RESUMO
The dynamic balance between ubiquitination and deubiquitination is a key mechanism that regulates protein degradation and maintains cell protein homeostasis. Ubiquitin-specific peptidase 13 (USP13), a deubiquitinase (DUB), regulates various physiological and pathological processes, including cancer. A previous study reported that high USP13 mRNA expression confers poor prognosis in gastric cancer (GC). However, the biological function of USP13 in GC remains unknown. Here, we revealed that USP13 expression was upregulated in GC tissue samples compared to noncancerous tissues. USP13-positive expression was associated with poor differentiation, high invasiveness, and advanced tumor stage. Notably, upregulated USP13 expression was closely correlated with the reduced survival of GC patients. We also confirmed increased USP13 expression in GC cell lines. USP13 knockdown prominently suppressed MGC-803 cell migration and invasion. Conversely, USP13 overexpression markedly enhanced SGC-7901 cell motility. Furthermore, USP13 positively regulates the epithelial-mesenchymal transition (EMT) of GC cells. Interestingly, USP13 remarkably enhanced Snail protein expression but did not affect its mRNA levels in GC cells. We confirmed a positive correlation between USP13 and Snail expression in GC tissues. Mechanistically, USP13 knockdown promoted Snail degradation, which could be blocked by the proteasome inhibitor MG132. USP13 interacted with Snail to deubiquitinate and stabilize Snail in GC cells. Finally, Snail knockdown significantly blocked USP13-induced SGC-7901 cell migration and invasion. In conclusion, USP13 overexpression was frequently detected in GC and contributed to the EMT and metastasis of GC by stabilizing Snail.
Assuntos
Metástase Neoplásica , Fatores de Transcrição da Família Snail/fisiologia , Neoplasias Gástricas/patologia , Proteases Específicas de Ubiquitina/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Partial epithelial-to-mesenchymal transition (pEMT) contributes to cellular heterogeneity that is associated with nodal metastases and unfavorable clinical parameters in head and neck squamous cell carcinomas (HNSCCs). We developed a single-cell RNA sequencing signature-based pEMT quantification through cell type-dependent deconvolution of bulk RNA sequencing and microarray data combined with single-sample scoring of molecular phenotypes (Singscoring). Clinical pEMT-Singscores served as molecular classifiers in multivariable Cox proportional hazard models and high scores prognosticated poor overall survival and reduced response to irradiation as independent parameters in large HNSCC cohorts [The Cancer Genome Atlas (TCGA), MD Anderson Cancer Centre (MDACC), Fred Hutchinson Cancer Research Center (FHCRC)]. Differentially expressed genes confirmed enhanced cell motility and reduced oxidative phosphorylation and epithelial differentiation in pEMThigh patients. In patients and cell lines, the EMT transcription factor SLUG correlated most strongly with pEMT-Singscores and promoted pEMT, enhanced invasion, and resistance to irradiation in vitro. SLUG protein levels in HNSCC predicted disease-free survival, and its peripheral expression at the interphase to the tumor microenvironment was significantly increased in relapsing patients. Hence, pEMT-Singscores represent a novel risk predictor for HNSCC stratification regarding clinical outcome and therapy response that is partly controlled by SLUG.
Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Fatores de Transcrição da Família Snail/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transcriptoma , Linhagem Celular Tumoral , Estudos de Coortes , Intervalo Livre de Doença , Neoplasias de Cabeça e Pescoço/genética , Humanos , Metástase Linfática , Recidiva Local de Neoplasia , Fosforilação Oxidativa , Prognóstico , Modelos de Riscos Proporcionais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente TumoralRESUMO
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Assuntos
Carcinoma Hepatocelular/genética , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Ciclo-Oxigenase 2/metabolismo , Fibronectinas/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/fisiologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/genéticaRESUMO
The canonical Wnt/ß-catenin pathway is involved in diverse cancer development mechanisms, such as proliferation, migration, and invasion. However, its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. We investigated whether the canonical Wnt/ß-catenin signaling pathway acts as a controller of invasion and lymph node metastasis (LNM) in HNSCC. Loss of function experiments against the canonical Wnt/ß-catenin pathway were conducted to evaluate its invasive and metastatic role in HNSCC cells. Slug was evaluated as a downstream protein in canonical Wnt/ß-catenin-mediated invasion. In addition, canonical Wnt/ß-catenin and Slug expression levels were examined in 119 HNSCC tissue samples to study the relevance of these proteins in LNM and prognosis of patients post-treatment. In vitro suppression of ß-catenin expression led to decreased migration and invasion of HNSCC cells. Using an in vivo mouse orthotopic LNM model, a decrease in LNM was observed with mitigated ß-catenin expression. Slug expression upregulation mediates invasion and LNM by the canonical Wnt/ß-catenin pathway. Simultaneous expression of ß-catenin and Slug is the major predictive factor of LNM and survival rate in patients with HNSCC. In conclusion, the canonical Wnt/ß-catenin/Slug signaling axis significantly contributes to cancer cell invasion and LNM. Its blockade may be a treatment strategy for LNM and tumor recurrence in HNSCC.
Assuntos
Fatores de Transcrição da Família Snail/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metástase Linfática , Masculino , Invasividade NeoplásicaRESUMO
Renal interstitial fibrosis (RIF) is a pathological process that fibrotic components are excessively deposited in the renal interstitial space due to kidney injury, resulting in impaired renal function and chronic kidney disease. The molecular mechanisms controlling renal fibrosis are not fully understood. In this present study, we identified Nuclear protein 1 (Nupr1), a transcription factor also called p8, as a novel regulator promoting renal fibrosis. Unilateral ureteral obstruction (UUO) time-dependently induced Nupr1 mRNA and protein expression in mouse kidneys while causing renal damage and fibrosis. Nupr1 deficiency (Nupr1-/- ) attenuated the renal tubule dilatation, tubular epithelial cell atrophy, and interstitial collagen accumulation caused by UUO. Consistently, Nupr1-/- significantly decreased the expression of type I collagen, myofibroblast markers smooth muscle α-actin (α-SMA), fibroblast-specific protein 1 (FSP-1), and vimentin in mouse kidney that were upregulated by UUO. These results suggest that Nupr1 protein was essential for fibroblast activation and/or epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Indeed, Nupr1 was indispensable for TGF-ß-induced myofibroblast activation of kidney interstitial NRK-49F fibroblasts, multipotent mesenchymal C3H10T1/2 cells, and the EMT of kidney epithelial NRK-52E cells. It appears that Nupr1 mediated TGF-ß-induced α-SMA expression and collagen synthesis by initiating Smad3 signaling pathway. Importantly, trifluoperazine (TFP), a Nupr1 inhibitor, alleviated UUO-induced renal fibrosis. Taken together, our results demonstrate that Nupr1 promotes renal fibrosis by activating myofibroblast transformation from both fibroblasts and tubular epithelial cells.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Transição Epitelial-Mesenquimal , Fibroblastos/fisiologia , Rim/patologia , Proteínas de Neoplasias/fisiologia , Animais , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/fisiologia , Ratos , Transdução de Sinais/fisiologia , Proteína Smad3/fisiologia , Fatores de Transcrição da Família Snail/fisiologia , Trifluoperazina/farmacologiaRESUMO
BACKGROUND: Deubiquitinating enzymes (DUBs) are linked to cancer progression and dissemination, yet less is known about their regulation and impact on epithelial-mesenchymal transition (EMT). METHODS: An integrative translational approach combining systematic computational analyses of The Cancer Genome Atlas cancer cohorts with CRISPR genetics, biochemistry and immunohistochemistry methodologies to identify and assess the role of human DUBs in EMT. RESULTS: We identify a previously undiscovered biological function of STAM-binding protein like 1 (STAMBPL1) deubiquitinase in the EMT process in lung and breast carcinomas. We show that STAMBPL1 expression can be regulated by mutant p53 and that its catalytic activity is required to affect the transcription factor SNAI1. Accordingly, genetic depletion and CRISPR-mediated gene knockout of STAMBPL1 leads to marked recovery of epithelial markers, SNAI1 destabilisation and impaired migratory capacity of cancer cells. Reversely, STAMBPL1 expression reprogrammes cells towards a mesenchymal phenotype. A significant STAMBPL1-SNAI1 co-signature was observed across multiple tumour types. Importantly, STAMBPL1 is highly expressed in metastatic tissues compared to matched primary tumour of the same lung cancer patient and its expression predicts poor prognosis. CONCLUSIONS: Our study provides a novel concept of oncogenic regulation of a DUB and presents a new role and predictive value of STAMBPL1 in the EMT process across multiple carcinomas.
Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Peptídeo Hidrolases/fisiologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/fisiologia , Feminino , Humanos , Peptídeo Hidrolases/análise , Fatores de Transcrição da Família Snail/análise , Fatores de Transcrição da Família Snail/fisiologia , Proteína Supressora de Tumor p53/genéticaRESUMO
Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.
Assuntos
Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Células HL-60 , Histona Desmetilases/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismoRESUMO
The mechanistic action of bromodomain-containing protein 4 (BRD4) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that targeted inhibition of BRD4 reduces migration, invasion, in vivo growth of patient-derived xenograft (PDX), and lung colonization of breast cancer (BC) cells. Inhibition of BRD4 rapidly decreases the expression of Snail, a powerful EMT transcription factor (EMT-TF), via diminishing its protein stability and transcription. Protein kinase D1 (PRKD1) is responsible for BRD4-regulated Snail protein stability by triggering phosphorylation at Ser11 of Snail and then inducing proteasome-mediated degradation. BRD4 inhibition also suppresses the expression of Gli1, a key transductor of Hedgehog (Hh) required to activate the transcription of SNAI1, in BC cells. The GACCACC sequence (-341 to -333) in the SNAI1 promoter is responsible for Gli1-induced transcription of SNAI1. Clinically, BRD4 and Snail levels are increased in lung-metastasized, estrogen receptor-negative (ER-), and progesterone receptor-negative (PR-) breast cancers and correlate with the expression of mesenchymal markers. Collectively, BRD4 can regulate malignancy of breast cancer cells via both transcriptional and post-translational regulation of Snail.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Proteína Quinase C/metabolismo , Estabilidade Proteica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Triazóis/uso terapêutico , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
BACKGROUND: The tumor microenvironment (TME) regulates tumor progression, and cancer-associated fibroblasts (CAFs) are the primary stromal components of the TME, with the potential to drive tumor metastasis via the secretion of paracrine factors, but the specific mechanisms driving this process have not been defined. METHODS: Proteins secreted from CAFs and normal fibroblasts (NFs) were analyzed via proteomic analysis (fold change > 2, p < 0.05) to identify tumor-promoting proteins secreted by CAFs. RESULTS: Proteomic analysis revealed that microfibrillar-associated protein 5 (MFAP5) is preferentially expressed and secreted by CAFs relative to NFs, which was confirmed by Western blotting and RT-qPCR. Transwell and wound healing assays confirmed that MFAP5 is secreted by CAFs, and drives the invasion and migration of MCF7 breast cancer cells. We further found that in MCF7 cells MFAP5 promoted epithelial-mesenchymal transition, activating Notch1 signaling and consequently upregulating NICD1 and slug. When Notch1 was knocked down in MCF7 cells, the ability of MFAP5 to promote invasion and migration decreased. CONCLUSION: CAFs promote cancer cells invasion and migration via MFAP5 secretion and activation of the Notch1/slug signaling. These data highlight this pathway as a therapeutic target to disrupt tumor progression through the interference of CAF-tumor crosstalk.
Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/fisiologia , Proteínas Contráteis/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Receptor Notch1/fisiologia , Fatores de Transcrição da Família Snail/fisiologia , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Transdução de Sinais/fisiologia , Microambiente TumoralRESUMO
HEADING AIMS: MicroRNA-27b (miR-27b) has been shown to play a role in the progression of many different forms of cancer, but its specific relevance in the context of non-small cell lung cancer (NSCLC) remains uncertain. As such, this study sought to explore the role of miR-27b in NSCLC and the mechanisms whereby it functions. MATERIALS AND METHODS: We quantified miR-27b and target gene expression via quantitative real-time PCR (RT-qPCR).We then used functional including proliferation assays, migration assay, flow cytometry, and western blotting to explore the mechanisms whereby miR-27b functions in vitro and in vivo. We additionally confirmed miR-27b target genes via luciferase reporter assay. KEY FINDINGS: We observed a marked decrease in miR-27b expression in NSCLC patient samples relative to paracancerous control tissues. We further found that altering miR-27b expression levels in vitro affected NSCLC tumor cell migration, proliferation, and ability to undergo epithelial-mesenchymal transition. Through the use of target prediction algorithms we identified Snail to be a miR-27b target protein that was suppressed when this miRNA was highlight expressed. Lastly, we found miR-27b expression to increase NSCLC cell sensitivity to cisplatin through its ability to target Snail. SIGNIFICANCE: Our results clearly demonstrate that miR-27b can suppress NSCLC tumor development and progression, highlighting this miR-27b/Snail1 axis as putative target for the therapeutic treatment of NSCLC.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/fisiologia , Fatores de Transcrição da Família Snail/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Humanos , Neoplasias Pulmonares/patologiaRESUMO
Down-regulation/mutation of AT-rich interactive domain 1A (ARID1A), a novel tumor suppressor gene, has been reported in various cancers. Nevertheless, its role in renal cell carcinoma (RCC) remained unclear and underinvestigated. We thus evaluated carcinogenesis effects of ARID1A knockdown in nonmalignant Madin-Darby canine kidney (MDCK) renal cells using small interfering RNA (siRNA) against ARID1A (siARID1A). The siARID1A-transfected cells had decreased cell death, increased cell proliferation, and cell cycle shift (from G0/G1 to G2/M) compared with those transfected with controlled siRNA (siControl). Additionally, the siARID1A-transfected cells exhibited epithelial-mesenchymal transition (EMT) shown by greater spindle index, increased mesenchymal markers (fibronectin/vimentin), and decreased epithelial markers (E-cadherin/zonula occludens-1). Moreover, the siARID1A-transfected cells had increases in migratory activity, nuclear size, self-aggregated multicellular spheroid size, invasion capability, chemoresistance (to docetaxel), Snail family transcriptional repressor 1 expression, and TGF-ß1 secretion. All of these siARID1A-knockdown effects on the carcinogenic features were reproducible in malignant RCC (786-O) cells, which exhibited a higher degree of carcinogenic phenotypes compared with the nonmalignant MDCK cells. Finally, immunohistochemistry showed obvious decrease in ARID1A protein expression in human RCC tissues (n = 23) compared with adjacent normal renal tissues (n = 23). These data indicate that ARID1A down-regulation triggers EMT and carcinogenesis features of renal cells in vitro, and its role in RCC could be proven in human tissues.-Somsuan, K., Peerapen, P., Boonmark, W., Plumworasawat, S., Samol, R., Sakulsak, N., Thongboonkerd, V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma.
Assuntos
Carcinogênese , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA/fisiologia , Transição Epitelial-Mesenquimal , Neoplasias Renais/patologia , Fatores de Transcrição/fisiologia , Animais , Carcinoma de Células Renais/etiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Cães , Humanos , Neoplasias Renais/etiologia , Células Madin Darby de Rim Canino , Fatores de Transcrição da Família Snail/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fator de Crescimento Transformador beta1/fisiologiaRESUMO
BACKGROUND: Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT. OBJECTIVE: We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis. METHODS: The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-ß1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration. RESULTS: CSnail1 inhibited TGF-ß1-induced N-cadherin and vimentin mRNA expression and increased ß-catenin expression in transfected TGF-ß1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test. CONCLUSION: Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.
Assuntos
Adenocarcinoma Bronquioloalveolar/genética , Biomarcadores Tumorais/genética , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Fatores de Transcrição da Família Snail/fisiologia , Células A549 , Adenocarcinoma Bronquioloalveolar/patologia , Movimento Celular/efeitos dos fármacos , Códon sem Sentido , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Fatores de Transcrição da Família Snail/química , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/farmacologia , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
BACKGROUND: Malignant gliomas are characterized by high invasive ability. In this study, we investigated roles of layilin, a C-type lectin-homologous protein, in the invasive ability of malignant glioma cells. METHODS: Expression of layilin was investigated by western blotting in the malignant glioma cell lines of U251-MG, A172, and T98G and in astrocytes. The effects of layilin-knockdown on the expression and protein levels of snail family transcriptional repressor 1 (SNAI1), a transcriptional factor involved in the acquisition and enhancement of invasive ability in malignant gliomas, and on the expression of its target genes, matrix metalloproteinase 2 (MMP2), MMP9, and collagen type I alpha 1 chain (COL1A1), were investigated by qPCR and/or western blotting. Furthermore, the effects of layilin-knockdown on the expression and protein levels of metastasis associated 1 family member 3 (MTA3), a transcriptional repressor of SNAI1, were also investigated by qPCR and western blotting. Finally, the effects of layilin-knockdown on the invasive ability of the cells were investigated by a wound healing assay. RESULTS: All the tested malignant glioma cells highly expressed layilin, compared to astrocytes, one of representative glial cell types. Layilin-knockdown reduced SNAI1 both at the mRNA and protein levels in A172 cells, and consequently mRNA levels of MMP2, MMP9, and COL1A1 were also reduced. Furthermore, layilin-knockdown increased nuclear protein levels of MTA3 in A172 cells. Notably, layilin-knockdown suppressed the invasive ability of the cells. CONCLUSION: Layilin up-regulates the expression of SNAI1 via down-regulation of MTA3. This process enhances the invasive ability of malignant glioma cells.
Assuntos
Glioma/metabolismo , Lectinas Tipo C/metabolismo , Invasividade Neoplásica/fisiopatologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Regulação da Expressão Gênica/genética , Glioma/fisiopatologia , Humanos , Lectinas Tipo C/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Epithelial-mesenchymal transition (EMT) is a critical process implicated in the initial stage of cancer metastasis, which is the major cause of tumor recurrence and mortality. Although key transcription factors that regulate EMT, such as snail family transcriptional repressor 2 (SNAI2), are well characterized, the upstream signaling pathways controlling these transcriptional mediators are largely unknown, which limits therapeutic strategies. Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator, generated by sphingosine kinases (SPHK1 and SPHK2), that mainly exerts its effects by binding to the following 5 GPCRs: S1P1 to S1P5. S1P signaling has been reported to regulate different aspects of cancer progression including cell proliferation, apoptosis, and migration; nevertheless, its role in cancer metastasis, specifically via EMT, is not established. Here we show that SPHK1 expression correlates significantly with EMT score in breast cancer cell lines, and with SNAI2 in patient-derived breast tumors. Cell-based assays demonstrate that S1P can rapidly up-regulate the expression of SNAI2 in breast cancer cells via the activation of cognate receptors S1P2 and S1P3. Knockdown studies suggest that S1P2 and S1P3 mediate this effect by activating myocardin-related transcription factor A (MRTF-A) and yes-associated protein (YAP), respectively. Michigan Cancer Foundation 7 cells stably overexpressing S1P2 or S1P3 exhibit a more invasive phenotype, when compared to control cells. Taken together, our findings suggest that S1P produced by SPHK1 induces SNAI2 expression via S1P2-YAP and S1P3-MRTF-A pathways, leading to enhanced cell invasion. Cumulatively, this study reveals a novel mechanism by which S1P activates parallel pathways that regulate the expression of SNAI2, a master regulator of EMT, and provides new insights into druggable therapeutic targets that may limit cancer metastasis. Wang, W., Hind, T., Lam, B. W. S., Herr, D. R. Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells.
Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , Lisofosfolipídeos/fisiologia , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Fatores de Transcrição da Família Snail/biossíntese , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisofosfolipídeos/farmacologia , Células MCF-7 , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/fisiologia , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato/fisiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Sinalização YAPRESUMO
Some 25 years ago, a clone was identified that contained the chicken Slug sequences (now called Snail2 ). How could we anticipate at that time how much the chick embryo would help us to understand the ins and outs of cell migration during development and in disease? Indeed, the chick embryo helped us identify Snail2 as the first transcription factor that could induce the epithelial-mesenchymal transition (EMT), key for the migration of embryonic and cancer cells.
Assuntos
Embriologia/história , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição da Família Snail/fisiologia , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Embrião de Galinha , Galinhas , Progressão da Doença , Embriologia/métodos , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Neoplasias/patologia , Crista Neural/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição da Família Snail/genética , Fatores de TranscriçãoRESUMO
Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3⯵M Cd for 4â¯weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail.
Assuntos
Mama/fisiologia , Cádmio/toxicidade , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição da Família Snail/fisiologia , Antígenos CD , Mama/citologia , Mama/efeitos dos fármacos , Caderinas/fisiologia , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , HumanosRESUMO
Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.
Assuntos
Transformação Celular Neoplásica/genética , Inativação Gênica , Pulmão/patologia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Modelos AnimaisRESUMO
Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a 'multi hit' effect may be achieved through the aberrant activation of just a single gene.
Assuntos
Proliferação de Células/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição GATA/fisiologia , Neoplasias/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Fatores de Transcrição GATA/genética , Invasividade Neoplásica , Neoplasias/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Carga Tumoral/genética , Asas de Animais/embriologia , Asas de Animais/transplanteRESUMO
Intratumoral heterogeneity greatly hinders efficiency of target therapy in glioblastoma (GBM). To decipher the underlying mechanisms of heterogeneity, patient-derived adult GBM cells were separately isolated from margins of T1 gadolinium enhancing tumor lesions (PNCs) and T1 gadolinium enhancing core lesions (ECs). Single clone culture was conducted in ECs and U87MG cell line to screen clones with distinct biological phenotypes. Single cell clones with diverse phenotypes were simultaneously separated from ECs and U87 cell line. PNCs, GCs(H) and U87(H) exhibited longer cellular protrusion than ECs, GCs(L) and U87(L), respectively. Cell strains with longer protrusion exhibited higher invasive ability and lower sensitivity to temozolomide (TMZ) and radiation. Subsequently, TPD52L2 was verified as the functional protein to regulate the cellular heterogeneity by the proteomics analysis. Downregulation of TPD52L2 enhanced cell invasion whereas inhibited cell proliferation rate and sensitivity to chemotherapy in vivo and in vitro, this condition was reversed when TPD52L2 was overexpressed. The invasiveness was facilitated by up-regulating CTNNB1/ß-catenin and SNAI1/Snail mediated EMT process. In addition, the clinical data of 88 GBM cases in our neurosurgery center was analyzed to reveal the influence of TPD52L2 in the prognosis of GBM. Low expression of TPD52L2 exacerbated prognosis of GBM patients received standard radiotherapy plus concomitant and adjuvant TMZ (Stupp strategy). Taken together, TPD52L2 is an important biomarker influencing GBM prognosis.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas de Neoplasias/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/patologia , Fatores de Transcrição da Família Snail/fisiologia , Células Tumorais Cultivadas , Via de Sinalização Wnt/fisiologiaRESUMO
Reactivation of an embryonic epithelial-to-mesenchymal (EMT) program is commonly accepted as a core component of carcinoma progression. Collectively, EMT and transcription factors (EMT-TFs) of the ZEB, SNAIL and TWIST families are quoted in the same breath for nearly 20years. Recent work on these EMT-TFs has extended their scope, and their typical definition as EMT-inducing factors has become out-of-date. New insights have warranted a re-evaluation of these transcription factors and their pleiotropic functions in physiological and pathological conditions, not solely limited to cell invasion and dissemination.