Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732068

RESUMO

Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.


Assuntos
Carcinogênese , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Neoplasias , Transdução de Sinais , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Transdução de Sinais/efeitos dos fármacos , Carcinogênese/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674069

RESUMO

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Proteômica , Receptores CXCR4 , Animais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Feminino , Camundongos , Proteômica/métodos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Hiperalgesia/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Medula Espinal/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Modelos Animais de Doenças , Receptores Imunológicos/metabolismo , Receptores Imunológicos/antagonistas & inibidores
3.
Clin Transl Med ; 12(1): e652, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060345

RESUMO

BACKGROUND: As an inflammatory factor and oncogenic driver protein, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) plays a crucial role in the osteosarcoma microenvironment. Although 4-iodo-6-phenylpyrimidine (4-IPP) can inactivate MIF biological functions, its anti-osteosarcoma effect and molecular mechanisms have not been investigated. In this study, we identified the MIF inhibitor 4-IPP as a specific double-effector drug for osteosarcoma with both anti-tumour and anti-osteoclastogenic functions. METHODS: The anti-cancer effects of 4-IPP were evaluated by wound healing assay, cell cycle analysis, colony formation assay, CCK-8 assay, apoptosis analysis, and Transwell migration/invasion assays. Through the application of a luciferase reporter, chromatin immunoprecipitation assays, and immunofluorescence and coimmunoprecipitation analyses, the transcriptional regulation of the NF-κB/P-TEFb complex on c-Myb- and STUB1-mediated proteasome-dependent MIF protein degradation was confirmed. The effect of 4-IPP on tumour growth and metastasis was assessed using an HOS-derived tail vein metastasis model and subcutaneous and orthotopic xenograft tumour models. RESULTS: In vitro, 4-IPP significantly reduced the proliferation and metastasis of osteosarcoma cells by suppressing the NF-κB pathway. 4-IPP hindered the binding between MIF and CD74 as well as p65. Moreover, 4-IPP inhibited MIF to interrupt the formation of downstream NF-κB/P-TEFb complexes, leading to the down-regulation of c-Myb transcription. Interestingly, the implementation of 4-IPP can mediate small molecule-induced MIF protein proteasomal degradation via the STUB1 E3 ligand. However, 4-IPP still interrupted MIF-mediated communication between osteosarcoma cells and osteoclasts, thus promoting osteoclastogenesis. Remarkably, 4-IPP strongly reduced HOS-derived xenograft osteosarcoma tumourigenesis and metastasis in an in vivo mouse model. CONCLUSIONS: Our findings demonstrate that the small molecule 4-IPP targeting the MIF protein exerts an anti-osteosarcoma effect by simultaneously inactivating the biological functions of MIF and promoting its proteasomal degradation. Direct destabilization of the MIF protein with 4-IPP may be a promising therapeutic strategy for treating osteosarcoma.


Assuntos
Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
4.
J Med Chem ; 65(3): 2059-2077, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041425

RESUMO

The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 µM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Pirimidinonas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 55: 128445, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758374

RESUMO

Human macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine that plays multiple pleiotropic functions. It is considered as a promising therapeutic target for the infectious, autoimmune, and cardiovascular diseases and cancers. The development of MIF inhibitors has not been translated into clinical success despite decades of research. Given the time and cost of developing new drugs, existing drugs with clarified safety and pharmacokinetics are explored for their potential as novel MIF inhibitors. This study identified five known drugs that could inhibit MIF's tautomerase activity and MIF-mediated cell chemotaxis in RAW264.7 cells. It was found that compounds D2 (histamine), D5 (metaraminol), and D8 (nebivolol) exhibited micromolar-range inhibition potency close to the positive control ISO-1. Kinetics and the mechanism for inhibition were subsequently determined. Moreover, the detailed inhibitor-binding patterns were investigated by X-ray crystallography, computational molecular docking, and structure-based analysis. Therefore, this study elucidates the molecular mechanism of repurposed drugs acting on MIF and provides a structural foundation for lead optimization to promote the clinical development of MIF-targeted drugs.


Assuntos
Histamina/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Metaraminol/farmacologia , Nebivolol/farmacologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Histamina/química , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Metaraminol/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Nebivolol/química , Células RAW 264.7 , Relação Estrutura-Atividade
6.
Bioorg Chem ; 117: 105396, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649152

RESUMO

Non-small-cell lung carcinoma (NSCLC) is one of the most common forms of lung cancer, and a leading cause of cancer death among human beings. There is an urgent demand for novel therapeutics for the treatment of NSCLC to enhance the efficacy of the currently applied Tyrosine kinase inhibitors (TKIs) therapy and to overcome therapy-resistance. Here, we report a novel small-molecule inhibitor that simultaneously targets histone deacetylase (HDAC) and macrophage migration inhibitory factor (MIF). The HDAC/MIF dual inhibitor proved to be toxic for EGFR mutated (H1650, TKI-resistant) or knock out (A549 EGFR-/-) NSCLC cell lines. Further experiments showed that HDAC inhibition inhibits cell survival and proliferation, while MIF inhibition downregulates pAKT or AKT expression level, which both interfere with cell survival. Furthermore, the combination treatment of TKI and HDAC/MIF dual inhibitor showed that the dual inhibitor enhanced TKI inhibitory efficacy, highlighting the advantages of HDAC/MIF dual inhibitor for more effective treatment of NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células A549 , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
PLoS One ; 16(9): e0257375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34516577

RESUMO

Radiation therapy is among the most essential treatment methods for glioblastoma multiforme (GBM). Radio-resistance and cancer stem cell properties can cause therapeutic resistance, cancer heterogeneity, and poor prognoses in association with GBM. Furthermore, the GBM subtype transition from proneural to the most malignant mesenchymal subtype after radiation therapy also accounts for high resistance to conventional treatments. Here, we demonstrate that the inhibition of macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (DDT) by 4-iodo-6-phenylpyrimidine (4-IPP), a dual inhibitor targeting MIF and DDT, downregulates stemness phenotype, intracellular signaling cascades, mesenchymal trans-differentiation, and induces apoptosis in proneural glioma stem cells (GSCs). In an analysis of The Cancer Genome Atlas, high MIF and DDT expression were associated with poor prognosis. GSC growth was effectively inhibited by 4-IPP in a time- and dose-dependent manner, and 4-IPP combined with radiation therapy led to significantly reduced proliferation compared with radiation therapy alone. The expression of stemness factors, such as Olig2 and SOX2, and the expression of pAKT, indicating PI3K signaling pathway activation, were decreased in association with both 4-IPP monotherapy and combination treatment. The expression of mesenchymal markers, TGM2 and NF-κB, and expression of pERK (indicating MAPK signaling pathway activation) increased in association with radiation therapy alone but not with 4-IPP monotherapy and combination therapy. In addition, the combination of 4-IPP and radiation therapy significantly induced apoptosis compared to the monotherapy of 4-IPP or radiation. In vivo results demonstrated a significant tumor-suppressing effect of 4-IPP when combined with radiation therapy. Collectively, our results showed that the targeted inhibition of MIF and DDT has the potential to strengthen current clinical strategies by enhancing the anticancer effects of radiation therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Indóis/uso terapêutico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Neoplasias Encefálicas/radioterapia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Glioblastoma/radioterapia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Radiação Ionizante
8.
Biochem Pharmacol ; 192: 114734, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411569

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator involved in various pathophysiological and inflammatory states. Accumulating line of evidence suggests a role for MIF in regulating bone metabolism and therefore a prime candidate for therapeutic targeting. In this study, we showed that Chicago sky blue 6B (CSB6B) suppresses RANKL-induced osteoclast and bone resorption in vitro via the inhibition of NF-κB signaling activation and promoting proteasome-mediated degradation of MIF. Consequently, the induction of NFATc1 was impaired resulting in downregulation of NFATc1-responsive osteoclast genes. We also demonstrated that CSB6B treatment enhanced primary calvarial osteoblast differentiation and bone mineralization in vitro via the suppression of NF-κB activation and upregulation of Runx expression. Using two murine models of osteolytic bone disorders, we further showed that administration of CSB6B protected mice against pathological inflammatoryc calvarial bone destruction induced by titanium particles mice as well as estrogen-deficiency induced bone loss as a result of ovariectomy. Together, as an MIF inhibitor, CSB6B can inhibit osteoclast differentiation and bone resorption function and enhance the mineralization of osteoblasts through the inhibition of NF-κB pathway. MIF is a prime target for therapeutic targeting for the treatment of osteolytic bone disorders and the MIF inhibitor CSB6B could be potential anti-osteoporosis drug.


Assuntos
Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Azul Tripano/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Corantes/farmacologia , Relação Dose-Resposta a Droga , Feminino , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Ovariectomia/efeitos adversos , Transdução de Sinais/fisiologia
9.
Int Immunopharmacol ; 98: 107868, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153665

RESUMO

Microglial overactivation-mediated neuroinflammation contributes greatly to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that is involved in the pathophysiology of various inflammatory diseases by inducing various proinflammatory cytokines. Compound 3-({[4-(4-methoxyphenyl)-6-methyl-2-pyrimidinyl]thio}methyl)benzoic acid (Z-312) is a novel small -molecule inhibitor of MIF tautomeric activity. In this study, we investigated the anti-inflammatory effects of Z-312 on liposaccharide (LPS)-induced neuroinflammation in vitro and in vivo. The results showed that Z-312 significantly decreased the production of nitric oxide (NO), interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and IL-6 in LPS-stimulated microglial cells. Mechanistically, nuclear translocation of the p65 subunit of nuclear factor (NF)-κB, degradation and phosphorylation of IκBα, NF-κB transcriptional activity and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and JNK were markedly attenuated by pretreatment with Z-312 in BV-2 microglial cells. In addition, Z-312 suppressed the neurotoxic effects of cell culture medium of LPS-activated BV-2 microglia on cocultured mouse HT22 neuroblastoma cells. An in vivo study demonstrated that Z-312 markedly ameliorated microglial activation and subsequent DA neuron loss in an LPS-induced Parkinson's disease (PD) mouse model. These results suggest that MIF inhibitor Z-312 may be a promising neuroprotective agent for the treatment of neuroinflammation-mediated neurological diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácido Benzoico/uso terapêutico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Microglia/metabolismo , Inflamação Neurogênica/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Animais , Ácido Benzoico/química , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais
10.
Int Immunopharmacol ; 96: 107555, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33823428

RESUMO

BACKGROUND: Acute kidney injury (AKI) is an important complication of severe acute pancreatitis (SAP) with a poor prognosis. The methyl ester of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1), an inhibitor of macrophage migration inhibitory factor (MIF), has protective effects against many diseases. Our previous study confirmed MIF inhibition alleviated SAP. Here, we explored the effects of ISO-1 in an experimental mouse model of SAP-associated AKI induced by l-arginine. METHODS: Mice were randomly divided into four treatment groups (n = 6 each): control (CON), SAP, SAP + ISO-1, and ISO-1. Histopathologic examination was used to observe damage in pancreatic and renal tissues. Biochemical and enzyme-linked immunosorbent assays (ELISA) kits were used to measure the serologic indicators amylase, lipase, creatinine, uric acid, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Immunohistochemistry was used to detect protein expression of NLRP3, ASC and caspase-1, and the infiltration of myeloperoxidase (MPO)-positive neutrophils in kidney tissue. Western blotting was used to detect NLRP3, ASC and caspase-1 and IL-1ß protein expression, and real-time PCR was used to measure MIF, IL-6, TNF-α, IL-1ß and IL-18 mRNA levels in kidney tissue. RESULTS: ISO-1 treatment alleviated pathological damage in pancreatic and renal tissues, and reduced the serum levels of amylase, lipase, creatinine, uric acid, IL-6 and TNF-α. ISO-1 also reduced protein expression of NLRP3, ASC, caspase-1 and IL-1ß, mRNA expression of MIF, IL-6, TNF-α, IL-1ß and IL-18, and the infiltration of MPO-positive neutrophils in kidney tissue. CONCLUSION: ISO-1 has a protective effect against experimental SAP-associated AKI. And the mechanism may be associated with ISO-1 inhibiting NLRP3 inflammasome signaling pathway.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Inflamassomos/metabolismo , Isoxazóis/uso terapêutico , Rim/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/imunologia , Pâncreas/patologia , Pancreatite/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Rim/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , NF-kappa B/metabolismo , Pâncreas/efeitos dos fármacos , Índice de Gravidade de Doença , Transdução de Sinais
11.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L6-L16, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881353

RESUMO

Macrophage migration inhibitory factor (MIF) inhibition can attenuate pulmonary fibrosis, but the antifibrotic mechanism is unclear. Here we investigated the antifibrotic effect of MIF knockdown in rats with bleomycin (BLM)-induced pulmonary fibrosis. The results showed that MIF inhibition attenuated lung injury and extracellular matrix deposition; significantly reduced the levels of cytokines including transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hydroxyproline (hyp), fibroblast growth factor 23 (FGF23), and secreted phosphoprotein 1 (Spp1); and inhibited the expression of CD68, F4/80, and α-smooth muscle actin (α-SMA) protein. MIF inhibition is associated with reduction of proinflammatory mediators and macrophage infiltration in lungs. In addition, MIF knockdown in the day 14 group was significantly better than MIF knockdown in day 1 group in terms of the above mentioned cytokines TGF-ß1, IL-17, TNF-α. MIF knockdown in day 14 group showed a better trend than MIF knockdown in day 1 group in inhibition of hyp and α-SMA formation. Furthermore, MIF inhibition downregulated the FGF23, Spp1, anti-integrin alpha 10 (Itga10), laminin subunit alpha 1 (Lama1), thrombospondin 2 (THBS2), and Serpin family B member 5 (SERPINB5) mRNA levels and the p-Smad2/3 protein level. MIF knockdown may inhibit fibrosis through the TGF-ß1/Smads signaling pathway. In addition, MIF inhibition protects against vascular remodeling via Thbs2 and Serpinb5 signaling. In summary, our study showed that knockdown of MIF can significantly inhibit lung inflammation and fibrosis in rats with BLM-induced pulmonary fibrosis. The future development of inhibitors targeting MIF may contribute to the treatment of pulmonary fibrosis.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fibrose Pulmonar/prevenção & controle , Animais , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Dig Dis Sci ; 66(10): 3415-3426, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33123939

RESUMO

AIMS: This study aimed to explore the protection mechanism of ISO-1 on severe acute pancreatitis-associated intrahepatic bile duct (IBD) injury in rats. METHODS: Forty-eight specific-pathogen-free male Wistar rats were randomly divided into four groups (N = 12): a sham operation group (SO group), a severe acute pancreatitis model group (SAP group), a ISO-1 treatment group (ISO-1 + SAP group), and a ISO-1 control group (ISO-1 + SO group). All rats were killed after 12 h of being made models. Immunohistochemistry was used to detect the expression of MIF and P38 in IBD cells. MIF mRNA expression in IBD cells was observed using real-time fluorescent quantitative polymerase chain reaction (real-time PCR). In addition, Western blotting was performed to detect the protein expression of P38, phosphorylated P38 (P-P38), nuclear factor-κB (NF-κB p65), and tumor necrosis factor alpha (TNF-α). Enzyme-linked immunosorbent assays were used to analyze the levels of TNF-α, IL-1ß, and IL-6 in the IBD of rats. RESULTS: Compared with SAP, after treatment with ISO-1, the pathological injuries of pancreas, liver, and IBD cells in ISO-1 treatment group remarkably relieved. The expression of MIF in the IBD cells was significantly downregulated both at mRNA and at protein levels in ISO-1 treatment group. Besides, the protein expression levels of P38, P-P38, NF-κBp65, TNF-α, IL-1ß, and IL-6 in the IBD in rats were also significantly decreased in ISO-1 treatment group (all P < 0.05). CONCLUSION: ISO-1 may protect the IBD cells, reduce pathological injuries, and reduce the inflammatory response in SAP rats. Its mechanisms may be via inhibiting the expression of MIF and then blocking the activation of p38-MAPK and NF-κB signaling pathway.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Oxirredutases Intramoleculares/metabolismo , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Doença Aguda , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Pancreatite/etiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Organismos Livres de Patógenos Específicos
13.
Biomed Res Int ; 2020: 5946205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964038

RESUMO

OBJECTIVE: We have previously demonstrated that inflammation induced by toll-like receptors (TLRs) 2/4 exert cerebral deleterious effects after diffuse axonal injury (DAI); however, the underlying mechanisms are not fully understood. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine involved in inflammatory responses. The purpose of this study was to investigate the role of MIF in inflammation induced by TLRs in the cortices of DAI rats. METHODS: The rat DAI model was established by head rotational acceleration and confirmed by ß-APP, HE, and silver staining. MIF protein expression at 3 h, 6 h, 12 h, 1 d, and 3 d after DAI was measured by western blot. The localization of MIF was measured by immunofluorescence. MIF antagonist ISO-1 was intracerebroventricularly injected to inhibit MIF. Neuronal and axonal injury and glial responses were assessed by TUNEL, immunohistochemistry, and TEM. Expression of TLR2, TLR4, ERK, phospho-ERK, NF-κB, and phospho-NF-κB was examined by western blot. The level of IL-1ß, IL-6, and TNF-α was measured by ELISA. RESULTS: MIF expression was significantly increased, peaking at 1 day after DAI, and MIF was mainly localized in microglial cells and neurons. ISO-1 suppressed neuronal apoptosis, axonal injury, and glial responses and decreased the expression of downstream signaling molecules related to TLR2/4, including ERK, phospho-ERK, NF-κB, phospho-NF-κB, IL-1ß, IL-6, and TNF-α. CONCLUSION: MIF was involved in the neuronal and axonal damage through a TLR-related pathway following DAI.


Assuntos
Lesão Axonal Difusa/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Apoptose/fisiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
14.
J Mol Med (Berl) ; 98(11): 1547-1559, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32885302

RESUMO

Progressive cyst growth leads to decline of renal function in polycystic kidney disease. Macrophage migration inhibitory factor (MIF) was found to be upregulated in cyst-lining cells in a mouse model of polycystic kidney disease and to promote cyst growth. In addition, MIF can be secreted by tubular cells and may contribute to cyst growth in an autocrine manner. However, the underlying mechanisms leading to induction of MIF in cyst-lining cells remained elusive. Here, we demonstrate that hypoxia-inducible transcription factor (HIF) 1α upregulates MIF in cyst-lining cells in a tubule-specific PKD1 knockout mouse. Pharmacological stabilization of HIF-1α resulted in significant increase of MIF in cyst epithelial cells whereas tubule-specific knockout of HIF-1α prevented MIF upregulation. Identical regulation could be found for ABCA1, which has been shown to act as a transport protein for MIF. Furthermore, we show that MIF and ABCA1 are direct target genes of HIF-1α in human primary tubular cells. Next to HIF-1α and hypoxia, we found MIF being additionally regulated by cAMP which is a strong promotor of cyst growth. In line with these findings, HIF-1α- and cAMP-dependent in vitro cyst growth could be decreased by the MIF-inhibitor ISO-1 which resulted in reduced cyst cell proliferation. In conclusion, HIF-1α and cAMP regulate MIF in primary tubular cells and cyst-lining epithelial cells, and MIF promotes cyst growth in the absence of macrophages. In line with these findings, the MIF inhibitor ISO-1 attenuates HIF-1α- and cAMP-dependent in vitro cyst enlargement. KEY MESSAGES: • MIF is upregulated in cyst-lining cells in a polycystic kidney disease mouse model. • MIF upregulation is mediated by hypoxia-inducible transcription factor (HIF) 1α. • ABCA1, transport protein for MIF, is also regulated by HIF-1α in vitro and in vivo. • MIF is additionally regulated by cAMP, a strong promotor of cyst growth. • MIF-inhibitor ISO-1 reduces HIF-1α- and cAMP-dependent cyst growth.


Assuntos
AMP Cíclico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxirredutases Intramoleculares/metabolismo , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Biomarcadores , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Knockout
15.
Cell Death Dis ; 11(9): 774, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943608

RESUMO

Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Caspases/metabolismo , Movimento Celular , Sobrevivência Celular , Citocromos c/metabolismo , Progressão da Doença , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Inflamação , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Morfolinas/farmacologia , Metástase Neoplásica , Transplante de Neoplasias , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Cicatrização
16.
J Med Chem ; 63(20): 11920-11933, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32940040

RESUMO

Macrophage migration inhibitory factor (MIF) is a cytokine with key roles in inflammation and cancer, which qualifies it as a potential drug target. Apart from its cytokine activity, MIF also harbors enzyme activity for keto-enol tautomerization. MIF enzymatic activity has been used for identification of MIF binding molecules that also interfere with its biological activity. However, MIF tautomerase activity assays are troubled by irregularities, thus creating a need for alternative methods. In this study, we identified a 7-hydroxycoumarin fluorophore with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching of its fluorescence. This property enabled development of a novel competition-based assay format to quantify MIF binding. We also demonstrated that the 7-hydroxycoumarin fluorophore interfered with the MIF-CD74 interaction and inhibited proliferation of A549 cells. Thus, we provide a high-affinity MIF binder as a novel tool to advance MIF-oriented research.


Assuntos
Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Umbeliferonas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Umbeliferonas/síntese química , Umbeliferonas/química
17.
Int Immunopharmacol ; 87: 106771, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32683302

RESUMO

Acute pancreatitis during pregnancy (APIP) rarely occurs but may lead to preterm delivery and be associated with high fetal mortality. Macrophage migration inhibitory factor (MIF) participates in various inflammatory diseases as a pro-inflammatory cytokine. In this study, we aimed to explore the effects of (S, R)-3-(4-hydroxyphenyl)-4, 5dihydro-5-isoxazole acetic methyl ester (ISO-1), an inhibitor of MIF, on maternal thyroid injury associated with APIP and its potential mechanisms in a pregnant rat model. APIP model was induced by retrograde injection of sodium taurocholate. ISO-1 was injected intraperitoneally 30 min before model establishment. The severity of pancreatitis was assessed by levels of tumor necrosis factor (TNF)­α, interleukin (IL)­1ß, IL-6 of maternal serum as well as histopathological score. Thyroid injury was determined by free triiodothyronine (FT3), free tetraiodothyronine (FT4) and thyroid histopathological score. Levels of MIF in maternal serum and the expression of MIF, CD68, CD3 and intercellular cell adhesion molecule-1 (ICAM-1) as well as oxidative stress status in maternal thyroid tissues were detected. Ultrastructure of maternal thyroid tissues was observed by transmission electron microscope. Thyroid injuries occurred in APIP and the lesions were attenuated with the pretreatment of ISO-1. Moreover, ISO-1 reduced the expression of MIF, attenuated the activations of CD68, CD3, ICAM-1 while improved oxidative stress status in maternal thyroid. Our research suggested a protective role of ISO-1 on thyroid injury and endocrine disorder during APIP, which may be associated with the inhibition of biological functions of MIF.


Assuntos
Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/uso terapêutico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Glândula Tireoide/efeitos dos fármacos , Animais , Citocinas/sangue , Feminino , Oxirredutases Intramoleculares/sangue , Oxirredutases Intramoleculares/imunologia , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/sangue , Fatores Inibidores da Migração de Macrófagos/imunologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/sangue , Pancreatite/imunologia , Pancreatite/patologia , Gravidez , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Glândula Tireoide/imunologia , Glândula Tireoide/patologia , Glândula Tireoide/ultraestrutura
18.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155795

RESUMO

Neuroblastoma (NB) is the most frequent extracranial pediatric tumor. Despite the current available multiple therapeutic options, the prognosis for high-risk NB patients remains unsatisfactory and makes the disease a clear unmet medical need. Thus, more tailored therapeutic approaches are warranted to improve both the quality of life and the survival of the patients. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that plays a key role in several diseases, including cancer. Preclinical and clinical studies in NB patients convergently indicate that MIF exerts pro-tumorigenic properties in NB. MIF is upregulated in NB tumor tissues and cell lines and it contributes to NB aggressiveness and immune-escape. To date, there are only a few data about the role of the second member of the MIF family, the MIF homolog d-dopachrome tautomerase (DDT), in NB. Here, we review the preclinical and clinical studies on the role of the MIF family of cytokines in NB and suggest that MIF and possibly DDT inhibitors may be promising novel prognostic and therapeutic targets in NB management.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Família Multigênica , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Animais , Biomarcadores Tumorais , Citocinas/antagonistas & inibidores , Gerenciamento Clínico , Suscetibilidade a Doenças , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia
19.
J. bras. nefrol ; 41(3): 315-322, July-Sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040245

RESUMO

Abstract Introduction: It is hypothesized that increased macrophage migration inhibitory factor (MIF) expression may contribute to diabetic nephropathy (DN) pathogenesis. The aim of the present study was to investigate the renal effects of MIF inhibition in a diabetic experimental model. Methods: Eighteen male Wistar rats (230 ± 20 g) were divided into three groups: 1) control, 2) diabetic (STZ, 50 mg/kg, dissolved in saline, ip), 3) diabetic + MIF antagonist (p425, 1 mg/kg per day, ip, on the 21th day, for 21 consecutive days). The treatment started since we founwd a significant increase in urine albumin excretion (UAE) rate in the diabetic rats in comparison with the control rats. The rats were kept individually in metabolic cages (8 AM-2 PM) and urine samples were collected in the 21 and 42th day. At the end, blood and tissue samples were collected for biochemical (BS, UPE, urine GAG, BUN, Cr, Na, and K) and histological analyses. Results: The results of this study showed that MIF antagonist (p425) significantly decreased urine protein and GAG excretion, urine protein/creatinine ratio, and serum BUN and Cr in the streptozotocin-induced DN in the rats. Pathological changes were significantly alleviated in the MIF antagonist (p425)-administered DN rats. Conclusion: Collectively, these data suggested that MIF antagonist (p425) was able to protect against functional and histopathological injury in the DN.


Resumo Introdução: Supõe-se que elevações da expressão do fator de inibição da migração de macrófagos (MIF) possam contribuir para a patogênese da nefropatia diabética (ND). O objetivo do presente estudo foi investigar os efeitos renais da inibição do MIF em um modelo experimental diabético. Métodos: Dezoito ratos Wistar machos (230 ± 20g) foram divididos em três grupos: 1) controle, 2) diabético (STZ 50 mg/kg dissolvida em soro fisiológico, IP), 3) diabético + antagonista do MIF (p425 1 mg/kg por dia IP no 21o dia por 21 dias consecutivos). O tratamento começou após a identificação de aumento significativo na albuminúria nos ratos diabéticos em relação aos controles. Os ratos foram mantidos individualmente em gaiolas metabólicas (8h-14h) e amostras de urina foram colhidas no 21o e no 42o dia. Ao final do estudo, amostras de sangue e tecido foram colhidas para análises bioquímicas (BS, excreção urinária de proteína, excreção urinária de GAGs, BUN, Cr, Na e K) e histológicas. Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na urina, BUN e Cr no grupo com ND induzida por estreptozotocina. As alterações patológicas foram significativamente abrandadas nos ratos com ND que receberam antagonista do MIF (p425). Conclusão: Coletivamente, os dados sugerem que o antagonista do MIF (p425) teve efeito protetor contra lesões funcionais e histopatológicas da ND.


Assuntos
Animais , Masculino , Ratos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Oxirredutases Intramoleculares/antagonistas & inibidores , Substâncias Protetoras/uso terapêutico , Substâncias Protetoras/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/terapia , Glicemia , Ratos Wistar , Estreptozocina/farmacologia , Creatinina/urina , Creatinina/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/urina , Diabetes Mellitus Experimental/sangue , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/sangue , Albuminúria/tratamento farmacológico , Modelos Animais de Doenças , Glicosaminoglicanos/urina , Rim/patologia , Ativação de Macrófagos
20.
Mol Med Rep ; 20(3): 2135-2142, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322215

RESUMO

Advanced glycation end products (AGEs) are important pathogenic substances involved in diabetes mellitus (DM) and its complications. AGEs also serve important roles in promoting the development of Alzheimer's disease (AD). Macrophage migration inhibitory factor (MIF), an inflammatory stimulant and a pathogenic factor involved in DM, was previously reported to be present at increased levels in the cerebrospinal fluid of patients with AD and mild cognitive impairment compared with age­matched healthy controls. By investigating the association between AGEs and MIF, and the effects of neuroinflammation on AD, the present study aimed to increase understanding of the specific molecular mechanisms involved in the pathogenesis of DM and AD, and the connection between these diseases. PC12 cells were cultured in vitro; the levels of MIF mRNA and protein were determined using reverse transcription­quantitative (RT­q)PCR and western blot analyses. The optimal concentrations of AGEs and amyloid ß 1­40 (Aß1­40) were also determined in the cell model of AD using Cell Counting Kit­8 and MTT assays. Cell numbers and morphological changes were observed following the treatment of Aß1­40­stimulated PC12 cells with AGEs and the MIF inhibitor (S,R)­3­(4­hydroxyphenyl)­4,5­dihydro­5­isoxazole acetic acid methyl ester (ISO­1). The mRNA expression levels of interleukin (IL)­1ß, IL­6, tumor necrosis factor­α (TNF­α) and MIF were determined via RT­qPCR analysis. The results showed that the levels of MIF mRNA and protein were significantly increased in cells treated with AGEs compared with the control group. In the AD model group, the inhibition of PC12 cell growth was significantly increased, and the mRNA expression levels of IL­1ß, IL­6, TNF­α and MIF were also increased. Compared with treatment with AGEs alone, the combination of AGEs treatment with ISO­1 significantly improved the survival rate and resulted in the reduced expression of inflammatory mediators in the AD cell model. Thus, ISO­1 reduced AGEs­mediated damage in the AD cell model. This may be a consequence of AGEs­mediated MIF expression promoting neuritis in the AD cell model, whereas ISO­1 decreased the expression of neuroinflammatory mediators.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Substâncias Protetoras/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA