Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Biol Direct ; 19(1): 56, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014441

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer (PCa), is characterized by loss of AR signaling and resistance to AR-targeted therapy. While it is well reported that second-generation AR blockers induce neuroendocrine (NE) trans-differentiation of castration-resistant prostate cancer (CRPC) to promote the occurrence of NEPC, and pluripotent transcription factors might be potential regulators, the underlying molecular mechanisms remain unclear. METHODS: We analyzed the data from public databsets to screen candidate genes and then focused on SOX4, a regulator of NE trans-differentiation. The expression changes of SOX4 and its relationship with tumor progression were validated in clinical tumor tissues. We evaluated malignant characteristics related to NEPC in prostate cancer cell lines with stable overexpression or knockdown of SOX4 in vitro. Tumor xenografts were analyzed after inoculating the relevant cell lines into nude mice. RNA-seq, ATAC-seq, non-targeted metabolomics analysis, as well as molecular and biochemical assays were carried out to determine the mechanism. RESULTS: We screened public datasets and identified that expression of SOX4 was significantly elevated in NEPC. Overexpressing SOX4 in C4-2B cells increased cell proliferation and migration, upregulated the expression of NE marker genes, and inhibited AR expression. Consistently, inhibition of SOX4 expression in DU-145 and PC-3 cells reduced the above malignant phenotypes and repressed the expression of NE marker genes. For the in vivo assay, we found that knockdown of SOX4 inhibited tumor growth of subcutaneous xenografts in castrated nude mice which were concomitantly treated with enzalutamide (ENZ). Mechanically, we identified that one of the key enzymes in gluconeogenesis, PCK2, was a novel target of SOX4. The activation of carbohydrate metabolism reprogramming by SOX4 could promote NE trans-differentiation via the SOX4/PCK2 pathway. CONCLUSIONS: Our findings reveal that SOX4 promotes NE trans-differentiation both in vitro and in vivo via directly enhancing PCK2 activity to activate carbohydrate metabolism reprogramming. The SOX4/PCK2 pathway and its downstream changes might be novel targets for blocking NE trans-differentiation.


Assuntos
Transdiferenciação Celular , Neoplasias de Próstata Resistentes à Castração , Fatores de Transcrição SOXC , Transdução de Sinais , Masculino , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
3.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943117

RESUMO

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Assuntos
Progressão da Doença , Neoplasias Pancreáticas , Proteômica , Fatores de Transcrição SOXC , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Transdução de Sinais , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
4.
Curr Med Sci ; 44(3): 611-622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842772

RESUMO

OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS: Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS: Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION: Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , RNA Circular , Fatores de Transcrição SOXC , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , RNA Circular/genética , Masculino , Feminino , Pessoa de Meia-Idade , Apoptose/genética , Prognóstico , Proliferação de Células/genética , Linhagem Celular Tumoral , Progressão da Doença , Adulto , Regulação Leucêmica da Expressão Gênica , Regulação para Cima/genética
6.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38774451

RESUMO

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
7.
Br J Cancer ; 131(1): 171-183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760444

RESUMO

BACKGROUND: Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS: Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS: RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION: Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Progressão da Doença , Epigênese Genética , Recidiva Local de Neoplasia , Fatores de Transcrição SOXC , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
8.
J Diabetes ; 16(6): e13565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751373

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição SOXC , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , MicroRNAs/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Inativação Gênica , Fibrose , Proliferação de Células , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL
9.
Commun Biol ; 7(1): 565, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745044

RESUMO

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Metilação de RNA , RNA Circular , Fatores de Transcrição SOXC , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Metilação de RNA/genética
10.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705228

RESUMO

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Neoplasias Colorretais , Citoesqueleto , Pseudópodes , Fatores de Transcrição SOXC , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Movimento Celular/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Células CACO-2 , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
11.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 204-211, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650133

RESUMO

Circular RNAs (circRNAs) are engaged in various types of cancers. This study aimed to investigate the roles of circ_0006743 (circ_JMJD1C) in breast cancer. The downstream of circ_JMJD1C and their interaction network was determined by bioinformatic analyses. Gene expression were analyzed through western blot and qRT-PCR assays. Functional assays were conducted in vitro and in vivo to verify circ_JMJD1C role in BC. FISH and confocal analysis indicated the cellular distribution of circ_JMJD1C. Luciferase reporter, RNA immune-precipitation (RIP) assays, as well as Pearson's correlation analysis, were implemented to test the relation of miR-182-5p, JMJD1C and circ_JMJD1C. Circ_JMJD1C and JMJD1C expression were both elevated, and their expression was positively correlated in BC. Circ_ JMJD1C knockdown hindered BC cell proliferation, invasion, and migration, along with epithelial-mesenchymal transition (EMT) in vitro and in vivo. Circ_JMJD1C facilitated BC progression by the miR-182-5p-JMJD1C axis. Circ_JMJD1C epigenetically upregulated SOX4. Circ_JMJD1C promotes the aggressiveness of BC via regulating miR-182-5p/JMJD1C/SOX4 axis. This may provide a novel and promising therapy targeting BC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Oxirredutases N-Desmetilantes , RNA Circular , Fatores de Transcrição SOXC , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
12.
Blood ; 144(2): 187-200, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38620074

RESUMO

ABSTRACT: SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in normal B cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV-negative (EVB-) BL was associated with an IG∷MYC translocation generated by aberrant class switch recombination, whereas in EBV-negative (EBV-)/SOX11-negative (SOX11-) tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations. Interestingly, EBV- SOX11-expressing BL showed higher frequency of SMARCA4 and ID3 mutations than EBV-/SOX11- cases. By RNA sequencing, we identified a SOX11-associated gene expression profile, with functional annotations showing partial overlap with the SOX11 transcriptional program of MCL. Contrary to MCL, no differences on cell migration or B-cell receptor signaling were found between SOX11- and SOX11-positive (SOX11+) BL cells. However, SOX11+ BL showed higher adhesion to vascular cell adhesion molecule 1 (VCAM-1) than SOX11- BL cell lines. Here, we demonstrate that EBV- BL comprises 2 subsets of cases based on SOX11 expression. The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic landscape suggest a role of SOX11 in the early pathogenesis of BL.


Assuntos
Linfoma de Burkitt , Herpesvirus Humano 4 , Fatores de Transcrição SOXC , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Herpesvirus Humano 4/genética , Regulação Neoplásica da Expressão Gênica , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Mutação , DNA Helicases/genética , DNA Helicases/metabolismo , Translocação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Nucleares
13.
Sci Rep ; 14(1): 7863, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570586

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.


Assuntos
Linfoma de Célula do Manto , Humanos , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Oxirredução , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 90-94, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678622

RESUMO

Breast cancer (BC) is one of the most common fatal cancers. Recent studies have identified the vital role of long noncoding RNA (lncRNAs) in the development and progression of BC. In this research, lncRNA PCAT-1 was studied to identify how it functioned in the metastasis of BC. PCAT-1 expression of tissues was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in 50 BC patients. Cell proliferation, wound healing assay and transwell assay were used to observe the biological behavior changes of BC cells through knockdown or overexpression of PCAT-1. In addition, RT-qPCR and Western blot assay were performed to discover the potential target protein of PCAT-1 in BC. PCAT-1 expression level in BC samples was higher than that of adjacent ones. Besides, cell proliferation, migrated ability and cell invaded ability of BC cells were inhibited after PCAT-1 was silenced. Cell proliferation, migration and invasion of BC cells were promoted after PCAT-1 was overexpressed. In addition, SOX4 was downregulated after silence of PCAT-1 in BC cells, while SOX4 was upregulated after overexpression of PCAT-1 in BC cells. Furthermore, SOX4 was upregulated in BC tissues and was positively associated with PCAT-1. Our study uncovers a new oncogene in BC and suggests that PCAT-1 could enhance BC cell proliferation, migration and invasion via targeting SOX4, which provided a novel therapeutic target for BC patients.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , RNA Longo não Codificante , Fatores de Transcrição SOXC , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
15.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
16.
J Biochem Mol Toxicol ; 38(4): e23703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605439

RESUMO

Acute renal failure (ARF) is a huge threat to the lives of most patients in intensive care units, and there is currently no satisfactory treatment strategy. SRY-box transcription factor 4 (SOX4) plays a key role in the development of various diseases, but its effect on ARF is unknown. Therefore, this study aimed to explore the relationship between SOX4 and ARF. Blood samples were collected from 20 ARF patients and 20 healthy volunteers. We also established an ARF rat model by excising the right kidney and ligating the left renal artery, and SOX4 knockdown in ARF rats was achieved down by means of lentiviral infection. Subsequently, we used quantitative polymerase chain reaction and western bolt assays to detect the expression levels of SOX4 and nuclear factor-κB (NF-κB) signaling pathway-related proteins in human blood or rat renal tissue and hematoxylin and eosin and terminal deoxynucleotidyl transferase (TdT) 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling staining to observe the pathological changes and apoptosis of renal tissue. Enzyme-linked immunosorbent assay and biochemical kits were used to measure the levels of renal function-related indicators (blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin) and inflammatory factors (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha), as well as changes in oxidative stress-related indicators (malondialdehyde [MDA], superoxide dismutase [SOD], and reactive oxygen species [ROS]) in rat serum. SOX4 expression levels in blood samples from ARF patients and renal tissue from ARF rats were significantly higher compared with those in healthy volunteers and control rats, respectively. ARF model rats displayed the typical ARF phenotype, while SOX4 silencing significantly improved pathological injury and apoptosis of renal tissue in ARF rats. Moreover, SOX4 silencing significantly inhibited increased levels of renal function-related indicators and inflammatory factors and reduced the level of excessive oxidative stress (MDA and ROS were upregulated, and SOD was downregulated) in ARF rats. SOX4 also reduced the activity of the NF-κB signaling pathway in ARF samples. Thus, SOX4 knockdown may reduce oxidative stress, the inflammatory response, and apoptosis by reducing the activity of the NF-κB signaling pathway, thereby improving renal injury in ARF rats.


Assuntos
Injúria Renal Aguda , Apoptose , NF-kappa B , Estresse Oxidativo , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Humanos , Ratos , Injúria Renal Aguda/metabolismo , Rim , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Superóxido Dismutase/metabolismo
17.
Nat Commun ; 15(1): 2956, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580651

RESUMO

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Adulto , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
18.
Biochem Biophys Res Commun ; 708: 149815, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531220

RESUMO

Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.


Assuntos
Dioxóis , Fígado Gorduroso , Lignanas , Pró-Proteína Convertase 9 , Fatores de Transcrição SOXC , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Mitofagia , Ácido Oleico/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
19.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447391

RESUMO

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Assuntos
Células da Granulosa , Via de Sinalização Hippo , Feminino , Animais , Humanos , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose , Mamíferos/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/metabolismo
20.
Lab Invest ; 104(5): 102042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431117

RESUMO

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Fatores de Transcrição SOXC , Humanos , Masculino , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Feminino , Pessoa de Meia-Idade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/secundário , Carcinoma de Células Escamosas do Esôfago/cirurgia , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linfonodos/patologia , Linfonodos/metabolismo , Adulto , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA