Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 23(21): 9304-9312, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31773697

RESUMO

OBJECTIVE: To investigate the regulatory effect of microRNA-616 (miRNA-616) on cellular behaviors of bladder cancer and the potential mechanism. PATIENTS AND METHODS: The expressions of miRNA-616 and SOX7 in bladder cancer tissues and cell lines were examined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The relationship between miRNA-616 and SOX7 was assessed through Dual-Luciferase Reporter Gene Assay. The regulatory effects of miRNA-616 and SOX7 on cellular behaviors of bladder cancer were evaluated through cell counting kit-8 (CCK-8), colony formation, transwell migration assay, and flow cytometry. RESULTS: MiRNA-616 was upregulated, whereas SOX7 was downregulated in bladder cancer tissues and cell lines. The silence of miRNA-616 attenuated the proliferative and migratory abilities, arrested cell cycle progression in the G2 phase, and stimulated apoptosis in UMUC3 and T24 cells. SOX7 was the target gene of miRNA-616, and its level was negatively regulated by miRNA-616. The knockdown of SOX7 enhanced the proliferative and migratory abilities, and attenuated apoptosis of bladder cancer cells. CONCLUSIONS: MiRNA-616 accelerates bladder cancer cells to proliferate and migrate and inhibits apoptosis by downregulating SOX7. MiRNA-616/SOX7 may be potential therapeutic targets for bladder cancer.


Assuntos
Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , MicroRNAs/fisiologia , Fatores de Transcrição SOXF/fisiologia , Neoplasias da Bexiga Urinária/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Regulação para Cima/genética
2.
Life Sci ; 232: 116614, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260682

RESUMO

AIMS: SRY-box 18 (SOX18) is a transcription factor known for its role in regulating cell differentiation and lymphatic and blood vessel development. It has been reported that SOX18 was involved in various diseases, including cancer. This study aimed to explore the significance and biological function of SOX18 in bladder cancer (BCa). MATERIALS AND METHODS: SOX18 expression in BCa and normal tissues was analyzed by immunohistochemistry, and SOX18 expression in BCa cell lines was quantified by western blotting and quantitative real-time PCR. The role of SOX18 on the proliferation, migration and invasion of BCa cells was explored by CCK-8 and transwell invasion assays in vitro. Cell cycle was measured by flow cytometry assays. Western blotting and qRT-PCR were performed to investigate the potential mechanisms by which SOX18 leads to tumor progression. KEY FINDINGS: SOX18 was significantly upregulated in BCa and its expression was associated with clinical features of patients with BCa. Our data demonstrated that SOX18 promoted cell proliferation via accelerating cell cycle and by regulating c-Myc and Cyclin D1, promoted cell invasion via upregulation of MMP-7. Moreover, phosphorylation of c-Met and Akt regulated by SOX18 was identified to be involved in the process of cell migration and invasion, indicating the vital role of SOX18 in the metastasis of BCa. SIGNIFICANCE: Our data demonstrated a cancer-promoting effect of SOX18 in BCa, revealed the potential mechanisms of SOX18 in mediating cellular functions, and indicated that SOX18 may serve as a promising progression and prognostic biomarker and a therapeutic target for BCa.


Assuntos
Fatores de Transcrição SOXF/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ciclina D1/metabolismo , Feminino , Fase G1/fisiologia , Xenoenxertos , Humanos , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fase S/fisiologia , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Transcriptoma/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
3.
Sci Rep ; 9(1): 10506, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324820

RESUMO

For augmentation or reconstruction of urinary bladder after cystectomy, bladder urothelium derived from human induced pluripotent stem cells (hiPSCs) has recently received focus. However, previous studies have only shown the emergence of cells expressing some urothelial markers among derivatives of hiPSCs, and no report has demonstrated the stratified structure, which is a particularly important attribute of the barrier function of mature bladder urothelium. In present study, we developed a method for the directed differentiation of hiPSCs into mature stratified bladder urothelium. The caudal hindgut, from which the bladder urothelium develops, was predominantly induced via the high-dose administration of CHIR99021 during definitive endoderm induction, and this treatment subsequently increased the expressions of uroplakins. Terminal differentiation, characterized by the increased expression of uroplakins, CK13, and CK20, was induced with the combination of Troglitazone + PD153035. FGF10 enhanced the expression of uroplakins and the stratification of the epithelium, and the transwell culture system further enhanced such stratification. Furthermore, the barrier function of our urothelium was demonstrated by a permeability assay using FITC-dextran. According to an immunohistological analysis, the stratified uroplakin II-positive epithelium was observed in the transwells. This method might be useful in the field of regenerative medicine of the bladder.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Bexiga Urinária/citologia , Urotélio/citologia , Fator de Transcrição CDX2/biossíntese , Fator de Transcrição CDX2/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dextranos/metabolismo , Dextranos/farmacocinética , Endoderma/citologia , Receptores ErbB/antagonistas & inibidores , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacocinética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , PPAR gama/agonistas , Permeabilidade , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Proteínas Recombinantes/farmacologia , Medicina Regenerativa/métodos , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Troglitazona/farmacologia , Uroplaquinas/biossíntese
4.
J Cell Biochem ; 119(5): 4184-4192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29266413

RESUMO

Osteosaroma (OS) is a primary bone malignancy and is associated with high morbidity. Sex determining region Y-box 18 (SOX18) is identified overexpressed in OS. However, the molecular mechanism underlying the biological function of SOX18 in OS is still unclear. The aim of the current study was to determine the SOX18 expression in patients with OS and its effect on tumor cell malignant phenotypes. Our results showed that SOX18 was overexpressed in OS patients from both E-MEXP-3628 database and independent samples from our hospital and in OS cell lines. SOX18 silencing significantly induced G0-G1 phase cell cycle arrest and apoptosis and inhibited U-2OS cell migration and invasion and cell growth both in vitro and in vivo. However, SOX18 overexpression remarkably promoted 143B cell proliferation, migration and invasion and inhibited cell cycle arrest and apoptosis. The protein expression levels of p53, p21, Bax, Bcl-2, and Caspase-3 were also regulated by SOX18. Moreover, SOX18 was found negative correlated with the expression of HERC1, HER2, HERC3, HERC4, HERC5, and HERC6 in OS patients and in OS cells, with the most significant correlation detected in HERC2 expression, which was following found interacted with SOX18 in OS cells. Taken together, our results suggest that SOX18 is overexpressed in OS and plays an important role in proliferation, apoptosis, migration and invasion of OS cells, and may provide a novel and promising thera-peutic strategy for OS.


Assuntos
Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Proteínas de Neoplasias/biossíntese , Osteossarcoma/metabolismo , Fatores de Transcrição SOXF/biossíntese , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Fatores de Transcrição SOXF/genética
5.
J Oral Pathol Med ; 46(9): 752-758, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28266739

RESUMO

BACKGROUND: SOX7, a member of the SOX family of transcription factors, acts as a tumor suppressor in multiple cancers. Downregulation of SOX7 has been reported in advanced tumors and correlates with poor prognosis. The aims of this study were to investigate the effects of SOX7 on cell proliferation, invasion, and colony formation in oral squamous cell carcinoma (OSCC) cells and to evaluate the effectiveness of SOX7 protein as a prognostic indicator for OSCC patients. METHODS: oral squamous cell carcinoma (OSCC) cell lines were treated with SOX7 small interfering RNA or SOX7 peptide, and their effects on cell proliferation, invasiveness, and colony formation were investigated by proliferation, in vitro invasion, and clonogenic assays. SOX7 protein expression in OSCC and normal oral mucosal tissues was examined by immunohistochemistry. Associations between SOX7 protein expression and clinicopathological parameters of OSCC patients were statistically analyzed. RESULTS: SOX7 silencing-induced cell proliferation and invasion in SCC-4 cells. SOX7 peptide treatment inhibited cell proliferation, colony formation, and invasion in SCC-9 and SCC-25 cells. Expression of SOX7 protein was decreased in OSCC tissues compared with normal oral mucosal tissues (P<.001). Negative SOX7 expression in patients with OSCC was significantly associated with positive lymph node metastasis (P=.041), advanced TNM stage (P=.024), and poor prognosis (P=.017). CONCLUSIONS: These results suggest that SOX7 inhibits cell proliferation, colony formation, and invasion in OSCC as a tumor suppressor and that negative SOX7 expression could be a poor prognostic indicator for patients with OSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fatores de Transcrição SOXF/biossíntese , Adulto , Idoso , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Células Tumorais Cultivadas , Adulto Jovem
6.
Oncol Rep ; 36(5): 2884-2892, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27666488

RESUMO

Recent statistics show that lung cancer is the second most common malignant tumor in the world (14% of all cancers in the USA), both in terms of morbidity and mortality. The mortality of this type of tumor shows an increasing trend (28% for men and 26% for women). Lung squamous cell carcinoma (LSCC) is the second­largest histological subtype of non­small cell lung cancers (NSCLCs) after adenocarcinoma. SRY­related HMG­box 18 (SOX18) protein is an important transcription factor involved in the development of the cardiovascular system and the lymphatic ducts. In addition, it was observed that SOX18 functions in wound healing processes and the development of atherosclerosis. Likewise, an increased level of this protein was found in melanomas and malignant pancreatic, stomach and breast tumors. Furthermore, high expression of SOX18 in gastric cancer stromal cells was found to be associated with a poor patient prognosis. In the present study, we analyzed the expression of the SOX18 protein and the mRNA level in postoperative samples of LSCC and non­malignant lung tissues (NMLTs), and a disparity in both levels was observed. Because of the fact that microRNAs (miRNAs) play important roles in the initiation and progression of lung cancer, the main aim of this study was to identify the miRNAs that interact with the SOX18 transcript in NSCLC cases. SOX18 mRNA expression level was significantly lower in the LSCC tissues than that noted in the NMLTs (p<0.01). However, protein levels were higher in the LSCC cases compared to these levels in the NMLTs (p<0.0001). We showed that miR­7a and miR­24­3p were expressed more highly in the NMLTs than levels in the LSCC samples, and that they could be switched off in lung cancer tissue. Additionally, correlations between RQ­values of SOX18 in NMLTs and LSCC samples (r=0.43, p=0.019), and between miR­7a and miR24­3p in NMLT cases (r=0.4, p=0.057) as well as in the LSCC samples (r=0.51, p=0.012) were noted. In conclusion, miRNAs interact with the mRNA of the SOX18 gene, but the mechanism by which they could be inhibited in cancer cells requires further examination.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Fatores de Transcrição SOXF/biossíntese , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/biossíntese , Fatores de Transcrição SOXF/genética
7.
Oncotarget ; 7(19): 28000-12, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27058905

RESUMO

The decrease of microRNA-452 (miR-452) in gliomas promoted stem-like features and tumorigenesis. However, the role of miR-452, especially in regulating cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) remains ambiguous. We enriched stem-like HCC cells by serial passages of hepatospheres with chemotherapeutic agents. Stem-like characteristics including the capabilities of chemo-resistance, stemness-related gene expression profiling, self-renewal, tumorigenicity and metastasis formation were detected. MiR-452 was markedly increased in the chemo-resistant hepatospheres and human HCC tissues. and the overexpression of miR-452 in HCC patients predicted poor overall survival. MiR-452 significantly promoted stem-like characteristics in vitro and in vivo. Further, Sox7 was identified as the direct target of miR-452, which could physically bind with ß-catenin and TCF4 in the nucleus and then inhibit the activity of Wnt/ß-catenin signaling pathway. Finally, the combined chemotherapy of doxorubicin and all-trans retinoic acid (ATRA) showed dramatically efficiency in suppressing HCC metastasis. These data suggested that miR-452 promoted stem-like traits of HCC, which might be a potential therapeutic target for HCC. The combination of doxorubicin and ATRA might be a promising therapy in HCC management.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXF/biossíntese , Adulto , Idoso , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Transformação Celular Neoplásica/genética , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Fatores de Transcrição SOXF/genética , Via de Sinalização Wnt/fisiologia
8.
BMC Cancer ; 16: 53, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26841870

RESUMO

BACKGROUND: Uterine carcinosarcoma (UCS) represents a true example of cancer associated with epithelial-mesenchymal transition (EMT), which exhibits cancer stem cell (CSC)-like traits. Both Sox and ß-catenin signal transductions play key roles in the regulation of EMT/CSC properties, but little is known about their involvement in UCS tumorigenesis. Herein, we focused on the functional roles of the Sox/ß-catenin pathway in UCSs. METHODS: EMT/CSC tests and transfection experiments were carried out using three endometrial carcinoma (Em Ca) cell lines. Immunohistochemical investigation was also applied for a total of 32 UCSs. RESULTS: Em Ca cells cultured in STK2, a serum-free medium for mesenchymal stem cells, underwent changes in morphology toward an EMT appearance through downregulation of E-cadherin, along with upregulation of Slug, known as a target gene of ß-catenin. The cells also showed CSC properties with an increase in the aldehyde dehydrogenase (ALDH) 1(high) activity population and spheroid formation, as well as upregulation of Sox4, Sox7, and Sox9. Of these Sox factors, overexpression of Sox4 dramatically led to transactivation of the Slug promoter, and the effects were further enhanced by cotransfection of Sox7 or Sox9. Sox4 was also able to promote ß-catenin-mediated transcription of the Slug gene through formation of transcriptional complexes with ß-catenin and p300, independent of TCF4 status. In clinical samples, both nuclear ß-catenin and Slug scores were significantly higher in the sarcomatous elements as compared to carcinomatous components in UCSs, and were positively correlated with Sox4, Sox7, and Sox9 scores. CONCLUSIONS: These findings suggested that Sox4, as well as Sox7 and Sox9, may contribute to regulation of EMT/CSC properties to promote development of sarcomatous components in UCSs through transcriptional regulation of the Slug gene by cooperating with the ß-catenin/p300 signal pathway.


Assuntos
Carcinossarcoma/genética , Proteína p300 Associada a E1A/biossíntese , Fatores de Transcrição SOXC/biossíntese , Fatores de Transcrição/biossíntese , Neoplasias Uterinas/genética , beta Catenina/genética , Animais , Carcinossarcoma/patologia , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Neoplasias Uterinas/patologia , beta Catenina/metabolismo
9.
Oncotarget ; 6(32): 33470-85, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26396173

RESUMO

Naked cuticle homolog2 (NKD2) is located in chromosome 5p15.3, which is frequently loss of heterozygosity in human colorectal and gastric cancers. In order to understand the mechanism of NKD2 in gastric cancer development, 6 gastric cancer cell lines and 196 cases of human primary gastric cancer samples were involved. Methylation specific PCR (MSP), gene expression array, flow cytometry, transwell assay and xenograft mice model were employed in this study. The expression of NKD1 and NKD2 was silenced by promoter region hypermethylation. NKD1 and NKD2 were methylated in 11.7% (23/196) and 53.1% (104/196) in human primary gastric cancer samples. NKD2 methylation is associated with cell differentiation, TNM stage and distant metastasis significantly (all P < 0.05), and the overall survival time is longer in NKD2 unmethylated group compared to NKD2 methylated group (P < 0.05). Restoration of NKD2 expression suppressed cell proliferation, colony formation, cell invasion and migration, induced G2/M phase arrest, and sensitized cancer cells to docetaxel. NKD2 inhibits SOX18 and MMP-2,7,9 expression and suppresses BGC823 cell xenograft growth. In conclusion, NKD2 methylation may serve as a poor prognostic and chemo-sensitive marker in human gastric cancer. NKD2 impedes gastric cancer metastasis by inhibiting SOX18.


Assuntos
Proteínas de Transporte/genética , Metilação de DNA , Fatores de Transcrição SOXF/genética , Neoplasias Gástricas/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição SOXF/antagonistas & inibidores , Fatores de Transcrição SOXF/biossíntese , Neoplasias Gástricas/metabolismo , Regulação para Cima
10.
Differentiation ; 89(3-4): 87-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25913202

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSC) have shown therapeutic potential to engraft and either differentiate into or support differentiation of vascular endothelial cells (EC), smooth muscle cells and cardiomyocytes in animal models of ischemic heart disease. Following intracoronary or transendocardial delivery of MSCs, however, only a small fraction of cells engraft and the majority of those persist as an immature cell phenotype. The goal of the current study was to decipher the molecular pathways and mechanisms that control MSC differentiation into ECs. Vascular endothelial growth factor (VEGF-165) treatment is known to enhance in vitro differentiation of MSCs into ECs. We tested the possible involvement of the Sry-type HMG box (Sox) family of transcription factors in this process. METHOD AND RESULTS: MSCs were isolated from the bone marrow of Yucatan microswine and underwent a 10 day differentiation protocol. VEGF-165 (50ng/ml) treatment of MSCs in vitro induced a significant increase in the protein expression of VEGFR-2, Sox9 and Sox18, in addition to the EC markers PECAM-1, VE-cadherin and vWF, as determined by Western blot or flow cytometry. siRNA-mediated knockdown of Sox18, as opposed to Sox9, in MSCs prevented VEGF-165-mediated induction of EC markers and capillary tube formation. Inhibition of VEGFR-2 signaling (SC-202850) reduced Sox18 and reduced VEGF-165-induced differentiation of MSCs to ECs. CONCLUSION: Here we demonstrate that VEGF-165 mediates MSC differentiation into ECs via VEGFR-2-dependent induction of Sox18, which ultimately coordinates the transcriptional upregulation of specific markers of the EC phenotype.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Fatores de Transcrição SOXF/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição SOXF/genética , Transdução de Sinais , Suínos , Porco Miniatura , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
Tumour Biol ; 36(3): 1913-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407488

RESUMO

MicroRNAs (miRNAs) have emerged as important regulators that potentially play critical roles in cancer cell biological processes. Previous studies have shown that miR-492 plays an important role in cell tumorigenesis in multiple kinds of human cancer cells. However, the underlying mechanisms of this microRNA in breast cancer remain largely unknown. In the present study, we investigated miR-492's role in cell proliferation of breast cancer. MiR-492 expression was markedly upregulated in breast cancer tissues and breast cancer cells. Overexpression of miR-492 promoted the proliferation and anchorage-independent growth of breast cancer cells. Bioinformatics analysis further revealed sex-determining region Y-box 7 (SOX7), a putative tumor suppressor, as a potential target of miR-492. Data from luciferase reporter assays showed that miR-492 directly binds to the 3'-untranslated region (3'-UTR) of SOX7 messenger RNA (mRNA) and repressed expression at both transcriptional and translational levels. Ectopic expression of miR-492 led to downregulation of SOX7 protein, which resulted in the upregulation of cyclin D1 and c-Myc. In functional assays, SOX7 silenced in miR-492-in-transfected ZR-75-30 cells has positive effect to promote cell proliferation, suggesting that direct SOX7 downregulation is required for miR-492-induced cell proliferation and cell cycle of breast cancer. In sum, these results suggest that miR-492 represents a potential onco-miR and participates in breast cancer carcinogenesis by suppressing SOX7 expression.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Fatores de Transcrição SOXF/genética , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/fisiologia , Divisão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Células MCF-7 , MicroRNAs/metabolismo , Fatores de Transcrição SOXF/biossíntese , Regulação para Cima
12.
Dev Cell ; 29(4): 454-67, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24835466

RESUMO

Cells of the inner cell mass (ICM) of the mouse blastocyst differentiate into the pluripotent epiblast or the primitive endoderm (PrE), marked by the transcription factors NANOG and GATA6, respectively. To investigate the mechanistic regulation of this process, we applied an unbiased, quantitative, single-cell-resolution image analysis pipeline to analyze embryos lacking or exhibiting reduced levels of GATA6. We find that Gata6 mutants exhibit a complete absence of PrE and demonstrate that GATA6 levels regulate the timing and speed of lineage commitment within the ICM. Furthermore, we show that GATA6 is necessary for PrE specification by FGF signaling and propose a model where interactions between NANOG, GATA6, and the FGF/ERK pathway determine ICM cell fate. This study provides a framework for quantitative analyses of mammalian embryos and establishes GATA6 as a nodal point in the gene regulatory network driving ICM lineage specification.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Endoderma/embriologia , Fator de Transcrição GATA6/metabolismo , Proteínas de Homeodomínio/biossíntese , Animais , Benzamidas/farmacologia , Diferenciação Celular , Linhagem da Célula , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Endoderma/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA6/biossíntese , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/biossíntese , Proteínas de Homeodomínio/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Homeobox Nanog , Fatores de Transcrição SOXF/biossíntese
13.
Circ Res ; 115(2): 215-26, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24755984

RESUMO

RATIONALE: The Notch pathway stabilizes sprouting angiogenesis by favoring stalk cells over tip cells at the vascular front. Because tip and stalk cells have different properties in morphology and function, their transcriptional regulation remains to be distinguished. Transcription factor Sox17 is specifically expressed in endothelial cells, but its expression and role at the vascular front remain largely unknown. OBJECTIVE: To specify the role of Sox17 and its relationship with the Notch pathway in sprouting angiogenesis. METHODS AND RESULTS: Endothelial-specific Sox17 deletion reduces sprouting angiogenesis in mouse embryonic and postnatal vascular development, whereas Sox17 overexpression increases it. Sox17 promotes endothelial migration by destabilizing endothelial junctions and rearranging cytoskeletal structure and upregulates expression of several genes preferentially expressed in tip cells. Interestingly, Sox17 expression is suppressed in stalk cells in which Notch signaling is relatively high. Notch activation by overexpressing Notch intracellular domain reduces Sox17 expression both in primary endothelial cells and in retinal angiogenesis, whereas Notch inhibition by delta-like ligand 4 (Dll4) blockade increases it. The Notch pathway regulates Sox17 expression mainly at the post-transcriptional level. Furthermore, endothelial Sox17 ablation rescues vascular network from excessive tip cell formation and hyperbranching under Notch inhibition in developmental and tumor angiogenesis. CONCLUSIONS: Our findings demonstrate that the Notch pathway restricts sprouting angiogenesis by reducing the expression of proangiogenic regulator Sox17.


Assuntos
Células Endoteliais/metabolismo , Proteínas HMGB/fisiologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição SOXF/fisiologia , Transdução de Sinais/fisiologia , Animais , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Diferenciação Celular , Movimento Celular , Citoesqueleto/ultraestrutura , Embrião de Mamíferos/irrigação sanguínea , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Proteínas HMGB/biossíntese , Proteínas HMGB/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Junções Intercelulares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Morfogênese/genética , Estrutura Terciária de Proteína , RNA Interferente Pequeno/farmacologia , Receptor Notch1/genética , Receptor Notch1/fisiologia , Proteínas Recombinantes de Fusão , Vasos Retinianos/crescimento & desenvolvimento , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Organismos Livres de Patógenos Específicos , Transcrição Gênica
14.
Histochem Cell Biol ; 142(2): 217-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24477550

RESUMO

Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated "RoGel," which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC-HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Matriz Extracelular , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Amônia/metabolismo , Animais , Transporte Biológico , Tetracloreto de Carbono , Técnicas de Cultura de Células , Colágeno , Combinação de Medicamentos , Células-Tronco Embrionárias/transplante , Fator de Transcrição GATA4/biossíntese , Géis/farmacologia , Proteína Goosecoid/biossíntese , Fator 3-beta Nuclear de Hepatócito/biossíntese , Humanos , Verde de Indocianina/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Laminina , Lipoproteínas LDL/metabolismo , Fígado/citologia , Fígado/lesões , Fígado/metabolismo , Camundongos , Proteoglicanas , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXF/biossíntese , alfa-Fetoproteínas/biossíntese , alfa-Fetoproteínas/metabolismo
15.
Int J Clin Exp Pathol ; 7(12): 8609-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674225

RESUMO

OBJECTIVE: To study chromosome 1p/19q loss of heterozygosity (LOH) and Sox17 protein expression in oligodendrogliomas and correlate this loss with clinicopathological features. METHODS: This study included 100 cases of oligodendrogliomas at the First Affiliated Hospital of Xinjiang Medical University from 2003 to 2014. The cases included paraffin-embedded tissues from 50 low-grade oligodendrogliomas and 50 anaplastic oligodendrogliomas. Chromosome 1p/19q LOH was detected by fluorescence in situ hybridization (FISH) and Sox17 protein expression was analyzed by immunohistochemistry. Clinicopathological characteristics of the oligodendrogliomas were compared and prognosis analyzed using Cox regression and Kaplan-Meier analyses. RESULTS: The LOH positivity rate of 1p/19q was 52% in 50 cases of low-grade oligodendrogliomas and 68% in 50 cases of anaplastic oligodendrogliomas (P = 0.102). The rates of Sox17 expression were significantly different in oligodendrogliomas (82%) and anaplastic oligodendrogliomas (62%, P = 0.026). Single factor analysis determined that 1p/19q LOH (P = 0.000), Sox17 protein expression (P = 0.000), location (P = 0.001), chemotherapy (P = 0.000), and radiation therapy (P = 0.001) were associated with oligodendroglioma patient prognosis. Cox multiple factors regression analysis determined that 1p/19q LOH and Sox17 expression were independent prognostic factors of oligodendrogliomas. CONCLUSION: In this study, oligodendroglioma patients with 1p/19q LOH and Sox17 protein expression had a better prognosis. Thus, analysis of 1p/19q LOH and Sox17 protein expression could significantly enhance diagnostic accuracy, guide treatment, and improve the prognosis.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 1 , Perda de Heterozigosidade/genética , Oligodendroglioma , Fatores de Transcrição SOXF/biossíntese , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Criança , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Oligodendroglioma/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Adulto Jovem
16.
Cell Oncol (Dordr) ; 36(6): 469-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24065215

RESUMO

PURPOSE: SOX18 is a transcription factor known to be involved in hair follicle, blood and lymphatic vessel development, as well as wound healing processes (together with SOX7 and SOX17). In addition, it has been reported that SOX18 may affect the growth of cancer cells in vitro. Until now, the exact role of SOX18 expression in invasive ductal breast carcinoma (IDC) has remained unknown. METHODS: In this study, we have investigated SOX18 expression in cancer cells and endothelial cells in 122 IDC samples using immunohistochemistry (IHC). SOX18 expression was also determined using real-time PCR and Western blotting in a series of breast cancer-derived cell lines (i.e., MCF-7, BT-474, SK-BR-3, MDA-MB-231, BO2). RESULTS: Using IHC, we observed SOX18 nuclear expression in cancer cells, as well as in blood and lymphatic vessels of the IDC samples tested. SOX18 expression in the IDC samples correlated with a higher malignancy grade (Grade 2 and Grade 3 versus Grade 1; p = 0.02 and p = 0.009, respectively) and VEGF-D expression (r = 0.27, p = 0.007). SOX18 expression was also associated with HER2 positivity (p = 0.02). A significantly higher SOX18 expression was found in the HER2-positive cell line BT-474, and a significantly lower expression in the triple negative cell lines MDA-MB-231 and BO2. Laser capture microdissection of IDC samples revealed significantly higher mRNA SOX7, SOX17 and SOX18 expression levels in the vessels as compared to the cancer cells (p = 0.02 and p = 0.0002, p < 0.0001, respectively). SOX18 positive intratumoral and peritumoral microvessel counts (MVC) were associated with higher malignancy grades (p = 0.04 and p = 0.02, respectively). Moreover, peritumoral SOX18 positive MVC were found to act as an independent marker for a poor prognosis (p = 0.04). CONCLUSION: SOX18 expression may serve as a marker for a poor prognosis in IDC.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Fatores de Transcrição SOXF/biossíntese , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Vasos Linfáticos/metabolismo , Células MCF-7 , Microvasos/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Prognóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXF/sangue , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo
17.
Pathol Oncol Res ; 18(4): 1039-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22777918

RESUMO

Lung adenocarcinoma is the most frequently histologic subtype and the most histologically heterogeneous form of lung cancer. De-regulation of Wnt/ß-catenin signaling pathway is implicated in lung carcinogenesis. SOX7, as a member of high mobility group (HMG) transcription factor family, plays a role in the modulation of the Wnt/ß-catenin signaling pathway. However, the expression pattern and clinicopathological significance of SOX7 in patients with lung adenocarcinoma is still unclear. To address this problem, the SOX7 mRNA expression was detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Immunohistochemical studies were performed on 288 pairs of adjacent normal lung and lung adenocarcinoma tissues with complete follow-up records. Association of SOX7 protein expression with clinical outcomes was evaluated using the Kaplan-Meier method and a multivariate Cox proportional hazards regression model. SOX7 mRNA expression was significantly down-regulated in lung adenocarcinoma compared with matched adjacent normal tissues (P < 0.001). SOX7 protein was expressed in the cytoplasm of lung adenocarcinoma cells in 106/288 (36.8 %) of cases, whereas its immunoreactivities were predominantly located in the cytoplasm of the adjacent normal tissues. The reduced SOX7 expression was correlated with poor differentiation (P = 0.002), lymph node metastasis (P = 0.011) and advanced TNM stage (P = 0.006). Regarding patient survival, the overall survival and the disease-free survival rates were both significantly lower in patients with SOX7-negative tumors than in those with SOX7-positive tumors (P = 0.018 and 0.013, respectively). Multivariate analysis using a Cox proportional-hazards model demonstrated that SOX7 expression status was an independent prognostic factor predicting the overall survival and the disease-free survival of patients with lung adenocarcinoma (P = 0.021 and 0.016, respectively).Our data suggest that the decreased expression of SOX7 is an important feature of lung adenocarcinoma. The expression level of SOX protein may be a useful prognostic marker for patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXF/biossíntese , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Idoso , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXF/genética , Análise de Sobrevida
18.
Stem Cell Rev Rep ; 8(3): 792-802, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22592939

RESUMO

New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Proteínas de Membrana/metabolismo , Pâncreas/citologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Carbono-Nitrogênio Liases , Separação Celular , Células Cultivadas , Cromossomos Artificiais Bacterianos/genética , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células Secretoras de Insulina/transplante , Transferases de Grupos Nitrogenados/biossíntese , Transferases de Grupos Nitrogenados/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/genética , Transcriptoma , Transgenes
19.
Epigenetics ; 5(8): 743-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20716954

RESUMO

SRY-box containing gene 17 (SOX17) was reported to be indispensable for embryonic development and a candidate tumor suppressor gene which antagonizes the canonical WNT/ß-catenin signaling pathway in colorectal cancer. In this study, we investigated the function and epigenetic regulation of SOX17 in human hepatocellular carcinoma (HCC). DNA methylation of SOX17 was analyzed in 62 human HCC tissues and HCC cell lines by MSP. A role as a tumor suppressor gene was evaluated by colony formation assay and regulation of WNT/ß-catenin signal pathway by SOX17 was determined by IHC and luciferase reporter assay. DNA methylation of the SOX17 promoter region occurs in 82% of HCC tissues and is associated with nuclear accumulation of ß-catenin. Restoration of SOX17 inhibits HepG2 colony formation and ß-catenin/TCF-dependent transcription with the presence of HMG box in SOX17. In conclusion, SOX17 negatively regulates canonical WNT/ß-catenin signaling pathway and inhibits human HCC cells growth, providing an explanation for the loss of expression by epigenetic mechanisms in these tumors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biossíntese , Fatores de Transcrição SOXF/biossíntese , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Núcleo Celular/genética , Metilação de DNA/genética , Epigênese Genética/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/genética , Proteínas Wnt/genética , beta Catenina/genética
20.
Blood ; 114(23): 4813-22, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19801444

RESUMO

The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição SOXF/fisiologia , Animais , Divisão Celular , Linhagem da Célula , Células Cultivadas/citologia , Células Cultivadas/metabolismo , Células Eritroides/citologia , Gástrula/citologia , Gástrula/metabolismo , Técnicas de Silenciamento de Genes , Vetores Genéticos/farmacologia , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/fisiologia , Fatores de Transcrição SOXF/biossíntese , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA