RESUMO
BACKGROUND: The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS: Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT: The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION: Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Assuntos
Neoplasias Pancreáticas , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Animais , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Linhagem Celular Tumoral , Camundongos Knockout , Imunoterapia/métodosRESUMO
Diverse cellular insults converge on activation of the heat shock factor 1 (HSF1), which regulates the proteotoxic stress response to maintain protein homoeostasis. HSF1 regulates numerous gene programmes beyond the proteotoxic stress response in a cell-type- and context-specific manner to promote malignancy. However, the role(s) of HSF1 in immune populations of the tumour microenvironment remain elusive. Here, we leverage an in vivo model of HSF1 activation and single-cell transcriptomic tumour profiling to show that augmented HSF1 activity in natural killer (NK) cells impairs cytotoxicity, cytokine production and subsequent anti-tumour immunity. Mechanistically, HSF1 directly binds and regulates the expression of key mediators of NK cell effector function. This work demonstrates that HSF1 regulates the immune response under the stress conditions of the tumour microenvironment. These findings have important implications for enhancing the efficacy of adoptive NK cell therapies and for designing combinatorial strategies including modulators of NK cell-mediated tumour killing.
Assuntos
Fatores de Transcrição de Choque Térmico , Células Matadoras Naturais , Microambiente Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Animais , Microambiente Tumoral/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Feminino , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genéticaRESUMO
BACKGROUND: Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS: We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS: Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION: This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.
Assuntos
Progressão da Doença , Glioblastoma , Fatores de Transcrição de Choque Térmico , Sumoilação , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Modelos Animais de Doenças , Resposta a Proteínas não Dobradas , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genéticaRESUMO
BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS: Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS: Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS: The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Fatores de Transcrição de Choque Térmico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/tratamento farmacológico , Humanos , Animais , Camundongos , Prognóstico , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proliferação de CélulasRESUMO
BACKGROUND: Heat shock transcription factors (HSFs) play crucial roles in the development of malignancies. However, the specific roles of HSFs in hepatocellular carcinoma (HCC) have yet to be fully elucidated. AIMS: To explore the involvement of the HSF family, particularly HSF1, in the progression and prognosis of HCC. MATERIALS & METHODS: We conducted a thorough analysis of HSF expression and copy number variations across various cancer datasets. Specifically focusing on HSF1, we examined its expression levels and prognostic implications in HCC. In vitro and in vivo experiments were carried out to evaluate the impact of HSF1 on liver cancer cell proliferation. Additionally, we utilized CUT&Tag, H3K27 acetylation enrichment, and RNA sequencing (RNA-seq) to investigate the super-enhancer (SE) regulatory landscapes of HSF1 in liver cancer cell lines. RESULTS: HSF1 expression is elevated in HCC and is linked to poor prognosis in several datasets. HSF1 stimulates liver cancer cell proliferation both in vitro and in vivo, partly through modulation of H3K27ac levels, influencing enhancer distribution. Mechanistically, our findings demonstrate that HSF1 transcriptionally activates MYCN expression by binding to its promoter and SE elements, thereby promoting liver cancer cell proliferation. Moreover, increased MYCN expression was detected in HCC tumors and correlated with unfavorable patient outcomes. DISCUSSION: Our study sheds light on previously unexplored aspects of HSF1 biology, identifying it as a transcription factor capable of shaping the epigenetic landscape in the context of HCC. Given HSF1's potential as an epigenetic regulator, targeting the HSF1-MYCN axis could open up new therapeutic possibilities for HCC treatment. CONCLUSION: The HSF1-MYCN axis constitutes a transcription-dependent regulatory mechanism that may function as both a prognostic indicator and a promising therapeutic target in liver cancer. Further exploration of this axis could yield valuable insights into novel treatment strategies for HCC.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Progressão da Doença , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Neoplasias Hepáticas , Proteína Proto-Oncogênica N-Myc , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Animais , Linhagem Celular Tumoral , Prognóstico , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Camundongos Nus , Regiões Promotoras GenéticasRESUMO
Heat shock factor 2 (HSF2) is a versatile transcription factor that regulates gene expression under stress conditions, during development, and in disease. Despite recent advances in characterizing HSF2-dependent target genes, little is known about the protein networks associated with this transcription factor. In this study, we performed co-immunoprecipitation coupled with mass spectrometry analysis to identify the HSF2 interactome in mouse testes, where HSF2 is required for normal sperm development. Endogenous HSF2 was discovered to form a complex with several adhesion-associated proteins, a finding substantiated by mass spectrometry analysis conducted in human prostate carcinoma PC-3 cells. Notably, this group of proteins included the focal adhesion adapter protein talin-1 (TLN1). Through co-immunoprecipitation and proximity ligation assays, we demonstrate the conservation of the HSF2-TLN1 interaction from mouse to human. Additionally, employing sequence alignment analyses, we uncovered a TLN1-binding motif in the HSF2 C terminus that binds directly to multiple regions of TLN1 in vitro. We provide evidence that the 25 C-terminal amino acids of HSF2, fused to EGFP, are sufficient to establish a protein complex with TLN1 and modify cell-cell adhesion in human cells. Importantly, this TLN1-binding motif is absent in the C-terminus of a closely related HSF family member, HSF1, which does not form a complex with TLN1. These results highlight the unique molecular characteristics of HSF2 in comparison to HSF1. Taken together, our data unveil the protein partners associated with HSF2 in a physiologically relevant context and identifies TLN1 as the first adhesion-related HSF2-interacting partner.
Assuntos
Fatores de Transcrição de Choque Térmico , Ligação Proteica , Proteômica , Talina , Talina/metabolismo , Talina/genética , Humanos , Animais , Camundongos , Masculino , Proteômica/métodos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Células PC-3 , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque TérmicoRESUMO
Proteostasis mechanisms, such as proteotoxic-stress response and autophagy, are increasingly recognized for their roles in influencing various cancer hallmarks such as tumorigenesis, drug resistance, and recurrence. However, the precise mechanisms underlying their coordination remain not fully elucidated. The aim of this study is to investigate the molecular interplay between Hsp70 and autophagy in lung adenocarcinoma cells and elucidate its impact on the outcomes of anticancer therapies in vitro. For this purpose, we utilized the human lung adenocarcinoma A549 cell line and genetically modified it by knockdown of Hsp70 or HSF1, and the H1299 cell line with knockdown or overexpression of Hsp70. In addition, several treatments were employed, including treatment with Hsp70 inhibitors (VER-155008 and JG-98), HSF1 activator ML-346, or autophagy modulators (SAR405 and Rapamycin). Using immunoblotting, we found that Hsp70 negatively regulates autophagy by directly influencing AMPK activation, uncovering a novel regulatory mechanism of autophagy by Hsp70. Genetic or chemical Hsp70 overexpression was associated with the suppression of AMPK and autophagy. Conversely, the inhibition of Hsp70, genetically or chemically, resulted in the upregulation of AMPK-mediated autophagy. We further investigated whether Hsp70 suppression-mediated autophagy exhibits pro-survival- or pro-death-inducing effects via MTT test, colony formation, CellTiter-Glo 3D-Spheroid viability assay, and Annexin/PI apoptosis assay. Our results show that combined inhibition of Hsp70 and autophagy, along with cisplatin treatment, synergistically reduces tumor cell metabolic activity, growth, and viability in 2D and 3D tumor cell models. These cytotoxic effects were exerted by substantially potentiating apoptosis, while activating autophagy via rapamycin slightly rescued tumor cells from apoptosis. Therefore, our findings demonstrate that the combined inhibition of Hsp70 and autophagy represents a novel and promising therapeutic approach that may disrupt the capacity of refractory tumor cells to withstand conventional therapies in NSCLC.
Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Choque Térmico HSP70 , Neoplasias Pulmonares , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Proteínas Quinases Ativadas por AMP/metabolismo , Células A549 , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Sirolimo/farmacologia , Apoptose/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Isoxazóis , ResorcinóisRESUMO
Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.
Assuntos
Cádmio , Galinhas , Fatores de Transcrição de Choque Térmico , Mitocôndrias , Cádmio/toxicidade , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , DNA Mitocondrial/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
Photothermal therapy (PTT) has attracted attention as a highly effective non-invasive treatment method. However, the high localized temperatures (>50 °C) required for its treatment will inevitably cause damage to the surrounding normal tissues. Therefore, it is important to develop novel and effective strategies to achieve mild photothermal therapy (mPTT). The overexpression of heat shock proteins (HSPs), a widespread heat stress protein, leads to the generation of heat resistance in cancer cells, which seriously affects the therapeutic effect. Thus, inhibiting the expression of HSPs to reduce the heat resistance of tumor cells is expected to enhance the therapeutic effect of mPTT. Here, we successfully synthesized a fluorescent probe bonded with an amphiphilic polypeptide to a cyanine dye and achieved physical encapsulation of the blocker SB705498 through a self-assembly process. SB705498 promotes transient receptor potential vanilloid member 1 (TRPV1) channel blockade that can inhibit the translocation of the heat shock transcription factor 1 (HSF 1) by blocking the influx of calcium and thus affecting the expression of HSPs, which has the potential to enhance the thermotherapy of cancer under mild conditions. In addition, the nanoparticles enabled NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10â¯%). Therefore, this study provides a new strategy for realizing precise mPTT(<45 °C) guided by NIR-II imaging. STATEMENT OF SIGNIFICANCE: Inhibition of overexpression of heat shock proteins (HSPs) in cancer photothermal therapy (PTT) is expected to enhance the therapeutic effect of mild photothermal therapy (mPTT). In this study, we synthesized a fluorescent probe bonded to cyanine dyes with amphiphilic polypeptides and physically wrapped the blocker SB705498 through a self-assembly process. As a transient receptor potential vanillin 1 (TRPV1) channel blocker, SB705498 inhibits heat shock transcription factor 1 (HSF1) translocation by blocking calcium ion influx, thereby improving mPTT efficacy by inhibiting the expression of HSPs. The nanoparticles also enable NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10â¯%). Thus, this study provides a new strategy for NIR-II mPTT.
Assuntos
Raios Infravermelhos , Nanopartículas , Peptídeos , Terapia Fototérmica , Canais de Cátion TRPV , Nanopartículas/química , Canais de Cátion TRPV/metabolismo , Humanos , Peptídeos/química , Peptídeos/farmacologia , Nanomedicina Teranóstica/métodos , Animais , Corantes Fluorescentes/química , Fatores de Transcrição de Choque Térmico/metabolismo , Linhagem Celular Tumoral , Camundongos , Camundongos NusRESUMO
Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.
Assuntos
Infertilidade Masculina , Prófase Meiótica I , Camundongos Knockout , Espermatogênese , Masculino , Animais , Camundongos , Humanos , Espermatogênese/genética , Infertilidade Masculina/genética , Prófase Meiótica I/genética , Modelos Animais de Doenças , Meiose/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Adulto , Azoospermia/congênitoRESUMO
According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.
Assuntos
Neoplasias da Mama , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fosforilação , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células MCF-7 , Proteínas de Ligação a DNA , Fatores de TranscriçãoRESUMO
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Assuntos
Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Condensados Biomoleculares/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , FosforilaçãoRESUMO
Zucchini squashes are cold-sensitive and vulnerable to chilling injury (CI) resulting from reactive oxygen species (ROS) and hot water (HW) immersing effectively reduce CI symptoms during cold storage. However, mechanism involved in reduced ROS due to HW treatment has not been characterized well. In this study, tender green zucchini fruit were treated with HW for 15 min at 45 ± 1 °C and stored for 15 d at 4 ± 1 °C and above 90 % relative humidity. Results showed substantial reduction in CI index, electrolyte leakage, malonaldehyde (MDA) contents and ROS accumulation along with increased activity of ROS-scavenging enzymes due to HW treatment. To gain insight into the molecular mechanism involved in antioxidant defense system, transcriptomic analysis revealed that heat shock factors (HSF) accumulated due to HW treatment regulated the ROS pathway during cold stress. CpHSFA4a was one of the highly expressed transcription factors (TF) due to HW treatment that regulated the transcription of ROS enzymes related genes. CpHSFA4a bind actively with heat shock element (HSE) in promoter regions of CpSOD, CpCAT, CpAPX1, CpAPX2, and CpAPX3, activated and increased the expression of these genes. In conclusion, HW treatment alleviated the CI by maintaining ROS homeostasis through CpHSFA4a mediated ROS pathway in zucchini squashes during cold storage.
Assuntos
Antioxidantes , Frutas , Proteínas de Plantas , Espécies Reativas de Oxigênio , Antioxidantes/metabolismo , Frutas/metabolismo , Frutas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Temperatura Baixa , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Cucurbita/genética , Cucurbita/metabolismo , Temperatura Alta , Armazenamento de Alimentos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genéticaRESUMO
Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.
Assuntos
Amiloidose , Fatores de Transcrição de Choque Térmico , Rim , Camundongos Knockout , Resposta a Proteínas não Dobradas , Animais , Amiloidose/metabolismo , Amiloidose/genética , Amiloidose/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Camundongos , Rim/patologia , Rim/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Modelos Animais de Doenças , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Nefropatias/etiologia , Camundongos Endogâmicos C57BLRESUMO
In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.
Assuntos
Aminoácidos Aromáticos , Cisteína , Fatores de Transcrição de Choque Térmico , Animais , Humanos , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/química , Cisteína/química , Cisteína/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Carpa Dourada/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Modelos Moleculares , Domínios Proteicos , Multimerização ProteicaRESUMO
The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.
Assuntos
Fatores de Transcrição de Choque Térmico , Imuno-Histoquímica , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Imuno-Histoquímica/métodos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismoRESUMO
Metastasis is the main cause of deaths in prostate cancer (PCa). However, the exact mechanisms underlying PCa metastasis are not fully understood. In this study, we discovered pronounced hypoxia in primary lesions of metastatic PCa(mPCa). The exosomes secreted by cancer-associated fibroblasts (CAFs) under hypoxic conditions significantly enhance PCa metastasis both in vitro and in vivo. Through miRNA sequencing and reverse transcription quantitative PCR (RT-qPCR), we found that hypoxia elevated miR-500a-3p levels in CAFs exosomes. Subsequent RT-qPCR, western blotting, and dual luciferase reporter assays identified F-box and WD repeat domain-containing 7(FBXW7) as a target of miR-500a-3p. In addition, immunohistochemistry revealed that FBXW7 expression decreased with the progression of PCa, while heat shock transcription factor 1(HSF1) expression increased. Introducing an FBXW7 plasmid into PCa cells reduced their metastatic potential and significantly lowered HSF1 expression. These findings suggest that CAFs exosomes drive PCa metastasis via the miR-500a-3p/FBXW7/HSF1 axis in a hypoxic microenvironment. Targeting either hypoxia or exosomal miR-500a-3p could be a promising strategy for PCa management.
Assuntos
Fibroblastos Associados a Câncer , Exossomos , Proteína 7 com Repetições F-Box-WD , MicroRNAs , Metástase Neoplásica , Neoplasias da Próstata , Microambiente Tumoral , Animais , Humanos , Masculino , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Exossomos/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Hipóxia/genética , Hipóxia/metabolismoRESUMO
BACKGROUND: Recently, miRNAs are demonstrated to restrain mRNA translation through novel pattern with bind complementary sites in the coding sequence (CDS). Heat Shock Transcription Factor 4 (HSF4) has been newly described as a tumor-associated transcription factor. Therefore, the present study intends to explore miRNAs that bind CDS region of HSF4, and identify the function of their interactions in the malignant biological behavior of colorectal cancer (CRC). METHODS: Prognostic value of HSF4 and correlation between HSF4 and MACC1 expression were estimated via bioinformatics with the Cancer Genome Atlas (TCGA) data. HSF4 and downstream MACC1/STAT3 signaling cascade was characterized by immunoblotting. To characterize the effects of miR-330-5p and HSF4 on the malignant phenotype of CRC cells by functional experiments. The binding activity of miR-330-5p to coding sequence (CDS) of HSF4 was identified using DIANA-microT-CDS algorithm and dual-luciferase reporter assay. RESULTS: HSF4 was aberrantly overexpressed and associated with poor outcomes of CRC patients. Overexpression of HSF4 was correlated with Tumor Node Metastasis stage, and positively regulated malignant behaviors such as growth, migration, invasion of CRC cells. Moreover, miR-330-5p suppressed CRC cell growth, colony formation, migration and invasive. Interestingly, miR-330-5p recognized complementary sites within the HSF4 CDS region to reduce HSF4 expression. In rescue experiments, restoration of HSF4 expression functionally alleviated miR-330-5p-induced inhibition of cell growth, colon formation, invasion, and wound healing of CRC cells. HSF4 was associated positively with the well-known oncogenic factor MACC1 in TCGA cohort CRC samples, and knockdown of HSF4 resulted in downregulation of MACC1. In mechanism, MACC1 was suppressed upon miR-330-5p-induced downregulation of HSF4, leading to inactivation of phosphorylation of downstream STAT3. CONCLUSION: miR-330-5p suppresses tumors by directly inhibiting HSF4 to negatively modify activity of MACC1/STAT3 pathway.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transativadores/genéticaRESUMO
Magnolol is a naturally occurring polyphenolic compound in many edible plants, which has various biological effects including anti-aging and alleviating neurodegenerative diseases. However, the underlying mechanism on longevity is uncertain. In this study, we investigated the effect of magnolol on the lifespan of Caenorhabditis elegans and explored the mechanism. The results showed that magnolol treatment significantly extended the lifespan of nematode and alleviated senescence-related decline in the nematode model. Meanwhile, magnolol enhanced stress resistance to heat shock, hydrogen peroxide (H2O2), mercuric potassium chloride (MeHgCl) and paraquat (PQ) in nematode. In addition, magnolol reduced reactive oxygen species and malondialdehyde (MDA) levels, and increased superoxide dismutase and catalase (CAT) activities in nematodes. Magnolol also up-regulated gene expression of sod-3, hsp16.2, ctl-3, daf-16, skn-1, hsf-1, sir2.1, etc., down-regulated gene expression of daf-2, and promoted intranuclear translocation of daf-16 in nematodes. The lifespan-extending effect of magnolol were reversed in insulin/IGF signaling (IIS) pathway-related mutant lines, including daf-2, age-1, daf-16, skn-1, hsf-1 and sir-2.1, suggesting that IIS signaling is involved in the modulation of longevity by magnolol. Furthermore, magnolol improved the age-related neurodegeneration in PD and AD C. elegans models. These results indicate that magnolol may enhance lifespan and health span through IIS and sir-2.1 pathways. Thus, the current findings implicate magnolol as a potential candidate to ameliorate the symptoms of aging.
Assuntos
Compostos de Bifenilo , Proteínas de Caenorhabditis elegans , Lignanas , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Insulina/metabolismo , Estresse Oxidativo , Fatores de Transcrição Forkhead/metabolismoRESUMO
High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.