Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
2.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528526

RESUMO

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição NFI/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Acta Neuropathol Commun ; 12(1): 12, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243303

RESUMO

Erythroblastic sarcoma (ES) (previously called chloroma or granulocytic sarcoma) are rare hematological neoplams characterized by the proliferation of myeloid blasts at extramedullary sites, and primarily involve the skin and soft tissue of middle-aged adults. ES may be concomitant with or secondary to myeloid neoplasms (mostly acute myeloid leukemia (AML)) or in isolated cases (de novo) without infiltration of the bone marrow by blasts. ES share cytogenetic and molecular abnormalities with AML, including RUNX1T1 fusions. Some of these alterations seem to be correlated with particular sites of involvement. Herein, we report an isolated erythroblastic sarcoma with NFIA::RUNX1T1 located in the central nervous system (CNS) of a 3-year-old boy. Recently, two pediatric cases of CNS MS with complete molecular characterization have been documented. Like the current case, they concerned infants (2 and 3 years-old) presenting a brain tumor (pineal involvement) with leptomeningeal dissemination. Both cases also harbored a NFIA::RUNX1T3 fusion. ES constitutes a diagnostic challenge for neuropathologists because it does not express differentiation markers such as CD45, and may express CD99 which could be confused with CNS Ewing sarcoma. CD43 is the earliest pan-hematopoietic marker and CD45 is not expressed by erythroid lineage cells. E-cadherin (also a marker of erythroid precursors) and CD117 (expressed on the surface of erythroid lineage cells) constitute other immunhistochemical hallmarks of ES. The prognosis of patients with ES is similar to that of other patients with AML but de novo forms seem to have a poorer prognosis, like the current case. To conclude, pediatric ES with NFIA::RUNX1T1/3 fusions seem to have a tropism for the CNS and thus constitute a potential pitfall for neuropathologists. Due to the absence of circulating blasts and a DNA-methylation signature, the diagnosis must currently be made by highlighting the translocation and expression of erythroid markers.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia Mieloide Aguda , Sarcoma Mieloide , Sarcoma , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Medula Óssea/patologia , Neoplasias do Sistema Nervoso Central/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Sarcoma Mieloide/genética , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/metabolismo
4.
Brain Res ; 1828: 148790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272156

RESUMO

A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plasmalogênios , Fatores de Transcrição NFI/metabolismo , Inflamassomos/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Remodelação Vascular
5.
Cancer Res ; 84(2): 226-240, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37963187

RESUMO

Metastasis is a major cause of morbidity and mortality in patients with cancer, highlighting the need to identify improved treatment and prevention strategies. Previous observations in preclinical models and tumors from patients with small cell lung cancer (SCLC), a fatal form of lung cancer with high metastatic potential, identified the transcription factor NFIB as a driver of tumor growth and metastasis. However, investigation into the requirement for NFIB activity for tumor growth and metastasis in relevant in vivo models is needed to establish NFIB as a therapeutic target. Here, using conditional gene knockout strategies in genetically engineered mouse models of SCLC, we found that upregulation of NFIB contributes to tumor progression, but NFIB is not required for metastasis. Molecular studies in NFIB wild-type and knockout tumors identified the pioneer transcription factors FOXA1/2 as candidate drivers of metastatic progression. Thus, while NFIB upregulation is a frequent event in SCLC during tumor progression, SCLC tumors can employ NFIB-independent mechanisms for metastasis, further highlighting the plasticity of these tumors. SIGNIFICANCE: Small cell lung cancer cells overcome deficiency of the prometastatic oncogene NFIB to gain metastatic potential through various molecular mechanisms, which may represent targets to block progression of this fatal cancer type.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição NFI , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Neoplasias Pulmonares/patologia , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Oncogenes , Carcinoma de Pequenas Células do Pulmão/patologia
6.
Cell Mol Life Sci ; 80(12): 357, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950757

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-ß). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-ß, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/farmacologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Bleomicina/toxicidade
7.
Lab Invest ; 103(9): 100193, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285922

RESUMO

Nuclear factor of activated T cells 2 (NFATC2) is reported to contribute to the initiation and progression of various cancers; however, its expression and function in cholangiocarcinoma (CCA) tissues remain elusive. Herein, we investigated the expression pattern, clinicopathologic characteristics, cell biological functions, and potential mechanisms of NFATC2 in CCA tissues. Real-time reverse-transcription PCR (RT-qPCR) and immunohistochemistry were performed to analyze the expression of NFATC2 in human CCA tissues. Cell counting kit 8, colony formation, flow cytometry, Western blotting, and Transwell assays, and in vivo xenograft and pulmonary metastasis models, were used to explore the effect of NFATC2 on the proliferation and metastasis of CCA. A dual-luciferase reporter system, oligonucleotide pull-down, chromatin immunoprecipitation, immunofluorescence, and coimmunoprecipitation were performed to reveal the potential mechanisms. We found that NFATC2 was upregulated in CCA tissues and cells, and its aberrantly high levels were associated with a poorer differentiation pattern. Functionally, NFATC2 overexpression promoted CCA cell proliferation and metastasis, whereas knockdown of NFATC2 led to opposite result. Mechanistically, NFATC2 could be enriched in the promoter region of neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4) to facilitate its expression. Furthermore, NEDD4 targeted fructose-1, 6-bisphosphatase 1 (FBP1) and inhibited FBP1 expression via ubiquitination. In addition, silencing NEDD4 rescued the effects of NFATC2 overexpression on CCA cells. NEDD4 was upregulated in human CCA tissues, and its expression levels were positively correlated with those of NFATC2. We thus conclude that NFATC2 promotes the progression of CCA via the NEDD4/FBP1 axis, emphasizing the oncogenic role of NFATC2 in CCA progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFI/metabolismo
8.
Pathol Res Pract ; 248: 154602, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315400

RESUMO

To our knowledge, Sex-determining Region Y box 9 (SOX9) has been in connection with a wide range of human cancers. Nevertheless, there remains uncertainty regarding SOX9's role in metastasizing ovarian cancer. In our study, SOX9 was investigated in relation to tumor metastasis in ovarian cancer as well as its potential molecular mechanisms. First, we exhibited an apparent higher expression of SOX9 in ovarian cancer tissues and cells than in normative ones, and the prognosis of patients whose SOX9 levels were high was markedly lower than that of patients whose SOX9 levels were low. Besides, highly expressed SOX9 was correlated with high grade serous carcinoma, poor tumor differentiation, high serum CA125 and lymph node metastasis. Second, SOX9 knockdown exhibited striking inhibition of the migration and invasive ability of ovarian cancer cells, whereas SOX9 overexpression had an inverse role. At the same time, SOX9 could promote ovarian cancer intraperitoneal metastasis in a nude mice in the vivo. In a similar way, SOX9 knockdown dramatically decreased the expression of nuclear factor I-A (NFIA), ß-catenin as well as N-cadherin but had an increased in E-cadherin expression, as opposed to the results when SOX9 was overexpressed. Furthermore, NFIA silencing inhibited the expression of NFIA, ß-catenin and N-cadherin, in the same way that E-cadherin expression was promoted. In conclusion, this study shows that SOX9 has a promotional effect on human ovarian cancer and that SOX9 promotes the metastasis of tumors by upregulating NFIA and activating on a Wnt/ß-catenin signal pathway. SOX9 could be a novel focus for earlier diagnosis, therapy and prospective evaluation in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Via de Sinalização Wnt , Animais , Feminino , Humanos , Camundongos , beta Catenina/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fatores de Transcrição NFI/metabolismo , Neoplasias Ovarianas/patologia , Fatores de Transcrição SOX9/genética
9.
Nat Commun ; 14(1): 3761, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353485

RESUMO

Pancreatic acinar cells rely on PTF1 and other transcription factors to deploy their transcriptional program. We identify NFIC as a NR5A2 interactor and regulator of acinar differentiation. NFIC binding sites are enriched in NR5A2 ChIP-Sequencing peaks. Nfic knockout mice have a smaller, histologically normal, pancreas with reduced acinar gene expression. NFIC binds and regulates the promoters of acinar genes and those involved in RNA/protein metabolism, and Nfic knockout pancreata show defective ribosomal RNA maturation. NFIC dampens the endoplasmic reticulum stress program through binding to gene promoters and is required for resolution of Tunicamycin-mediated stress. NFIC is down-regulated during caerulein pancreatitis and is required for recovery after damage. Normal human pancreata with low levels of NFIC transcripts display reduced expression of genes down-regulated in Nfic knockout mice. NFIC expression is down-regulated in mouse and human pancreatic ductal adenocarcinoma. Consistently, Nfic knockout mice develop a higher number of mutant Kras-driven pre-neoplastic lesions.


Assuntos
Carcinoma Ductal Pancreático , Fatores de Transcrição NFI , Neoplasias Pancreáticas , Ribossomos , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Fatores de Transcrição NFI/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia
10.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901722

RESUMO

NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.


Assuntos
Fatores de Transcrição NFI , Neoplasias , Humanos , Diferenciação Celular/fisiologia , Fatores de Transcrição NFI/metabolismo , Estresse Oxidativo
11.
Blood ; 141(18): 2245-2260, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36735909

RESUMO

The NFIA-ETO2 fusion is the product of a t(1;16)(p31;q24) chromosomal translocation, so far, exclusively found in pediatric patients with pure erythroid leukemia (PEL). To address the role for the pathogenesis of the disease, we facilitated the expression of the NFIA-ETO2 fusion in murine erythroblasts (EBs). We observed that NFIA-ETO2 significantly increased proliferation and impaired erythroid differentiation of murine erythroleukemia cells and of primary fetal liver-derived EBs. However, NFIA-ETO2-expressing EBs acquired neither aberrant in vitro clonogenic activity nor disease-inducing potential upon transplantation into irradiated syngenic mice. In contrast, in the presence of 1 of the most prevalent erythroleukemia-associated mutations, TP53R248Q, expression of NFIA-ETO2 resulted in aberrant clonogenic activity and induced a fully penetrant transplantable PEL-like disease in mice. Molecular studies support that NFIA-ETO2 interferes with erythroid differentiation by preferentially binding and repressing erythroid genes that contain NFI binding sites and/or are decorated by ETO2, resulting in a activity shift from GATA- to ETS-motif-containing target genes. In contrast, TP53R248Q does not affect erythroid differentiation but provides self-renewal and survival potential, mostly via downregulation of known TP53 targets. Collectively, our work indicates that NFIA-ETO2 initiates PEL by suppressing gene expression programs of terminal erythroid differentiation and cooperates with TP53 mutation to induce erythroleukemia.


Assuntos
Leucemia Eritroblástica Aguda , Proteínas Repressoras , Animais , Camundongos , Proteínas Repressoras/genética , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Diferenciação Celular/genética , Eritroblastos/metabolismo , Fatores de Transcrição NFI/metabolismo
12.
Clin Exp Med ; 23(5): 1581-1596, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36251145

RESUMO

Although several types of calcium channels abnormalities have been shown to promote myeloma bone disease (MBD), the relationship between Na+/Ca2+ exchanger 1 (NCX1) and MBD remains unexplored. Here, we examined the role of NCX1 in the development of multiple myeloma (MM), with a special focus on the underlying effects involved osteoclast differentiation. Firstly, we detected NCX1 protein highly expressed in BM tissues of MM patients, and its expression was positively correlated with serum calcium and the percentage of BM CD138+ cells. In vitro, NCX1 suppression with the inhibitor KB-R7943 reduced cell viability of MM cells and caused apoptosis. Extracellular high Ca2+ environment increased the level of intracellular Ca2+ in MM cells through gating the calcium influx, with subsequently promoting the expression of NCX1 and osteoclastogenesis-related genes (receptor activator of nuclear factor-κB (RANKL), nuclear factor of activated T cell cytoplasmic 1 (NFATc1), and proto-oncogene Fos (c-Fos). This phenomenon could be reversed by KB-R7943 or calcium chelation. Furthermore, NCX1 overexpression in MM cells accelerated osteoclastogenesis, while NCX1 knockdown or suppression resulted in the opposite effect. Mechanistically, we further investigated the related mechanisms of NCX1 regulating osteoclast differentiation using RNA sequencing, western blotting and Enzyme linked immunosorbent assay, and found that NCX1 modulated osteoclast differentiation in MM though JNK/c-Fos/NFATc1 signaling pathway. In conclusion, the Ca2+/NCX1-mediated signaling participates in the osteoclasts-myeloma cell interactions, which represents a promising target for future therapeutic intervention in MBD.


Assuntos
Mieloma Múltiplo , Osteoclastos , Humanos , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Homeostase , Mieloma Múltiplo/metabolismo , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/farmacologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
13.
Mol Cancer Res ; 21(3): 189-198, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469009

RESUMO

Our previous study illustrated that nuclear factor IX (NFIX) promotes glioblastoma (GBM) progression by inducing migration and proliferation of GBM cells. However, the underlying mechanism of how NFIX regulates GBM cell proliferation remains obscure. In this study, we uncovered that Go-Ichi-Ni-San 1 (GINS1) is upregulated and positively correlated with NFIX in human GBM specimen. NFIX silencing downregulates the expression of GINS1, which is pivotal for cell-cycle progression and proliferation of GBM cells. Replenishment of GINS1 largely rescues the NFIX-null effect on GBM cell proliferation. Mechanistic investigation revealed that NFIX transcriptionally actives GINS1 expression by directly binding to promoter region (-1779 to -1793bp) of the GINS1 gene. Furthermore, knockdown of NFIX sensitizes GBM cells to DNA damage-inducing agents including doxorubicin and temozolomide, in a GINS1-dependent manner. IMPLICATIONS: Our study highlights that targeting NFIX-GINS1 axis could be a novel and potential therapeutic approach for GBM treatment.


Assuntos
Neoplasias Encefálicas , Proteínas de Ligação a DNA , Glioblastoma , Fatores de Transcrição NFI , Humanos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Temozolomida/farmacologia , Ativação Transcricional , Fatores de Transcrição NFI/metabolismo
14.
Leukemia ; 37(2): 276-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572750

RESUMO

Nuclear factor I-C (NFIC) belongs to a family of NFI transcription factors that binds to DNA through CAATT-boxes and are involved in cellular differentiation and stem cell maintenance. Here we show NFIC protein is significantly overexpressed in 69% of acute myeloid leukemia patients. Examination of the functional consequences of NFIC overexpression in HSPCs showed that this protein promoted monocytic differentiation. Single-cell RNA sequencing analysis further demonstrated that NFIC overexpressing monocytes had increased expression of growth and survival genes. In contrast, depletion of NFIC through shRNA decreased cell growth, increased cell cycle arrest and apoptosis in AML cell lines and AML patient blasts. Further, in AML cell lines (THP-1), bulk RNA sequencing of NFIC knockdown led to downregulation of genes involved in cell survival and oncogenic signaling pathways including mixed lineage leukemia-1 (MLL-1). Lastly, we show that NFIC knockdown in an ex vivo mouse MLL::AF9 pre-leukemic stem cell model, decreased their growth and colony formation and increased expression of myeloid differentiation markers Gr1 and Mac1. Collectively, our results suggest that NFIC is an important transcription factor in myeloid differentiation as well as AML cell survival and is a potential therapeutic target in AML.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição NFI , Animais , Camundongos , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Hematopoese , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Fatores de Transcrição NFI/metabolismo
15.
Blood Adv ; 7(17): 4677-4689, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478187

RESUMO

The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fatores de Transcrição NFI , Camundongos , Animais , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/genética
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 979-985, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36328427

RESUMO

Objective To investigate the protective effect and mechanism of astragaloside IV (AST4) on H2O2-induced oxidative stress injury and apoptosis of SY5Y cells. Methods Human SY5Y cells were cultured in vitro and induced by H2O2 to establish oxidative stress model, which was divided into PBS group, H2O2 group and AST4 group. Cell viability was determined by MTT assay. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL). The supernatant was used to determine the activity of malondialdehyde (MAD), superoxide dismutase (SOD) and glutathione (GSH) in each group. Immunofluorescence cytochemistry was used to detect the nuclear factor E2-related factor (Nrf-2) and cleaved caspase-3 (c-caspase-3). B-lymphoblastoma-2 (Bcl2), Bcl2-associated X protein (BAX), c-caspase-3, Nrf-2 in cells and nuclei and heme oxygenase-1 (HO-1) were determined by Western blot analysis. Results AST4 had a protective effect on viability of SY5Y cells under oxidative stress damage, reduced the content of MAD, and increased the content of GSH and SOD. AST4 increased Bcl2 and decreased BAX, thus Bc12/BAX ratio was significantly increased compared with that in H2O2 group. Meanwhile, AST4 inhibited the expression of c-caspase-3. AST4 promoted nuclear translocation of Nrf-2 and increased the expression of the downstream antioxidant protein HO-1. Conclusion AST4 can promote Nrf-2 nuclear translocation, increase HO-1 expression, regulate oxidation/antioxidant balance, improve antioxidant level, protect cells from oxidative damage and reduce apoptosis by activating Nrf-2/HO-1 signaling pathway.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Humanos , Caspase 3/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Estresse Oxidativo , Apoptose , Transdução de Sinais , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia
17.
Int Immunopharmacol ; 113(Pt A): 109370, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327872

RESUMO

As a common disease in modern society, osteoporosis is caused by osteoclast hyperactivation, leading to enhanced bone resorption. Reactive oxygen species (ROS) metobolism and nuclear factor-activated T cells 1 (NFATc1) activities are two crucial processes during osteoclastogenesis. AZD1390 (AZD), an inhibitor of ataxia telangiectasia mutated (ATM), has been reported for antitumor effects, but little is known about how it plays a function in metabolic bone disease. Here, we found that AZD inhibitsthe generation, function and ROS-scavenging enzyme activity of mature osteoclast induced by RANKL stimulation, in a dose-dependent manner.Mechanistic analysis shows thatAZD affects osteoclast function and differentiation by inhibiting RANKL-induced NFATc1 signaling pathway and by increasing ROS-scavenging enzymes production in oxidative stress pathways. Preclinical studies have shown that AZD protects against bone loss in an ovariectomy (OVX) mouse model. Finally, our data confirm that AZD may prevent OVX-induced bone loss by abrogating RANKL-induced AKT/GSK3ß/NFATc1 signaling pathways, and by promoting the expression of ROS scavenging enzymes in oxidative stress pathways.Collectively, our research shows that AZD has the potential as a new therapeutic agent for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Feminino , Osteoclastos , Espécies Reativas de Oxigênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/farmacologia , Linfócitos T/metabolismo , Ligante RANK/metabolismo , Reabsorção Óssea/prevenção & controle , Osteoporose/metabolismo , Osteogênese , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo
18.
Aging (Albany NY) ; 14(16): 6656-6667, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36006421

RESUMO

OBJECTIVE: Liver metastasis is one of the prognostic factors of colorectal cancer (CRC). The aim of this study is to identify biomarkers that facilitate easier detection of liver metastasis. METHODS: Significance Analysis of Microarrays (SAM) and Array Data Analyzer (ADA) were applied used for the analysis of differentially differently expressed mRNAs. mRNA expression was verified by quantitative real-timer reverse transcriptiontase polymerase chain reaction (qRT-PCR). Immunohistochemistry were was used to show natural killer-tumor recognition (NKTR) expression in CRC. NKTR-knockdown CRC cells were constructed obtained by using short hairpin RNA (shRNA). Followed by CCK-8 assay, plate colony formation test, and transwell assay were used to evaluate the influence of NKTR on cell proliferation, migration, and invasion in vitro. RESULTS: SAM yielded showed 256 up-regulated and 224 down-regulated differentially differently expressed genes. Seven genes were identified by using ADA, tools and four genes were verified by using qRT-PCR. Three genes (metastasis associated lung adenocarcinoma transcript 1 (MALAT1), nuclear factor I/B (NKTR), and nuclear factor I/B (NFIB)) showed a statistically significant considerabley difference between CRC with and liver metastasis and CRC without liver metastasis. Immunohistochemical analysis showed that NKTR expression was much lower in primary CRC with liver metastasis than that in primary CRC without liver metastasis. The NKTR protein plays a role in the lytic function of natural killer (NK) cells and it has been rarely studied in the CRC. The down-regulation of NKTR by shRNA interference in CRC cells increased cell proliferation, migration, and invasion in vitro.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Metástase Neoplásica , RNA Interferente Pequeno , Transcriptoma
19.
Arch Biochem Biophys ; 727: 109346, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35798053

RESUMO

NFIC1, the longest isoform of NFIC, is essential for the regulation on spatiotemporal expression of drug-metabolizing genes in liver. However, the role of NFIC1 in breast cancer is not clear. Here we showed that increased expression of NFIC1 suppressed the migration and invasion of MCF-7 cells. NFIC1 overexpression increased the expression of IFNB1, IFNL1, IFNL2 and IFNL3, and the activation of interferon-mediated Jak-STAT pathway was enhanced by NFIC1 overexpression. Treatment with Jak-STAT pathway inhibitors, Filgotinib or Ruxolitinib, reversed the suppressive effects of NFIC1 overexpression on migration and invasion of MCF-7 cells. In addition, we found that MX1 and MX2, two target genes of Jak-STAT pathway, mediated the migration and invasion of MCF-7 cells. These results demonstrated that NFIC1 inhibited the migration and invasion in MCF-7 cells through interferon-mediated activation of Jak-STAT pathway, indicating that Jak-STAT pathway might be a potential therapeutic target for preventing breast cancer metastasis.


Assuntos
Neoplasias da Mama , Janus Quinases , Fatores de Transcrição NFI/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interferons/genética , Interferons/metabolismo , Interferons/farmacologia , Janus Quinases/metabolismo , Melanoma , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
20.
Cell Prolif ; 55(4): e13216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35293050

RESUMO

OBJECTIVES: Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) serves as an HMGA2 target gene to promote the proliferation of granulosa cells (GCs). However, it is still unclear whether IGF2BP2 participates in the pathogenesis of PCOS as RNA binding protein (RBP). In this study, we aimed to elucidate IGF2BP2-interacting transcripts, global transcriptome together with alternative splicing in GCs to eventually uncover potential mechanisms of PCOS pathogenesis. MATERIALS AND METHODS: The expression of IGF2BP2 in GCs from PCOS patients was detected using quantitative reverse transcription PCR (RT-qPCR) and western blot. We captured IGF2BP2-interacting transcripts, global transcriptome together with alternative splicing by RNA immunoprecipitation sequencing (RIP-seq) and RNA sequencing (RNA-seq). KGN cells transfected with IGF2BP2 overexpressing plasmids and nuclear factor 1 C-type (NFIC) siRNAs, were applied to CCK-8, EdU and TUNEL assays. RESULTS: IGF2BP2 was highly expressed in GCs from PCOS patients. As an RBP, it preferentially bound to the 3'and 5'UTRs of mRNAs with GGAC motif and a newly found GAAG motif. The overexpression of IGF2BP2 changed the transcriptome profile of KGN cells. IGF2BP2 functioned to regulate alternative splicing events and promote cell proliferation through inhibiting exon skipping events of NFIC. CONCLUSION: In conclusion, we demonstrated that IGF2BP2 promotes GC proliferation via regulating alternative splicing of NFIC in PCOS. The findings help to better understand the roles of IGF2BP2 in the pathogenesis of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Somatomedinas , Processamento Alternativo/genética , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Somatomedinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA