Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Sci Rep ; 14(1): 13608, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871849

RESUMO

Transplantation of stem cell-derived ß-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature ß-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Fatores de Transcrição Maf Maior , Proteínas do Tecido Nervoso , Transativadores , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transativadores/metabolismo , Transativadores/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Maf Maior/metabolismo , Fatores de Transcrição Maf Maior/genética , Insulina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Cultivadas , Doxiciclina/farmacologia
2.
Islets ; 16(1): 2344622, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38652652

RESUMO

Chronically elevated levels of glucose are deleterious to pancreatic ß cells and contribute to ß cell dysfunction, which is characterized by decreased insulin production and a loss of ß cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of ß cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in ß cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of ß cell identity.


Assuntos
Regulação para Baixo , Glucose , Células Secretoras de Insulina , Insulina , Proteínas Repressoras , Animais , Ratos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Estresse Oxidativo/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
3.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895232

RESUMO

Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.


Assuntos
Fatores de Transcrição Maf Maior , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Insulina/genética , Mutação Puntual
4.
Front Endocrinol (Lausanne) ; 13: 910868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872977

RESUMO

Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the plasma of patients with type 2 diabetes mellitus. Islet ß-cell function was recently shown to be regulated by N6-methyladenosine (m6A), an RNA modification consisting of methylation at the N6 position of adenosine. However, the role of m6A methylation modification in methylglyoxal-induced impairment of insulin secretion in pancreatic ß cells has not been clarified. In this study, we showed that treatment of two ß-cell lines, NIT-1 and ß-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3 (METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3 significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-induced decreases in m6A RNA levels and METTL3 expression were not altered by knockdown of the receptor for the advanced glycation end product but were further decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3 overexpression. The current study demonstrated that METTL3 ameliorates MG-induced impairment of insulin secretion in pancreatic ß cells by regulating MafA.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Células Secretoras de Insulina , Fatores de Transcrição Maf Maior , Metiltransferases , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Aldeído Pirúvico/efeitos adversos , RNA Mensageiro/genética
5.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801253

RESUMO

P43 is a truncated form of thyroid hormone receptor α localized in mitochondria, which stimulates mitochondrial respiratory chain activity. Previously, we showed that deletion of p43 led to reduction of pancreatic islet density and a loss of glucose-stimulated insulin secretion in adult mice. The present study was designed to determine whether p43 was involved in the processes of ß cell development and maturation. We used neonatal, juvenile, and adult p43-/- mice, and we analyzed the development of ß cells in the pancreas. Here, we show that p43 deletion affected only slightly ß cell proliferation during the postnatal period. However, we found a dramatic fall in p43-/- mice of MafA expression (V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog A), a key transcription factor of beta-cell maturation. Analysis of the expression of antioxidant enzymes in pancreatic islet and 4-hydroxynonenal (4-HNE) (a specific marker of lipid peroxidation) staining revealed that oxidative stress occurred in mice lacking p43. Lastly, administration of antioxidants cocktail to p43-/- pregnant mice restored a normal islet density but failed to ensure an insulin secretion in response to glucose. Our findings demonstrated that p43 drives the maturation of ß cells via its induction of transcription factor MafA during the critical postnatal window.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Secreção de Insulina , Células Secretoras de Insulina/citologia , Fatores de Transcrição Maf Maior/metabolismo , Receptores alfa dos Hormônios Tireóideos/fisiologia , Animais , Feminino , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo
6.
Exp Anim ; 70(3): 264-271, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33762508

RESUMO

The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic ß cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.


Assuntos
Doenças Ósseas/genética , Diabetes Mellitus/genética , Oftalmopatias/genética , Nefropatias/genética , Fatores de Transcrição Maf Maior/genética , Mutação , Neoplasias/genética , Animais , Oftalmopatias/congênito , Humanos , Nefropatias/congênito , Fatores de Transcrição Maf Maior/metabolismo , Camundongos
7.
Pancreas ; 50(10): 1450-1453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35041347

RESUMO

ABSTRACT: Sporadic adult insulinomatosis is an extremely rare clinical condition. Adult proinsulinomatosis has not yet been described. We report the case of a 48-year-old female patient with recurrent hypoglycemia caused by benign proinsulin-secreting pancreatic neuroendocrine neoplasias (pNENs) with no history of multiple endocrine neoplasia type 1. Initial workup revealed elevated serum proinsulin levels and a positive fasting test. Magnetic resonance imaging and endosonography visualized 2 pNENs in the pancreatic body and tail that were treated by robotic-assisted enucleation. After initial biochemical cure, the patient's hypoglycemia recurred 3 months after surgery. Imaging showed a new lesion in the pancreatic body, so that now a spleen-preserving subtotal distal pancreatectomy was performed. The pathological examination revealed 17 neuroendocrine microadenomas and 1 well-differentiated pNEN (Ki-67% 1%-2%) of 22-mm size as well as more than 200 (pro)insulin-producing ß-cell precursor lesions, confirming the diagnosis of adult proinsulinomatosis. Mutation analysis of the germline DNA identified the in-frame deletion mutation (p.His207del) in the MAFA gene on chromosome 8. The patient was biochemically cured 16 months after the last surgical resection. Similarly to adult insulinomatosis, the presence of proinsulin-secreting tumors causes recurrent hypoglycemia and might be associated with germline mutations in the MAFA gene.


Assuntos
Hipoglicemia/etiologia , Insulinoma/complicações , Fatores de Transcrição Maf Maior/genética , Glicemia/análise , Glicemia/biossíntese , Feminino , Alemanha , Humanos , Hipoglicemia/genética , Insulinoma/genética , Fatores de Transcrição Maf Maior/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Proinsulina/sangue
8.
Virulence ; 11(1): 1701-1715, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315509

RESUMO

MafB proteins are toxins secreted by Neisseria spp. which are involved in interbacterial competition. Their secretion mechanism has so far not been elucidated. Each strain can produce several MafB variants. On the chromosome, the mafB genes are localized on genomic islands also containing mafA genes. MafA proteins have a role in virulence with reported activities in adhesion and transcytosis of pathogenic Neisseria, a priori unrelated to MafB activities. In this study, we investigated the possible involvement of MafA in the transport of MafB across the outer membrane of Neisseria meningitidis. In wild-type strains, proteolytic fragments of MafB proteins were detected in the extracellular medium. In the absence of MafA, secretion was abrogated, and, in the case of MafBI, full-length and truncated polypeptides were detected inside the cells and inside outer-membrane vesicles. MafBI secretion required its cognate MafA, whereas MafBIII could use any MafA. Heterologous expression in Escherichia coli showed that MafBIII is transported to a cell-surface-exposed, i.e. protease-accessible, location in a MafA-dependent way. MafA itself was found to be localized to the outer membrane, forming large oligomeric complexes. As homologs were found in diverse bacteria, the Maf system represents a new protein secretion system in Gram-negative bacteria.


Assuntos
Membrana Externa Bacteriana/metabolismo , Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Via Secretória , Membrana Externa Bacteriana/química , Transporte Biológico , Escherichia coli/genética , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/metabolismo
9.
Stem Cell Reports ; 15(5): 1111-1126, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33096048

RESUMO

To date, it remains unclear if there are specific cell-surface markers for purifying glucose-responsive pancreatic ß-like cells derived from human pluripotent stem cells (hPSCs). In searching for this, we generated an efficient protocol for differentiating ß-like cells from human embryonic stem cells. We performed single-cell RNA sequencing and found that CD9 is a negative cell-surface marker of ß-like cells, as most INS+ cells are CD9-. We purified ß-like cells for spontaneous formation of islet-like organoids against CD9, and found significantly more NKX6.1+MAFA+C-PEPTIDE+ ß-like cells in the CD9- than in the CD9+ population. CD9- cells also demonstrate better glucose responsiveness than CD9+ cells. In humans, we observe more CD9+C-PEPTIDE+ ß cells in the fetal than in the adult cadaveric islets and more Ki67+ proliferating cells among CD9+ fetal ß cells. Taken together, our experiments show that CD9 is a cell-surface marker for negative enrichment of glucose-responsive ß-like cells differentiated from hPSCs.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Tetraspanina 29/metabolismo , Biomarcadores/metabolismo , Peptídeo C/genética , Peptídeo C/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Organoides/metabolismo , RNA-Seq , Análise de Célula Única , Tetraspanina 29/genética , Transcriptoma
10.
Diabetes ; 69(5): 940-953, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086291

RESUMO

Inadequate insulin secretion in response to glucose is an important factor for ß-cell failure in type 2 diabetes (T2D). Although HMG-CoA reductase degradation 1 (HRD1), a subunit of the endoplasmic reticulum-associated degradation complex, plays a pivotal role in ß-cell function, HRD1 elevation in a diabetic setting contributes to ß-cell dysfunction. We report in this study the excessive HRD1 expression in islets from humans with T2D and T2D mice. Functional studies reveal that ß-cell-specific HRD1 overexpression triggers impaired insulin secretion that will ultimately lead to severe hyperglycemia; by contrast, HRD1 knockdown improves glucose control and response in diabetic models. Proteomic analysis results reveal a large HRD1 interactome, which includes v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), a master regulator of genes implicated in the maintenance of ß-cell function. Furthermore, mechanistic assay results indicate that HRD1 is a novel E3 ubiquitin ligase that targets MafA for ubiquitination and degradation in diabetic ß-cells, resulting in cytoplasmic accumulation of MafA and in the reduction of its biological function in the nucleus. Our results not only reveal the pathological importance of excessive HRD1 in ß-cell dysfunction but also establish the therapeutic importance of targeting HRD1 in order to prevent MafA loss and suppress the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Citoplasma/química , Citoplasma/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/administração & dosagem , Glucose/farmacologia , Teste de Tolerância a Glucose , Humanos , Insulina , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
J Biol Chem ; 295(7): 2084-2096, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31822558

RESUMO

The Maf proteins, including c-Maf, MafA, and MafB, are critical transcription factors in myelomagenesis. Previous studies demonstrated that Maf proteins are processed by the ubiquitin-proteasome pathway, but the mechanisms remain elusive. This study applied MS to identify MafB ubiquitination-associated proteins and found that the ubiquitin-specific protease USP7 was present in the MafB interactome. Moreover, USP7 also interacted with c-Maf and MafA and blocked their polyubiquitination and degradation. Consistently, knockdown of USP7 resulted in Maf protein degradation along with increased polyubiquitination levels. The action of USP7 thus promoted Maf transcriptional activity as evidenced by luciferase assays and by the up-regulation of the expression of Maf-modulated genes. Furthermore, USP7 was up-regulated in myeloma cells, and it was negatively associated with the survival of myeloma patients. USP7 promoted myeloma cell survival, and when it was inhibited by its specific inhibitor P5091, myeloma cell lines underwent apoptosis. These results therefore demonstrated that USP7 is a deubiquitinase of Maf proteins and promotes MM cell survival in association with Maf stability. Given the significance of USP7 and Maf proteins in myeloma genesis, targeting the USP7/Maf axle is a potential strategy to the precision therapy of MM.


Assuntos
Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-maf/genética , Peptidase 7 Específica de Ubiquitina/genética , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Mieloma Múltiplo/patologia , Poliubiquitina/genética , Intervalo Livre de Progressão , Proteólise/efeitos dos fármacos , Tiofenos/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Ubiquitinação/genética
12.
Nat Commun ; 10(1): 4796, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641138

RESUMO

Interneurons (INs) coordinate motoneuron activity to generate appropriate patterns of muscle contractions, providing animals with the ability to adjust their body posture and to move over a range of speeds. In Drosophila larvae several IN subtypes have been morphologically described and their function well documented. However, the general lack of molecular characterization of those INs prevents the identification of evolutionary counterparts in other animals, limiting our understanding of the principles underlying neuronal circuit organization and function. Here we characterize a restricted subset of neurons in the nerve cord expressing the Maf transcription factor Traffic Jam (TJ). We found that TJ+ neurons are highly diverse and selective activation of these different subtypes disrupts larval body posture and induces specific locomotor behaviors. Finally, we show that a small subset of TJ+ GABAergic INs, singled out by the expression of a unique transcription factors code, controls larval crawling speed.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Interneurônios/fisiologia , Fatores de Transcrição Maf Maior/metabolismo , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila/embriologia , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Inativação Gênica , Larva/fisiologia , Locomoção/fisiologia , Fatores de Transcrição Maf Maior/genética , Proteínas Proto-Oncogênicas/genética , Raízes Nervosas Espinhais/fisiologia , Ácido gama-Aminobutírico/metabolismo
13.
Stem Cell Reports ; 13(2): 307-321, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378674

RESUMO

Generation of functional ß cells from pluripotent sources would accelerate diagnostic and therapeutic applications for diabetes research and therapy. However, it has been challenging to generate competent ß cells with dynamic insulin-secretory capacity to glucose and incretin stimulations. We introduced transcription factors, critical for ß-cell development and function, in differentiating human induced pluripotent stem cells (PSCs) and assessed the impact on the functionality of derived ß-cell (psBC) progeny. A perifusion system revealed stepwise transduction of the PDX1, NEUROG3, and MAFA triad (PNM) enabled in vitro generation of psBCs with glucose and GLP-1 responsiveness within 3 weeks. PNM transduction upregulated genes associated with glucose sensing, insulin secretion, and ß-cell maturation. In recipient diabetic mice, PNM-transduced psBCs showed glucose-responsive insulin secretion as early as 1 week post transplantation. Thus, enhanced pre-emptive ß-cell specification of PSCs by PNM drives generation of glucose- and incretin-responsive psBCs in vitro, offering a competent tissue-primed biotherapy.


Assuntos
Diabetes Mellitus Experimental/terapia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Células-Tronco Pluripotentes Induzidas/transplante , Secreção de Insulina/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peptídeo C/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental/induzido quimicamente , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transdução Genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Sci Rep ; 9(1): 10124, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300663

RESUMO

Stem cell self-renewal and the daughter cell differentiation are tightly regulated by the respective niches, which produce extrinsic cues to support the proper development. In Drosophila ovary, Dpp is secreted from germline stem cell (GSC) niche and activates the BMP signaling in GSCs for their self-renewal. Escort cells (ECs) in differentiation niche restrict Dpp outside the GSC niche and extend protrusions to help with proper differentiation of the GSC daughter cells. Here we provide evidence that loss of large Maf transcriptional factor Traffic jam (Tj) blocks GSC progeny differentiation. Spatio-temporal specific knockdown experiments indicate that Tj is required in pre-adult EC lineage for germline differentiation control. Further molecular and genetic analyses suggest that the defective germline differentiation caused by tj-depletion is partly attributed to the elevated dpp in the differentiation niche. Moreover, our study reveals that tj-depletion induces ectopic En expression outside the GSC niche, which contributes to the upregulated dpp expression in ECs as well as GSC progeny differentiation defect. Alternatively, loss of EC protrusions and decreased EC number elicited by tj-depletion may also partially contribute to the germline differentiation defect. Collectively, our findings suggest that Tj in ECs regulates germline differentiation by controlling the differentiation niche characteristics.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fatores de Transcrição Maf Maior/genética , Células-Tronco de Oogônios/citologia , Ovário/citologia , Proteínas Proto-Oncogênicas/genética , Animais , Animais Geneticamente Modificados , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição Maf Maior/metabolismo , Células-Tronco de Oogônios/fisiologia , Ovário/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Fatores de Transcrição/genética
15.
Nature ; 567(7746): 43-48, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760930

RESUMO

Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting ß-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-ß-cells, namely α-cells and pancreatic polypeptide (PPY)-producing γ-cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors PDX1 and MAFA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and continue to produce insulin even after six months. Notably, insulin-producing α-cells maintain expression of α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.


Assuntos
Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Animais , Biomarcadores/análise , Linhagem da Célula/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Feminino , Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/transplante , Glucose/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Polipeptídeo Pancreático/metabolismo , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/efeitos dos fármacos , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Proteômica , Análise de Sequência de RNA , Transativadores/genética , Transativadores/metabolismo , Transcriptoma , Transdução Genética
16.
Toxicol Sci ; 167(1): 116-125, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905828

RESUMO

Chronic exposure to arsenic, a potent environmental oxidative stressor, is associated with the incidence of diabetes. However, the mechanisms for arsenite-induced reduction of insulin remain largely unclear. After CD1 mice were treated with 20 or 40 ppm arsenite in the drinking water for 12 months, the mice showed reduced fasting insulin levels, a depression in glucose clearance, and lower insulin content in the pancreas. The levels of glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells isolated from arsenite-exposed mice were low compared with those for control mice. Immunohistochemistry studies showed that arsenite exposure resulted a reduction of insulin content in the pancreas of mice. Exposure of Min6 cells, a pancreatic beta cell line, to low levels of arsenite led to lower GSIS in a dose- and time-dependent fashion. Since microRNAs (miRNAs) are involved in pancreatic ß-cell function and the pathogenesis of diabetes, we hypothesized that arsenite exposure activates miR-149, decreases insulin transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (mafA), and induces an insulin synthesis and secretion disorder. In arsenite-exposed Min6 cells, mafA activity was lowered by the increase of its target miRNA, miR-149. Luciferase assays illustrated an interaction between miR-149 and the mafA 3' untranslated region. In Min6 cells transfected with an miR-149 inhibitor, arsenite did not regulate GSIS and mafA expression. In control cells, however, arsenite decreased GSIS or mafA expression. Our results suggest that low levels of arsenite affect ß-cell function and regulate insulin synthesis and secretion by modulating mafA expression through miR-149.


Assuntos
Arsenitos/toxicidade , Poluentes Ambientais/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/biossíntese , Fatores de Transcrição Maf Maior/genética , MicroRNAs/genética , Animais , Glicemia/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos Endogâmicos
17.
Mol Metab ; 14: 95-107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29914854

RESUMO

OBJECTIVE: Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet ß-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1ß, suggesting that signaling through this pathway regulates health and function of islet ß-cells. METHODS: Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1-/-) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, ß-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. RESULTS: Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1-/- with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1-/- mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1-/- relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1-/- mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1-/- mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the ß-cell transcription factor MafA. Nkx6.1 abundance was unaltered. CONCLUSIONS: There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Tipo I de Interleucina-1/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase , Resistência à Insulina , Células Secretoras de Insulina/citologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
18.
Diabetes ; 67(7): 1322-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29625991

RESUMO

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced ß-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a ß-cell senescence marker and effector) mRNA in rodent and human ß-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of ß-cells with acidic ß-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional ß-cells for replacement therapies in diabetes.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Células Secretoras de Insulina/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Biomarcadores/análise , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Cell Physiol Biochem ; 45(5): 2031-2043, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29529600

RESUMO

BACKGROUND/AIMS: The main pathogenic mechanism of diabetes is a decrease in the number of islet beta cells or a decline in their function. Recent studies have shown that pancreatic long noncoding RNAs (lncRNAs) have a high degree of tissue specificity and may be involved in the maintenance of islet cells function and the development of diabetes. The aim of this study was to investigate the molecular regulatory mechanism of mouse maternal expressed gene 3 (Meg3) in insulin biosynthesis in pancreatic islets. METHODS: Chromatin immunoprecipitation-quantitative polymerase chain reaction (qPCR) and RNA immunoprecipitation-qPCR were used to investigate the molecular mechanism of lncRNA Meg3 in insulin biosynthesis by regulating v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), a mature beta cell marker in the MIN6 beta cell line. Further, the expression levels of Meg3, Ezh2, MafA, Rad21, Smc3, and Sin3α were analyzed in vivo and in vitro by RT-PCR and western blotting. RESULTS: Intranuclear lncRNA Meg3 can bind EZH2, a methyltransferase belonging to the Polycomb repressive complex-2, in pancreatic islet cells. In addition, knockdown of Ezh2 can also inhibit the expression of MafA and Ins2, while expression levels of Rad21, Smc3, and Sin3α are upregulated, by interfering with Ezh2 or Meg3 in pancreatic beta cells. Knockdown of Meg3 resulted in the loss of EZH2 binding and H3K27 trimethylation occupancy of Rad21, Smc3, and Sin3α promoter regions. The inhibition of Rad21, Smc3, or Sin3α, which directly act on the MafA promoter, leads to upregulated expression of MafA in both MIN6 cells and mouse islets. Moreover, the synthesis and secretion of insulin were increased by inhibition of these transcription factors. CONCLUSIONS: Pancreatic lncRNA Meg3 can epigenetically regulate the expression of Rad21, Smc3, and Sin3α via EZH2-driven H3K27 methylation. By inhibiting the expression of Rad21, Smc3, or Sin3α, Meg3 promotes the expression of MafA and affects the production of insulin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Teste de Tolerância a Glucose , Histonas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Regulação para Cima
20.
Mol Ther ; 26(5): 1327-1342, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29550076

RESUMO

Direct lineage reprogramming can convert readily available cells in the body into desired cell types for cell replacement therapy. This is usually achieved through forced activation or repression of lineage-defining factors or pathways. In particular, reprogramming toward the pancreatic ß cell fate has been of great interest in the search for new diabetes therapies. It has been suggested that cells from various endodermal lineages can be converted to ß-like cells. However, it is unclear how closely induced cells resemble endogenous pancreatic ß cells and whether different cell types have the same reprogramming potential. Here, we report in vivo reprogramming of pancreatic ductal cells through intra-ductal delivery of an adenoviral vector expressing the transcription factors Pdx1, Neurog3, and Mafa. Induced ß-like cells are mono-hormonal, express genes essential for ß cell function, and correct hyperglycemia in both chemically and genetically induced diabetes models. Compared with intrahepatic ducts and hepatocytes treated with the same vector, pancreatic ducts demonstrated more rapid activation of ß cell transcripts and repression of donor cell markers. This approach could be readily adapted to humans through a commonly performed procedure, endoscopic retrograde cholangiopancreatography (ERCP), and provides potential for cell replacement therapy in type 1 diabetes patients.


Assuntos
Reprogramação Celular , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ductos Pancreáticos/citologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenoviridae/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Reprogramação Celular/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/genética , Hepatócitos/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA