differences in K(obs), SK(obs), and Delta H degrees (obs) to (i) displacement of a large number of water molecules of hydration [estimated to be 1.0(+/-0.2)x10(3)] from the 5340 A(2) of IHF and H' DNA surface buried in complex formation, and (ii) significant local exclusion of F(-) and Glu(-) from this hydration water, relative to the situation with Cl(-), which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of GB on K(obs): dlnK(obs)/d[GB]=2.7+/-0.4 at constant KCl activity, indicating the net release of ca. 150 H(2)O molecules from anionic surface.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Conformação de Ácido Nucleico , Água/metabolismo , Betaína/farmacologia , Calorimetria , Escherichia coli/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Íons , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Sais/farmacologia , Termodinâmica , Titulometria
19.
Gene ; 343(1): 99-106, 2004 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-15563835

RESUMO

Integration host factor (IHF) is a heterodimeric, site-specific DNA-binding and DNA-bending protein from Escherichia coli. It is involved in high-precision DNA transactions where it serves as a key architectural component of specialized nucleoprotein structures (snups). We described recently a novel approach for protein engineering using a single polypeptide chain IHF, termed scIHF2, as a first example. ScIHF2 is made up of the alpha subunit of IHF which was inserted into the beta subunit at peptide bond Q39/G40 via two short linkers. The monomer behaves very similarly to the heterodimeric, parental IHF in biochemical and functional assays. Here, we describe an extension of this approach in which we shortened either one or both linkers by one amino acid, thereby generating three new variants termed scIHF1, 3, and 4. These variants exhibit distinct DNA-binding properties, different phenotypes in site-specific integrative and excisive recombination by phage lambda integrase in vitro, as well as in pSC101 replication assays in a DeltaIHF E. coli host. We also introduced a K45E substitution within the alpha domain of scIHF3 and based on electrophoretic mobility shift assays (EMSAs), argue that it significantly changes the DNA trajectory within the protein-DNA complex. Our results indicate that IHF's pleiotropic roles in DNA transactions inside E. coli require different types of high-precision DNA architectural activities. The scIHF variants described here will help to explore further how flexible these requirements are.


Assuntos
Fatores Hospedeiros de Integração/genética , Sequência de Aminoácidos , Bacteriófago lambda/genética , Primers do DNA , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Recombinação Genética , Deleção de Sequência
20.
Mol Microbiol ; 54(3): 808-22, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15491369

RESUMO

Type IV secretion systems (T4SSs) are multicomponent machineries that play an essential role in pathogenicity of many facultative intracellular bacteria. The virB operon of Brucella abortus codes for a T4SS essential for virulence and intracellular multiplication. Here, virB expression analyses carried out using lacZ transcriptional fusions showed that virB promoter (PvirB) is temporally activated within J774 cells. Primer extension experiments revealed that virB transcription starts at 27 bp upstream of the first gene of the virB operon. Structural analyses showed that PvirB and regulatory sequences involved in intracellular regulation span 430 bp upstream of the transcription start site. A protein able to bind PvirB was isolated and identified. This protein, homologue to integration host factor (IHF), specifically interacts with PvirB and induces a DNA bending with an angle of 50.36 degrees . DNAse I footprinting experiments showed that IHF protects a 51 bp region that contains two overlapped IHF binding consensus motifs. VirB expression experiments carried out with PvirB-lacZ fusions showed that in B. abortus IHF participates in the regulation of PvirB activity during the intracellular and vegetative growth in different media. A mutant strain with a 20 bp IHF binding site replacement failed to turn on the virB operon during the initial stages of macrophage infection and displayed severe intracellular multiplication defects. These data indicate that IHF plays a key role during intracellular virB operon expression being required for the biogenesis of the endoplasmic reticulum-derived replicative vacuole.


Assuntos
Brucella abortus/genética , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Óperon , Transcrição Gênica , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Brucella abortus/metabolismo , Linhagem Celular , Genes Reporter , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA