Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 54(7): 380-385, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34154701

RESUMO

Proper targeting of the ßPAK-interacting exchange factor (ßPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the ßPIX/GIT complex. Additionally, ßPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of ßPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited ßPIX targeting the neurite tips in PC12 cells. Furthermore, truncated mutants of ßPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of ßPIX, and may provide new insights into ßPIX/GIT complex-dependent neuronal pathophysiology. [BMB Reports 2021; 54(7): 380-385].


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Neurônios/metabolismo , Células PC12 , Isoformas de Proteínas/metabolismo , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia
2.
Nat Commun ; 12(1): 2815, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990566

RESUMO

Defining the principles of T cell migration in structurally and mechanically complex tumor microenvironments is critical to understanding escape from antitumor immunity and optimizing T cell-related therapeutic strategies. Here, we engineered nanotextured elastic platforms to study and enhance T cell migration through complex microenvironments and define how the balance between contractility localization-dependent T cell phenotypes influences migration in response to tumor-mimetic structural and mechanical cues. Using these platforms, we characterize a mechanical optimum for migration that can be perturbed by manipulating an axis between microtubule stability and force generation. In 3D environments and live tumors, we demonstrate that microtubule instability, leading to increased Rho pathway-dependent cortical contractility, promotes migration whereas clinically used microtubule-stabilizing chemotherapies profoundly decrease effective migration. We show that rational manipulation of the microtubule-contractility axis, either pharmacologically or through genome engineering, results in engineered T cells that more effectively move through and interrogate 3D matrix and tumor volumes. Thus, engineering cells to better navigate through 3D microenvironments could be part of an effective strategy to enhance efficacy of immune therapeutics.


Assuntos
Movimento Celular/fisiologia , Linfócitos T/imunologia , Linfócitos T/fisiologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia , Animais , Fenômenos Biomecânicos , Células Cultivadas , Matriz Extracelular/imunologia , Matriz Extracelular/fisiologia , Técnicas de Inativação de Genes , Engenharia Genética , Humanos , Camundongos , Camundongos Transgênicos , Microtúbulos/fisiologia , Modelos Biológicos , Nanoestruturas , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Evasão Tumoral/imunologia , Evasão Tumoral/fisiologia
3.
Cell Rep ; 34(1): 108594, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406419

RESUMO

Skeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice. These mice exhibit indiscernible phenotype under basal conditions. Upon acute injury, however, ARHGEF3 deficiency enhances the mass/fiber size and function of regenerating muscles in both young and regeneration-defective middle-aged mice. Surprisingly, these effects occur independently of Akt but via the GEF activity of ARHGEF3. Consistently, overexpression of ARHGEF3 inhibits muscle regeneration in a Rho-associated kinase-dependent manner. We further show that ARHGEF3 KO promotes muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, ARHGEF3 depletion in old mice prevents muscle weakness by restoring autophagy. Taken together, our findings identify a link between ARHGEF3 and autophagy-related muscle pathophysiology.


Assuntos
Autofagia , Força Muscular , Músculo Esquelético/metabolismo , Regeneração , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Envelhecimento/metabolismo , Animais , Diferenciação Celular , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
PLoS Pathog ; 15(2): e1007573, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779788

RESUMO

Motility and phagocytosis are key processes that are involved in invasive amoebiasis disease caused by intestinal parasite Entamoeba histolytica. Previous studies have reported unconventional myosins to play significant role in membrane based motility as well as endocytic processes. EhMyosin IB is the only unconventional myosin present in E. histolytica, is thought to be involved in both of these processes. Here, we report an interaction between the SH3 domain of EhMyosin IB and c-terminal domain of EhFP10, a Rho guanine nucleotide exchange factor. EhFP10 was found to be confined to Entamoeba species only, and to contain a c-terminal domain that binds and bundles actin filaments. EhFP10 was observed to localize in the membrane ruffles, phagocytic and macropinocytic cups of E. histolytica trophozoites. It was also found in early pinosomes but not early phagosomes. A crystal structure of the c-terminal SH3 domain of EhMyosin IB (EhMySH3) in complex with an EhFP10 peptide and co-localization studies established the interaction of EhMySH3 with EhFP10. This interaction was shown to lead to inhibition of actin bundling activity and to thereby regulate actin dynamics during endocytosis. We hypothesize that unique domain architecture of EhFP10 might be compensating the absence of Wasp and related proteins in Entamoeba, which are known partners of myosin SH3 domains in other eukaryotes. Our findings also highlights the role of actin bundling during endocytosis.


Assuntos
Entamoeba histolytica/metabolismo , Miosina Tipo I/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas , Movimento Celular , Citoesqueleto/imunologia , Endocitose/fisiologia , Entamoeba histolytica/patogenicidade , Entamebíase/imunologia , Entamebíase/metabolismo , Miosinas , Fagocitose , Fagossomos , Ligação Proteica , Domínios Proteicos , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia
5.
Biochem Biophys Res Commun ; 501(1): 165-171, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29709479

RESUMO

The synaptic protein Neuroligin 2, similarly to its isoform Neuroligin 1, is produced by endothelial cells, but its activity in the vascular context remains unknown. This study aimed at verifying the hypothesis that Neuroligin 2, in parallel with its extraneuronal involvement in pancreatic beta cells exocytosis, modulated cytokine release from endothelial cells and consequently angiogenesis. We used in vitro approaches to modulate Neuroligin 2 expression and Neuroligin 2 null mice to test our hypotheses. In vitro, upon VEGF stimulation, Neuroligin 2 silencing strongly reduces Angiopoietin 2 release in the medium and increases the endothelial cell retention of Weibel Palade Bodies, the specialized organelles that store Angiopoietin 2 and various other cytokines. On the contrary, Neuroligin 2 overexpression almost depletes cells of Weibel Palade Bodies, independent of VEGF. In vivo, both the retina and tumor xenografts grown in NLGN2- null mice display an immature vasculature, with lower pericyte coverage and lower Tie2 phosphorylation. At the molecular level NLGN2 colocalizes with its neuronal partner collibystin, a CDC42 guanine nucleotide exchange factor, which is also expressed by endothelial cells and in turn modulates Angiopoietin 2 release. Neuroligin 2, an inhibitory synaptic protein, modulates a peculiar aspect of vascular function and could represent a novel target of therapy in various fields, from tumor angiogenesis to vascular diseases.


Assuntos
Angiopoietina-2/metabolismo , Moléculas de Adesão Celular Neuronais/fisiologia , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Vasos Retinianos/citologia , Vasos Retinianos/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/metabolismo
6.
Eur J Clin Invest ; 48 Suppl 2: e12939, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29682742

RESUMO

Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defence functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris. This review focuses on the roles of Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment.


Assuntos
Neutrófilos/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Infiltração de Neutrófilos/fisiologia , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Transdução de Sinais/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia
7.
Lab Invest ; 98(5): 670-681, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29382922

RESUMO

Rho guanine nucleotide exchange factor 39 (ARHGEF39), also called C9orf100, is a new member of the Dbl-family of guanine nucleotide exchange factors. Although ARHGEF39 has been proven to regulate tumor progression in hepatocellular carcinoma, the downstream signaling pathway of ARHGEF39 and its clinical associations in non-small cell lung cancer (NSCLC) are currently unknown. In the present study, using MTT, colony formation, flow cytometry, mice xenografts, wound healing, and transwell assays, we showed that ARHGEF39 promoted tumor proliferation, migration, and invasion. Furthermore, ARHGEF39 promoted the expression of Cyclin A2, Cyclin D1, and MMP2 by activating Rac1, leading to increased phosphorylation of P38 and ATF2. Treatment with a P38 inhibitor counteracted the effect of ARHGEF39 overexpression on the increase in Cyclin A2, Cyclin D1, and MMP2 expression. Moreover, the elevated levels of p-P38 and p-ATF2 caused by ARHGEF39 overexpression could be inhibited by expression of a dominant negative Rac1 mutant (T17N). In addition, the inhibition of the expression of p-P38 and p-ATF2 by ARHGEF39 RNAi could be restored by the expression of a constitutively active Rac1 mutant (Q61L). A similar impact on cell growth and invasion was observed after ARHGEF39 overexpression combined with the P38 inhibitor, Rac1 T17N, or Rac1 Q61L. Using immunohistochemistry, ARHGEF39 expression was observed to correlate positively with larger tumor size in clinical samples from 109 cases of NSCLC (P = 0.008). The Kaplan-Meier test revealed that ARHGEF39 expression significantly affected the overall survival of patients with NSCLC (52.55 ± 6.40 months vs. 64.30 ± 5.40 months, P = 0.017). In conclusion, we identified that ARHGEF39 promotes tumor growth and invasion by activating the Rac1-P38-ATF2 signaling pathway, as well as increasing the expression of Cyclin A2, Cyclin D1, and MMP2 in NSCLC cells. ARHGEF39 may be a useful marker to predict poor prognosis of patients with NSCLC.


Assuntos
Fator 2 Ativador da Transcrição/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Adulto , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Fosforilação , Prognóstico
8.
Lancet Respir Med ; 5(11): 869-880, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29066090

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses. METHODS: We used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls. FINDINGS: 602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18-1·37], p=1·32 × 10-9) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56-3·26], p=1·12 × 10-66) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35-1·54], p=7·81 × 10-28). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP13 mRNA expression was 1·42-times higher in lung tissue from patients with IPF (n=46) than that in lung tissue from controls (n=51). INTERPRETATION: AKAP13 is a Rho guanine nucleotide exchange factor regulating activation of RhoA, which is known to be involved in profibrotic signalling pathways. The identification of AKAP13 as a susceptibility gene for IPF increases the prospect of successfully targeting RhoA pathway inhibitors in patients with IPF. FUNDING: UK Medical Research Council, National Heart, Lung, and Blood Institute of the US National Institutes of Health, Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Spain, UK National Institute for Health Research, and the British Lung Foundation.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Predisposição Genética para Doença/genética , Variação Genética , Fibrose Pulmonar Idiopática/genética , Antígenos de Histocompatibilidade Menor/genética , Proteínas Proto-Oncogênicas/genética , População Branca/genética , Idoso , Células Epiteliais Alveolares/metabolismo , Estudos de Casos e Controles , Europa (Continente) , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Transdução de Sinais/genética , Estruturas Linfoides Terciárias/genética , Proteína rhoA de Ligação ao GTP/fisiologia
9.
Cell Syst ; 4(1): 84-96.e6, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28065575

RESUMO

Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control the activity of mechanosensitive proteins poses a technical challenge, because perturbations that affect cell shape may also affect protein localization indirectly. Here, we present an approach that mitigates confounding effects of cell-shape changes, allowing us to identify direct regulators of YAP localization. This method uses single-cell image analysis and statistical models that exploit the naturally occurring heterogeneity of cellular populations. Through systematic depletion of all human kinases, Rho family GTPases, GEFs, and GTPase activating proteins (GAPs), together with targeted chemical perturbations, we found that ß-PIX, a Rac1/Ccd42 GEF, and PAK2, a Rac1/Cdc42 effector, drive both YAP activation and cell-ECM adhesion turnover during cell spreading. Our observations suggest that coupling YAP to adhesion dynamics acts as a mechano-timer, allowing cells to rapidly tune gene expression in response to physical signals.


Assuntos
Forma Celular/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Análise de Célula Única/métodos , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/genética
10.
Cell Death Differ ; 23(3): 442-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26292756

RESUMO

While a great deal of progress has been made in understanding the molecular mechanisms that regulate retino-tectal mapping, the determinants that target retinal projections to specific layers of the optic tectum remain elusive. Here we show that two independent RGMa-peptides, C- and N-RGMa, activate two distinct intracellular pathways to regulate axonal growth. C-RGMa utilizes a Leukemia-associated RhoGEF (LARG)/Rho/Rock pathway to inhibit axonal growth. N-RGMa on the other hand relies on ϒ-secretase cleavage of the intracellular portion of Neogenin to generate an intracellular domain (NeICD) that uses LIM-only protein 4 (LMO4) to block growth. In the developing tectum (E18), overexpression of C-RGMa and dominant-negative LARG (LARG-PDZ) induced overshoots in the superficial tectal layer but not in deeper tectal layers. In younger embryos (E12), C-RGMa and LARG-PDZ prevented ectopic projections toward deeper tectal layers, indicating that C-RGMa may act as a barrier to descending axons. In contrast both N-RGMa and NeICD overexpression resulted in aberrant axonal-paths, all of which suggests that it is a repulsive guidance molecule. Thus, two RGMa fragments activate distinct pathways resulting in different axonal responses. These data reveal how retinal projections are targeted to the appropriate layer in their target tissue.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Animais , Crescimento Celular , Embrião de Galinha , Especificidade de Órgãos , Células Ganglionares da Retina/fisiologia , Colículos Superiores/citologia , Colículos Superiores/enzimologia , Técnicas de Cultura de Tecidos
11.
J Thromb Haemost ; 13(11): 2102-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26334261

RESUMO

BACKGROUND: RhoA is an important regulator of platelet responses downstream of Gα13 , yet we still know little about its regulation in platelets. Leukemia-associated Rho guanine-nucleotide exchange factor (GEF [LARG]), a RhoA GEF, is highly expressed in platelets and may constitute a major upstream activator of RhoA. To this end, it is important to determine the role of LARG in platelet function and thrombosis. METHODS AND RESULTS: Using a platelet-specific gene knockout, we show that the absence of LARG results in a marked reduction in aggregation and dense-granule secretion in response to the thromboxane mimetic U46619 and proteinase-activated receptor 4-activating peptide, AYPGKF, but not to adenosine diphosphate. In a ferric chloride thrombosis model in vivo, this translated into a defect, under mild injury conditions. Importantly, agonist-induced RhoA activation was not affected by the absence of LARG, although basal activity was reduced, suggesting that LARG may play a housekeeper role in regulating constitutive RhoA activity. CONCLUSIONS: LARG plays an important role in platelet function and thrombosis in vivo. However, although LARG may have a role in regulating the resting activation state of RhoA, its role in regulating platelet function may principally be through RhoA-independent pathways, possibly through other Rho family members.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Trombose/sangue , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Cloretos/toxicidade , Cruzamentos Genéticos , Compostos Férricos/toxicidade , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Oligopeptídeos/farmacologia , Especificidade de Órgãos , Agregação Plaquetária , Fatores de Troca de Nucleotídeo Guanina Rho/sangue , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Trombose/induzido quimicamente
12.
PLoS One ; 10(7): e0132737, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177020

RESUMO

Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.


Assuntos
Receptores ErbB/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Fator de Crescimento Epidérmico/fisiologia , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Ubiquitinação
13.
Nat Cell Biol ; 16(9): 909-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150978

RESUMO

Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified ßPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of ßPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this ßPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates ßPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of ßPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.


Assuntos
Movimento Celular , Colágeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Forma Celular , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfa2beta1/metabolismo , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
PLoS One ; 9(1): e85409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465552

RESUMO

Epithelial plasticity plays a critical role during physiological processes, such as wound healing and tissue regeneration, and dysregulation of epithelial plasticity can lead to pathological conditions, such as cancer. Cell-cell junctions are a critical feature of epithelial cells and loss of junctions is associated with acquisition of mesenchymal features, such as enhanced protrusion and migration. Although Rho has been implicated in regulation of junctions in epithelial cells, the role of Rho signaling in the regulation of epithelial plasticity has not been understood. We show that members of the RGS RhoGEFs family play a critical role in regulation of epithelial cell-cell junctions in breast epithelial cells. We identify a novel role for p115RhoGEF in regulation of epithelial plasticity. Loss of p115RhoGEF leads to decreased junctional E-cadherin and enhanced protrusiveness and migration. Conversely, overexpression of p115RhoGEF enhanced junctional E-cadherin and inhibited cell protrusion and migration. siRNA screen of 23 Rho effectors showed that members of the Diaphanous-Related Formin (DRF) family are required for p115RhoGEF-mediated changes in epithelial plasticity. Thus, our data indicates a novel role for p115RhoGEF in regulation of epithelial plasticity, which is dependent on Rho-DRF signaling module.


Assuntos
Células Epiteliais/fisiologia , Junções Aderentes/metabolismo , Antígenos CD , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia
15.
IUBMB Life ; 65(6): 479-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23512348

RESUMO

Discovered about a decade ago, obscurin (~720 kDa) is a member of a family of giant proteins expressed in striated muscle that are essential for normal muscle function. Much of what we understand about obscurin stems from its functions in cardiac and skeletal muscle. However, recent evidence has indicated that variants of obscurin ("obscurins") are expressed in diverse cell types, where they contribute to distinct cellular processes. Dysfunction or abrogation of obscurins has also been implicated in the development of several pathological conditions, including cardiac hypertrophy and cancer. Herein, we present an overview of obscurins with an emphasis on novel findings that demonstrate their heretofore-unsuspected importance in cell signaling and disease progression.


Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Animais , Cardiomiopatia Hipertrófica Familiar/genética , Humanos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Neoplasias/genética , Especificidade de Órgãos , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases
16.
Mol Neurobiol ; 47(2): 811-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23288365

RESUMO

Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3ß (GSK-3ß) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3ß inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3ß inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3ß, ß-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-ß-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and ß-PIX. In the reverse approach, treatment with ß-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3ß during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of ß-catenin, phospho-c-Raf, phospho-ERK, and ß-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3ß inhibitors may increase their therapeutic potential.


Assuntos
Movimento Celular/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/fisiologia , Células-Tronco Mesenquimais/citologia , Receptores CXCR4/biossíntese , Fatores de Troca de Nucleotídeo Guanina Rho/biossíntese , Regulação para Cima/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Glicogênio Sintase Quinase 3 beta , Humanos , Células-Tronco Mesenquimais/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Receptores CXCR4/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA