Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716884

RESUMO

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Assuntos
Trifosfato de Adenosina , Fator de Crescimento Neural , Ligação Proteica , Fator de Crescimento Neural/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Animais , Precursores de Proteínas/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/química , Ligantes , Sítios de Ligação
2.
Exp Eye Res ; 238: 109743, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056550

RESUMO

Pigment epithelium-derived factor (PEDF) is widely recognized as a neuroprotective factor expressed in the retina and has shown therapeutic potential in several retinal diseases. Our study aimed to identify the neuroprotective fragment in PEDF and investigate its protective activity in retinas under ischemia-reperfusion (IR) condition. We synthesized a series of shorter synthetic peptides, 6-mer (Ser93-Gln98) and its d-form variant (6 dS) derived from the 44-mer (Val78-Thr121; a PEDF neurotrophic fragment), to determine their cytoprotective activity in IR injury, which was induced in rat retinas by injection of saline into the anterior chamber to increase the intraocular pressure (IOP) followed by reperfusion. We found the cytoprotective effect of 6-mer on glutamate-treated Neuro-2a cells and tert-butyl hydroperoxide (tBHP)-treated 661W cells were 2.6-fold and 1.5-fold higher than the 44-mer, respectively. The cytoprotective effect was blocked by a chemical inhibitor atglistatin and blocking antibody targeting PEDF receptor (PEDF-R). IR induced several impairments in retina, including cell apoptosis, activation of microglia/macroglia, degeneration of retinal capillaries, reduction in electroretinography (ERG) amplitudes, and retinal atrophy. Such IR injuries were ameliorated by treatment with 6-mer and 6 dS eye drops. Also, the neuroprotective activity of 6-mer and 6 dS in ischemic retinas were dramatically reversed by atglistatin preconditioning. Taken together, our data demonstrate smallest neuroprotective fragment of PEDF has potential to treat retinal degeneration-related diseases.


Assuntos
Proteínas do Olho , Fatores de Crescimento Neural , Traumatismo por Reperfusão , Retina , Retinite , Serpinas , Animais , Ratos , Coelhos , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Proteínas do Olho/administração & dosagem , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Serpinas/administração & dosagem , Serpinas/química , Serpinas/metabolismo , Retina/metabolismo , Retina/patologia , Traumatismo por Reperfusão/metabolismo , Citoproteção , Apoptose , Neurônios/metabolismo , Retinite/tratamento farmacológico , Retinite/metabolismo , Administração Tópica , Peptídeos/administração & dosagem , Peptídeos/metabolismo
3.
Bioorg Med Chem Lett ; 60: 128580, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066142

RESUMO

Majucin-type Illicium sesquiterpenes with potent neurotrophic activity are considered to be promising candidates for the treatment of various neurodegenerative disease. Owing to the low-abundance metabolites in Illicium genus, there are few studies on their structural modifications, structure-activity relationships, and pharmacophoric motif. Herein, structural modifications were conducted on the hydroxyl groups at C-3 and C-6 positions of two majucin-type compounds neomajucin (1) and majucin (2), and 39 neomajucin/majucin based esters were synthesized and evaluated for their neurite outgrowth-promoting activities. Among all the target derivatives, compounds 1a, 1j, 1r, 2b, 2d, 3a, 3b, 3d and 3h displayed more potent neurite outgrowth-promoting activity than their precursors. Some interesting structure-activity relationships (SARs) were also observed. Moreover, compound 1a showed good neuroprotective effect on MPP+-induced PC12 cell damage. Finally, compounds 1a and 3a exhibited relatively no cytotoxicity to normal human H9C2 cardiac cells. This work will shed light on the development of neomajucin/majucin derivatives as potential neurotrophic agents.


Assuntos
Fatores de Crescimento Neural/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Crescimento Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Illicium/química , Estrutura Molecular , Fatores de Crescimento Neural/síntese química , Fatores de Crescimento Neural/química , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células PC12 , Ratos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
Nature ; 591(7848): 131-136, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472215

RESUMO

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Morte Celular/genética , Feminino , Humanos , Macrófagos , Masculino , Camundongos , Mutação , Necrose , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Multimerização Proteica , Piroptose/genética
5.
Drug Des Devel Ther ; 14: 5393-5403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304094

RESUMO

INTRODUCTION: Carbamoylated erythropoietin (CEPO) is a chemically engineered, nonhematopoietic derivative of erythropoietin (EPO) that retains its antidepressant and pro-cognitive effects, which are attributed to the increased expression of neurotrophic factors like brain derived neurotrophic factor (BDNF), in the central nervous system. However, the chemical modification process which produces CEPO from erythropoietin (EPO) requires pure EPO as raw material, is challenging to scale-up and can also cause batch-to-batch variability. To address these key limitations while retaining its behavioral effects, we designed, expressed and analyzed a triple, glutamine, substitution recombinant mimetic of CEPO, named QPO. METHODS AND MATERIALS: We employ a combination of computational structural biology, molecular, cellular and behavioral assays to design, produce, purify and test QPO. RESULTS: QPO was shown to be a nonhematopoietic polypeptide with significant antidepressant-like and pro-cognitive behavioral effects in rodent assays while significantly upregulating BDNF expression in-vitro and in-vivo. The in-silico binding affinity analysis of QPO bound to the EPOR/EPOR homodimer receptor shows significantly decreased binding to Active Site 2, but not Active Site 1, of EPOR. DISCUSSION: The results of the behavioral and gene expression analysis imply that QPO is a successful CEPO mimetic protein and potentially acts via a similar neurotrophic mechanism, making it a drug development target for psychiatric disorders. The decreased binding to Active Site 2 could imply that this active site is not involved in neuroactive signaling and could allow the development of a functional innate repair receptor (IRR) model. Substituting the three glutamine substitution residues with arginine (RPO) resulted in the loss of behavioral activity, indicating the importance of glutamine residues at those positions.


Assuntos
Antidepressivos/uso terapêutico , Desenvolvimento de Medicamentos , Transtornos Mentais/tratamento farmacológico , Fatores de Crescimento Neural/uso terapêutico , Animais , Antidepressivos/química , Antidepressivos/isolamento & purificação , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Org Lett ; 22(19): 7676-7680, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32955264

RESUMO

Meloyunnanines A-C, three alkaloids with an unprecedented skeleton, were isolated from fruits of Melodinus yunnanensis. The structures featuring a caged-6/6/5/6/5/5 ring system were elucidated by the analysis of comprehensive spectroscopic and X-ray data. Biosynthetically, meloyunnanines A-C were assigned to monoterpenoid quinoline alkaloids (MQAs), derived from monoterpenoid indole alkaloids through oxidation and rearrangement. These compounds together with three known Melodinus MQAs were evaluated for their neurotrophic activity and scandine N4-oxide exhibited significant effect.


Assuntos
Apocynaceae/química , Monoterpenos/farmacologia , Fatores de Crescimento Neural/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Frutas , Humanos , Estrutura Molecular , Monoterpenos/química , Monoterpenos/isolamento & purificação , Fatores de Crescimento Neural/química , Neuritos , Quinolinas/química , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação
7.
J Mol Neurosci ; 70(8): 1293-1302, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32458204

RESUMO

TLQP62 is a neuropeptide derived from the neurotrophin-inducible VGF (non-acronymic) protein with antidepressant-like properties capable of inducing increased memory on the mouse hippocampus by promoting neurogenesis and synaptic plasticity through brain-derived neurotropic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB). Human SH-SY5Y neuroblastoma-derived cell line is widely used in neuroscience research and is known to undergo neurodifferentiation in the presence of all-trans retinoic acid by upregulating the expression of TrkB, making cells responsive to BDNF. As TLQP62 promotes BDNF expression, which in turn activates a BDNF/TrkB/CREB (cAMP response element-binding protein) pathway that upregulates VGF expression, there is a VGF-BDNF regulatory loop that seems to regulate neurogenesis. Therefore, here, we evaluate by morphological observation the ability of human TLQP62 to induce neuritogenesis of human SH-SY5Y neuroblastoma-derived cell line in a retinoic acid and BDFN-like way, making this cell line a suitable cell model for further studies concerning TLQP62 molecular mechanisms and signalling pathways. SIGNIFICANCE STATEMENT: VGF has been widely explored for its role in emotional behaviour and neuropsychiatric illness (Bartolomucci et al. 2011). Although VGF levels were found reduced in leukocytes of depressed patients, after antidepressant treatment or voluntary exercise, those levels were found to be restored in the hippocampus (Hunsberger et al. 2007; Thakker-Varia et al. 2007). Administration to hippocampal cells of TLQP62 produced an increase in synaptic charge that could explain this antidepressants effects (Alder et al. 2003). This interesting role of TLQP62 in the brain, especially in the hippocampus, makes this neuropeptide an attractive target for further investigation of its role in neurogenesis, learning, memory, and neurological disorders, and possible treatment development. Thus, the identification of a receptor(s) for this peptide and associated signalling pathway(s) is of high importance, as well as a proper cell model to perform those studies.


Assuntos
Crescimento Neuronal/efeitos dos fármacos , Peptídeos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Fatores de Crescimento Neural/química , Peptídeos/química , Receptor trkB/metabolismo , Transdução de Sinais
8.
J Mol Biol ; 432(13): 3749-3760, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302608

RESUMO

Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.


Assuntos
Fitocromo/ultraestrutura , Receptores Proteína Tirosina Quinases/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Técnicas Biossensoriais , Deinococcus/química , Deinococcus/genética , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Luz , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fosfatidilinositol 3-Quinases/genética , Fitocromo/química , Fitocromo/genética , Conformação Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos da radiação
9.
ACS Appl Mater Interfaces ; 12(14): 16168-16177, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182427

RESUMO

Peripheral nerve injury (PNI) was the leading cause of permanent dysfunction in movement and sensation. Synthesized nerve guide conduits (NGCs) with Schwann Cells (SCs) can help peripheral nerve regeneration. However, poor accessibility of SCs and lack of full coverage of seeded cells on NGCs can lead to failure of nerve regeneration across long gaps and full functional recovery. To overcome these limitations, bone marrow stromal cells (BMSCs) and a novel culture method were proposed in the current study. BMSCs were harvested and seeded on a never growth factor (NGF)-loaded PCL nanofibrous NGCs and cultured with a rotary cell culture system (RCCS) before implantation. The NGCs were tested in vitro with PC-12 cells to validate the bioactivity of released NGF and to access its ability to promote neurite extension. Also, the NGCs were tested in vivo with rat sciatic nerve model to exam its potential in bridging the long gap (15 mm segmental defect). The efficacy of the NGCs was investigated based on the results of the functional test, electrophysiology test, muscle atrophy, and histological analysis. The results of in vitro PC-12 cell study confirmed the bioactivity of released NGF and showed a significant increase in the neurite extension with the help of PEG-diamine and BSA. These results showed that the novel loading method could preserve the bioactivity of growth factors and achieve a sustained release in vitro. Besides, the results of the in vivo study exhibited a significant increase with the combination of all additives. These results showed that with the help of NGF and RCCS, the NGCs with the seeded BMSCs could enhance peripheral nerve regeneration across long nerve injury gaps.


Assuntos
Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/efeitos dos fármacos , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/uso terapêutico , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Células PC12 , Traumatismos dos Nervos Periféricos/patologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/patologia , Ratos , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/patologia
10.
Biomed Mater ; 15(3): 035020, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32079004

RESUMO

Spinal cord injury is a devastating trauma with high mortality and disability, for which there is no effective treatment. Stem cell-based tissue engineering has been reported to promote functional neural recovery. At present, building a neural scaffold with excellent biocompatibility for cells and tissues is still challenging. In this study, a new thermosensitive composite hydrogel based on chitosan, hydroxyethyl cellulose, collagen and ß-phosphoglycerate (CS-HEC-Col/GP hydrogel) is developed to encapsulate murine bone marrow-derived mesenchymal stem cells (BMSCs) to improve therapeutic efficacy in spinal cord injured mice. This composite hydrogel possesses a good cytocompatibility to mouse BMSCs by live/dead staining, minimized inflammatory reaction in vivo by hematoxylin and eosin staining and suitable rheological behavior similar to neural tissue, ranging from 100 to 1000 Pa. Furthermore, the data from animal experiments indicated that BMSC-loaded CS-HEC-Col/GP hydrogel could enhance the survival or proliferation of endogenous nerve cells, probably by secreting neurotrophic factors and inhibiting apoptosis, and thereby promote the recovery of motor function in the hindlimbs of a murine spinal cord injury model.


Assuntos
Células da Medula Óssea/citologia , Quitosana/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/metabolismo , Engenharia Tecidual/métodos , Animais , Apoptose , Materiais Biocompatíveis , Temperatura Corporal , Celulose/análogos & derivados , Celulose/química , Meios de Cultura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Fatores de Crescimento Neural/química , Neurônios/metabolismo , Pressão , Reologia/métodos , Traumatismos da Medula Espinal/terapia
11.
Mol Neurobiol ; 57(4): 1799-1813, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31838721

RESUMO

Neuregulin 2 (NRG2) belongs to the EGF family of growth factors. Most of this family members require proteolytic cleavage to liberate their ectodomains capable of binding and activating their cognate ErbB receptors. To date, most of the studies investigating proteolytic processing of neuregulins focused on NRG1, which was shown to undergo ectodomain shedding by several ADAM proteases and BACE1 and the remaining fragment was further cleaved by γ-secretase. Recently, NRG2 attracted more attention due to its role in the neurogenesis and modulation of behaviors associated with psychiatric disorders. In this study, we used genetic engineering methods to identify proteases involved in proteolytic processing of murine NRG2. Using non-neuronal cell lines as well as cultures of primary hippocampal neurons, we demonstrated that the major proteases responsible for releasing NRG2 ectodomain are ADAM10 and BACE2. Co-expression of NRG2 and BACE2 in neurons of certain brain structures including medulla oblongata and cerebellar deep nuclei was confirmed via immunohistochemical staining. The cleavage of NRG2 by ADAM10 or BACE2 generates a C-terminal fragment that serves as a substrate for γ-secretase. We also showed that murine NRG2 is subject to post-translational modifications, substantial glycosylation of its extracellular part, and phosphorylation of the cytoplasmic tail.


Assuntos
Fatores de Crescimento Neural/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Glicosilação , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/química , Fases de Leitura Aberta/genética , Domínios Proteicos , Especificidade por Substrato
12.
Biomed Res Int ; 2019: 5320902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886225

RESUMO

Pregnancy is a period in a woman's life in which changes can occur that affect different physiological processes. Common conditions during this period include vascular changes, such as lower extremity venous insufficiency (VI). This is an observational, analytical, and prospective cohort study in which 114 pregnant women were analyzed, of which 62 were clinically diagnosed with VI. In parallel, 52 control patients without VI (HC) were studied. The aim of this study was to observe changes in angiogenesis and inflammation markers as well as the presence of calcium deposits. The expression of vascular endothelial growth factor (VEGF), transforming growth factor-ß (TGF-ß), and pigment epithelium-derived factor (PEDF) was analyzed by immunohistochemistry and RT-qPCR. The presence of calcium deposits was revealed using the von Kossa method. In the placentas of mothers with VI, gene expression of VEGF (34.575 [32.380-36.720] VI vs 32.965 [30.580-36.320] HC) and PEDF (25.417 [24.459-27.675] VI vs 24.400 [23.102-30.223] HC) significantly increased, as was protein expression in the placental villi. An increase in calcium deposits was observed in the placentas of women with VI (72.58% VI/53.84% HC). This study revealed the existence of cellular damage in the placental villi of mothers with VI with tissue implications such as increased calcification.


Assuntos
Calcinose/metabolismo , Proteínas do Olho/análise , Fatores de Crescimento Neural/análise , Placenta , Complicações Cardiovasculares na Gravidez/metabolismo , Serpinas/análise , Fator A de Crescimento do Endotélio Vascular/análise , Insuficiência Venosa/metabolismo , Adolescente , Adulto , Calcinose/fisiopatologia , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Feminino , Humanos , Extremidade Inferior/fisiopatologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Placenta/irrigação sanguínea , Placenta/química , Placenta/patologia , Gravidez , Complicações Cardiovasculares na Gravidez/fisiopatologia , Estudos Prospectivos , Serpinas/química , Serpinas/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Venosa/fisiopatologia , Adulto Jovem
13.
J Phys Chem B ; 123(43): 9104-9110, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31580077

RESUMO

Nerve growth factor (NGF) is an endogenously produced polypeptide that promotes the differentiation, survival, and repair of neurons in the central and peripheral nervous systems. While trophic proteins hold promise for the treatment of neuronal injury and disease, use of NGF is limited by its large molecular weight, lack of permeability through the blood-brain barrier, and peripheral side effects. Previously, we found that an extract of the Momordica cochinchinensis seed stimulated PC-12 neurite outgrowth. Bioactivity-guided fractioning of the seed extract suggested that the NGF mimetic agent was one of few defined proteins from this plant: one group being the defense Knottins and the other group of the lowest mass is the potent trypsin inhibitor MCoTI-II. Here, the NGF mimetic potential of this latter protein was investigated using two concurrent but different approaches. A biological study used recombinant purified MCoTI-II, which when tested in rat PC-12 cells grown on collagen, failed to initiate outgrowth relative to the positive control 7S NGF. In a separate computational study, the possibility was investigated such that MCoTI-II could exert an effect through binding to the serine protease γ-NGF subunit of the 7S NGF complex, analogous to its binding to its native receptor trypsin. Molecular dynamics simulations showed that MCoTI-II can bind stably to γ-NGF for >350 ns. Modeling indicated that this interaction could sterically inhibit 7S NGF complex formation, potentially altering the equilibrium between inactive complexed and free active NFG protein. In conclusion, the biological study now excludes the MCoTI-II protein as the NGF mimetic factor in the Momordica extract, an important and required step to identify the active component in this seed. On the other hand, the theoretical study has revealed a novel observation that may be of use in the development of strategies to affect NGF activity.


Assuntos
Ciclotídeos/metabolismo , Miniproteínas Nó de Cistina/metabolismo , Fatores de Crescimento Neural/metabolismo , Crescimento Neuronal , Extratos Vegetais/metabolismo , Animais , Biomimética , Simulação por Computador , Ciclotídeos/química , Miniproteínas Nó de Cistina/química , Simulação de Dinâmica Molecular , Momordica/química , Fatores de Crescimento Neural/química , Células PC12 , Ligação Proteica , Conformação Proteica , Ratos , Serina Endopeptidases/metabolismo
14.
Exp Eye Res ; 188: 107798, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520600

RESUMO

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/prevenção & controle , Proteínas do Olho/uso terapêutico , Fatores de Crescimento Neural/uso terapêutico , Oligopeptídeos/uso terapêutico , Serpinas/uso terapêutico , Administração Oftálmica , Inibidores da Angiogênese/química , Animais , Apoptose , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Eletrorretinografia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Proteínas do Olho/química , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/química , Oligopeptídeos/química , Soluções Oftálmicas , Pró-Fármacos , Coelhos , Ratos , Serpinas/química
15.
Biomed Pharmacother ; 118: 109257, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377472

RESUMO

Combination treatment through simultaneous delivery of anticancer drugs and gene with nano-formulation has been demonstrated to be an elegant and efficient approach for colorectal cancer therapy. Recently, sorafenib being studied in combination therapy in colorectal cancer (CRC) attracted attention of researchers. On the basis of our previous study, pigment epithelium-derived factor (PEDF) loaded nanoparticles showed good effect on CRC in vitro and in vivo. Herein, we designed a combination therapy for sorafenib (Sora), a multi-kinase inhibitor and PEDF, a powerful antiangiogenic gene, in a nano-formulation aimed to increase anti-tumor effect on CRC for the first time. Sora and PEDF were simultaneously encapsulated in PEG-PLGA based nanoparticles by a modified double-emulsion solvent evaporation method. The obtained co-encapsulated nanoparticles (Sora@PEDF-NPs) showed high entrapment efficiency of both Sora and PEDF - and exhibited a uniform spherical morphology. The release profiles of Sora and PEDF were in a sustained manner. The most effective tumor growth inhibition in the C26 cells and C26-bearing mice was observed in the Sora@PEDF-NPs in comparison with none-drug nanoparticles, free Sora, mono-drug nanoparticles (Sora-NPs and PEDF-NPs) and the mixture of Sora-NPs and equivalent PEDF-NPs (Mix-NPs). More importantly, Sora@PEDF-NPs showed lower toxicity than free Sora in mice according to the acute toxicity test. The serologic biochemical analysis and mice body weight during therapeutic period revealed that Sora@PEDF-NPs had no obvious toxicity. All the data demonstrated that the simultaneously loaded nanoparticles with multi-kinase inhibitor and anti-angiogenic gene might be one of the most potential formulations in the treatment of colorectal carcinoma in clinic and worthy of further investigation.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Terapia Genética , Nanopartículas/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas do Olho/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Fatores de Crescimento Neural/química , Serpinas/química , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Testes de Toxicidade Aguda , Resultado do Tratamento
16.
Mol Neurobiol ; 56(12): 8345-8363, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31240601

RESUMO

Unprocessed pro-neuregulin 2 (pro-NRG2) accumulates on neuronal cell bodies at junctions between the endoplasmic reticulum and plasma membrane (ER-PM junctions). NMDA receptors (NMDARs) trigger NRG2 ectodomain shedding from these sites followed by activation of ErbB4 receptor tyrosine kinases, and ErbB4 signaling cell-autonomously downregulates intrinsic excitability of GABAergic interneurons by reducing voltage-gated sodium channel currents. NMDARs also promote dispersal of Kv2.1 clusters from ER-PM junctions and cause a hyperpolarizing shift in its voltage-dependent channel activation, suggesting that NRG2/ErbB4 and Kv2.1 work together to regulate intrinsic interneuron excitability in an activity-dependent manner. Here we explored the cellular processes underlying NMDAR-dependent NRG2 shedding in cultured rat hippocampal neurons. We report that NMDARs control shedding by two separate but converging mechanisms. First, NMDA treatment disrupts binding of pro-NRG2 to ER-PM junctions by post-translationally modifying conserved Ser/Thr residues in its intracellular domain. Second, using a mutant NRG2 protein that cannot be modified at these residues and that fails to accumulate at ER-PM junctions, we demonstrate that NMDARs also directly promote NRG2 shedding by ADAM-type metalloproteinases. Using pharmacological and shRNA-mediated knockdown, and metalloproteinase overexpression, we unexpectedly find that ADAM10, but not ADAM17/TACE, is the major NRG2 sheddase acting downstream of NMDAR activation. Together, these findings reveal how NMDARs exert tight control over the NRG2/ErbB4 signaling pathway, and suggest that NRG2 and Kv2.1 are co-regulated components of a shared pathway that responds to elevated extracellular glutamate levels.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Sequência de Aminoácidos , Animais , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Neuregulina-1/química , Neuregulina-1/metabolismo , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley
17.
Nat Commun ; 10(1): 541, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710085

RESUMO

Despite its known role as a secreted neuroprotectant, much of the mesencephalic astrocyte-derived neurotrophic factor (MANF) is retained in the endoplasmic reticulum (ER) of producer cells. There, by unknown mechanisms, MANF plays a role in protein folding homeostasis in complex with the ER-localized Hsp70 chaperone BiP. Here we report that the SAF-A/B, Acinus, and PIAS (SAP) domain of MANF selectively associates with the nucleotide binding domain (NBD) of ADP-bound BiP. In crystal structures the SAP domain engages the cleft between NBD subdomains Ia and IIa, stabilizing the ADP-bound conformation and clashing with the interdomain linker that occupies this site in ATP-bound BiP. MANF inhibits both ADP release from BiP and ATP binding to BiP, and thereby client release. Cells lacking MANF have fewer ER stress-induced BiP-containing high molecular weight complexes. These findings suggest that MANF contributes to protein folding homeostasis as a nucleotide exchange inhibitor that stabilizes certain BiP-client complexes.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Fatores de Crescimento Neural/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células CHO , Chlorocebus aethiops , Cricetulus , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Modelos Biológicos , Fatores de Crescimento Neural/química , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Resposta a Proteínas não Dobradas
18.
Cell Biol Int ; 43(2): 167-173, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548741

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) has been considered as potent candidates for the therapy of Parkinson's disease (PD) for which can promote the survival of midbrain dopaminergic neurons. In addition to secret out from cells like other classical neurotrophic factors (NTFs), CDNF can locate in the endoplasmatic reticulum (ER), where they can function as ER stress response protein to regulate ER stress. In our previous studies, we have found two helices, α1 and α7, which can regulate the intracellular trafficking and secretion of CDNF. α1 distruction can significantly retain CDNF protein in the ER, but α7 distruction induce most CDNF protein secreting out the cells. Then α1 and α7 regulate protein trafficking and secretion in opposite side. However, the exact secretion level of CDNF affected by α1 or α7 have not been sensitively quantified. In this study, we used nanoluciferase to quantify the secretion level of CDNF protein so that we could evaluate the impact of α1 and α7 on CDNF secretion or function.


Assuntos
Fatores de Crescimento Neural/metabolismo , Animais , Humanos , Microscopia Confocal , Microscopia de Vídeo , Mutagênese , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Células PC12 , Conformação Proteica em alfa-Hélice , Ratos
19.
Mol Med Rep ; 18(3): 3341-3349, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30066875

RESUMO

Mesenchymal stem cell (MSC)­based therapy has been commonly used in cartilage reconstruction, due to its self­renewing ability and multi­differentiation potential. Nerve growth factor (NGF) from cobra venom has been reported to regulate chondrogenesis of bone­derived MSCs (BMSCs) and chondrocyte metabolism. Therefore, the present study aimed to determine whether other sources of NGF behave in the same manner as NGF from natural venom. The present study compared the effects of NGF from two sources, the commercially purchased recombinant murine ß­NGF (mNGF) and cobra venom­derived NGF (cvNGF), on chondrogenesis of BMSCs by performing hematoxylin and eosin and fluorescein diacetate/propidium iodide staining, DNA and glycosaminoglycan quantization and reverse transcription­quantitative polymerase chain reaction to investigate cell morphology, viability, proliferation, glycosaminoglycan synthesis and cartilage­specific gene expression. The results demonstrated that cvNGF significantly accelerated cell proliferation and upregulated the expression of cartilage­specific genes, including aggrecan, SRY­box 9 and collagen type II α1 chain. Conversely, cvNGF reduced the expression levels of collagen type I α1 chain (a fibrocartilage marker), runt­related transcription factor 2 and enolase 2 compared with in the mNGF and control groups. In addition, Chinese cobra venom, which is the main resource of cvNGF, is abundant and inexpensive, thus greatly decreasing the cost. In conclusion, the present study demonstrated that cvNGF may be considered a potential growth factor for inducing chondrogenic differentiation of BMSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Venenos Elapídicos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Animais , Biomarcadores , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/genética , Colágeno/biossíntese , Venenos Elapídicos/química , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fatores de Crescimento Neural/química , Ratos , Proteínas Recombinantes
20.
Mol Cell Proteomics ; 17(9): 1737-1749, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29895708

RESUMO

The cerebellum is a brain structure involved in motor and cognitive functions. The development of the cerebellar cortex (the external part of the cerebellum) is under the control of numerous factors. Among these factors, neuropeptides including PACAP or somatostatin modulate the survival, migration and/or differentiation of cerebellar granule cells. Interestingly, such peptides contributing to cerebellar ontogenesis usually exhibit a specific transient expression profile with a low abundance at birth, a high expression level during the developmental processes, which take place within the first two postnatal weeks in rodents, and a gradual decline toward adulthood. Thus, to identify new peptides transiently expressed in the cerebellum during development, rat cerebella were sampled from birth to adulthood, and analyzed by a semi-quantitative peptidomic approach. A total of 33 peptides were found to be expressed in the cerebellum. Among these 33 peptides, 8 had a clear differential expression pattern during development, 4 of them i.e. cerebellin 2, nociceptin, somatostatin and VGF [353-372], exhibiting a high expression level during the first two postnatal weeks followed by a significative decrease at adulthood. A focus by a genomic approach on nociceptin, confirmed that its precursor mRNA is transiently expressed during the first week of life in granule neurons within the internal granule cell layer of the cerebellum, and showed that the nociceptin receptor is also actively expressed between P8 and P16 by the same neurons. Finally, functional studies revealed a new role for nociceptin, acting as a neurotrophic peptide able to promote the survival and differentiation of developing cerebellar granule neurons.


Assuntos
Córtex Cerebelar/metabolismo , Fatores de Crescimento Neural/metabolismo , Peptídeos Opioides/metabolismo , Peptídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/metabolismo , Feminino , Peróxido de Hidrogênio/toxicidade , Masculino , Fatores de Crescimento Neural/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos Opioides/química , Peptídeos Opioides/genética , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Opioides/metabolismo , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA