Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(5): 2368-2383, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27903901

RESUMO

ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes. A comparison of EBNA3 binding sites with known transcription factor binding sites in LCL GM12878 revealed substantial co-localization of EBNA3s with RUNX3-a protein induced by EBV during B cell transformation. The beta-subunit of core binding factor (CBFß), that heterodimerizes with RUNX3, could co-immunoprecipitate robustly EBNA3B and EBNA3C, but only weakly EBNA3A. Depletion of either RUNX3 or CBFß with lentivirus-delivered shRNA impaired epitope-tagged EBNA3B and EBNA3C binding at multiple regulated gene loci, indicating a requirement for CBF heterodimers in EBNA3 recruitment during target-gene regulation. ShRNA-mediated depletion of CBFß in an EBNA3C-conditional LCL confirmed the role of CBF in the regulation of EBNA3C-induced and -repressed genes. These results reveal an important role for RUNX3/CBF during B cell transformation and EBV latency that was hitherto unexplored.


Assuntos
Fatores de Ligação ao Core/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Subunidade beta de Fator de Ligação ao Core/metabolismo , Fatores de Ligação ao Core/fisiologia , Elementos Facilitadores Genéticos , Genoma Humano , Humanos , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
2.
Bone ; 65: 49-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24798493

RESUMO

Core-binding factor ß (Cbfß) is a subunit of the Cbf family of heterodimeric transcription factors, which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfß regulates cartilage and bone development remains unclear. Existing Cbfß-deficient mouse models cannot specify the role of Cbfß in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfß in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfß CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfß in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage, causing alveolus defects that led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfß was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfß deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfß, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wild-type mice, indicating that Cbfß/Runx1 complex and Cbfß/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfß deletion in the mesenchymal progenitors affected bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx) but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfß mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfß in cartilage and bone development but also facilitate the design of novel therapeutic approaches for skeletal diseases.


Assuntos
Desenvolvimento Ósseo , Cartilagem/crescimento & desenvolvimento , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Fatores de Ligação ao Core/fisiologia , Deleção de Genes , Células-Tronco Mesenquimais/metabolismo , Animais , Sequência de Bases , Calcificação Fisiológica , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fatores de Ligação ao Core/genética , Primers do DNA , Camundongos , Reação em Cadeia da Polimerase
3.
Int J Hematol ; 94(2): 126-133, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21537931

RESUMO

Core binding factor (CBF) acute myeloid leukemia (AML) is the most common cytogenetic subtype of AML, defined by the presence of t(8;21) or inv(16)/t(16;16). The chromosomal aberrations create AML1-ETO and CBFß-MYH11 fusion genes that disrupt the functions of CBF, an essential transcription factor in hematopoiesis. Despite the relatively good outcome of patients with CBF-AML, only approximately half of the patients are cured with current therapy, indicating the need for improved therapeutic strategies. In this review, we summarize current knowledge regarding altered transcriptional regulation, aberrant signaling pathways, and cooperating genetic events in CBF leukemia, and discuss challenges ahead for translating these findings into the clinic.


Assuntos
Fatores de Ligação ao Core/genética , Leucemia Mieloide Aguda , Fatores de Ligação ao Core/fisiologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Transdução de Sinais , Terapêutica/tendências , Transcrição Gênica
4.
Plant Sci ; 180(1): 39-45, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21421345

RESUMO

Several molecular evidences have been gathered in Poaceae that point out a central role of the CBF/DREB1 transcription factors in the signal transduction pathways leading to low-temperature tolerance, although to a quite different extent between crops originating from either temperate or tropical climates. A common feature of the CBF/DREB1 genes in Poaceae is their structural organization at the genome level in clusters of tandemly duplicated genes. In temperate cereals such as barley and wheat, expansion of specific multigene phylogenetic clades of CBFs that map at the Frost Resistance-2 locus has been exclusively observed. In addition, copy number variants of CBF genes between frost resistant and frost sensitive genotypes raise the question if multiple copies of the CBF/DREB1s are required to ensure freezing tolerance. On the other hand, in crops of tropical origin such as rice and maize, a smaller or less-responsive CBF regulon may have evolved, and different mechanisms might determine chilling tolerance. In this review, recent advances on the organization and diversity at the CBF cluster locus in the grasses are provided and discussed.


Assuntos
Temperatura Baixa , Fatores de Ligação ao Core/fisiologia , Poaceae/fisiologia , Fatores de Ligação ao Core/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Poaceae/genética
5.
Am J Hematol ; 85(5): 331-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20425795

RESUMO

Acute myeloid leukemia (AML) the most common acute leukemia in adults is characterized by various cytogenetic and molecular abnormalities. However, the genetic etiology of the disease is not yet fully understood. MicroRNAs (miRNA) are small noncoding RNAs which regulate the expression of target mRNAs both at transcriptional and translational level. In recent years, miRNAs have been identified as a novel mechanism in gene regulation, which show variable expression during myeloid differentiation. We studied miRNA expression of leukemic blasts of 29 cases of newly diagnosed and genetically defined AML using quantitative reverse transcription polymerase chain reaction (RT-PCR) for 365 human miRNA. We showed that miRNA expression profiling reveals distinctive miRNA signatures that correlate with cytogenetic and molecular subtypes of AML. Specific miRNAs with consolidated role on cell proliferation and differentiation such as miR-155, miR-221, let-7, miR-126 and miR-196b appear to be associated with particular subtypes. We observed a significant differentially expressed miRNA profile that characterizes two subgroups of AML with different mechanism of leukemogenesis: core binding factor (CBF) and cytogenetically normal AML with mutations in the genes of NPM1 and FLT3-ITD. We demonstrated, for the first time, the inverse correlation of expression levels between miRNA and their targets in specific AML genetic groups. We suggest that miRNA deregulation may act as complementary hit in the multisteps mechanism of leukemogenesis offering new therapeutic strategies.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Precursoras de Granulócitos/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/fisiopatologia , MicroRNAs/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Fatores de Ligação ao Core/fisiologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
7.
PLoS One ; 5(2): e9425, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20195544

RESUMO

BACKGROUND: Core Binding Factor or CBF is a transcription factor composed of two subunits, Runx1/AML-1 and CBF beta or CBFbeta. CBF was originally described as a regulator of hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that CBF is involved in the control of skeletal muscle terminal differentiation. Indeed, downregulation of either Runx1 or CBFbeta protein level accelerates cell cycle exit and muscle terminal differentiation. Conversely, overexpression of CBFbeta in myoblasts slows terminal differentiation. CBF interacts directly with the master myogenic transcription factor MyoD, preferentially in proliferating myoblasts, via Runx1 subunit. In addition, we show a preferential recruitment of Runx1 protein to MyoD target genes in proliferating myoblasts. The MyoD/CBF complex contains several chromatin modifying enzymes that inhibits MyoD activity, such as HDACs, Suv39h1 and HP1beta. When overexpressed, CBFbeta induced an inhibition of activating histone modification marks concomitant with an increase in repressive modifications at MyoD target promoters. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show a new role for Runx1/CBFbeta in the control of the proliferation/differentiation in skeletal myoblasts.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Fatores de Ligação ao Core/fisiologia , Músculo Esquelético/fisiologia , Animais , Sítios de Ligação , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/fisiologia , Fatores de Ligação ao Core/genética , Fatores de Ligação ao Core/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Mioblastos/fisiologia , Ligação Proteica , Interferência de RNA , Transfecção
8.
FASEB J ; 22(7): 2273-84, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18276833

RESUMO

Regulation of the number of eggs ovulated by different mammalian species remains poorly understood. Here we show that oocyte-specific deletion at the primary follicle stage of core 1 beta1,3-galactosyltransferase (T-synthase; generates core 1-derived O-glycans), leads to a sustained increase in fertility. T-syn mutant females ovulated 30-50% more eggs and had a sustained increase in litter size compared to controls. Ovarian weights and follicle numbers were greater in mutants, but follicular apoptosis was not decreased. The number of follicles entering the growing pool was unaltered, but 3-wk mutants ovulated fewer eggs, suggesting that increased fertility results from prolonged follicle development. T-syn mutant ovaries also contained numerous multiple-oocyte follicles (MOFs) that appeared to form by adjacent, predominantly preantral, follicles joining--a new mechanism for MOF generation. Ovulation of multiple eggs from MOFs was not the reason for increased fertility based on ovulated egg and corpora lutea numbers. Thus, the absence of T-synthase caused modified follicular development, leading to the maturation and ovulation of more follicles, to MOF formation at late stages of folliculogenesis, and to increased fertility. These results identify novel roles for glycoproteins from the oocyte as suppressors of fertility and regulators of follicular integrity in the mouse.


Assuntos
Fatores de Ligação ao Core/fisiologia , Fertilidade/fisiologia , Oócitos/fisiologia , Ovulação/fisiologia , Polissacarídeos/fisiologia , Animais , Feminino , Fertilidade/efeitos dos fármacos , Galactosiltransferases/genética , Genótipo , Gonadotropinas/farmacologia , Cinética , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Polissacarídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA