Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 239, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705041

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with a poor prognosis. The underlying functions and mechanisms of circular RNA and SUMOylation in the development of ICC remain poorly understood. METHODS: Circular RNA hsa_circ_0001681 (termed Circ-RAPGEF5 hereafter) was identified by circular RNA sequencing from 19 pairs of ICC and adjacent tissue samples. The biological function of Circ-RAPGEF5 in tumor proliferation and metastasis was examined by a series of in vitro assays. A preclinical model was used to validate the therapeutic effect of targeting Circ-RAPGEF5. RNA pull-down and dual-luciferase reporter assays were used to access the RNA interactions. Western blot and Co-IP assays were used to detect SUMOylation levels. RESULTS: Circ-RAPGEF5, which is generated from exons 2 to 6 of the host gene RAPGEF5, was upregulated in ICC. In vitro and in vivo assays showed that Circ-RAPGEF5 promoted ICC tumor proliferation and metastasis, and inhibited apoptosis. Additionally, high Circ-RAPGEF5 expression was significantly correlated with a poor prognosis. Further investigation showed that SAE1, a potential target of Circ-RAPGEF5, was also associated with poor oncological outcomes. RNA pull-down and dual-luciferase reporter assays showed an interaction of miR-3185 with Circ-RAPGEF5 and SAE1. Co-IP and western blot assays showed that Circ-RAPGEF5 is capable of regulating SUMOylation. CONCLUSION: Circ-RAPGEF5 promotes ICC tumor progression and SUMOylation by acting as a sponge for miR-3185 to stabilize SAE1. Targeting Circ-RAPGEF5 or SAE1 might be a novel diagnostic and therapeutic strategy in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , RNA Circular/genética , Sumoilação , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Fatores ras de Troca de Nucleotídeo Guanina , Enzimas Ativadoras de Ubiquitina
2.
Arch Toxicol ; 97(6): 1599-1611, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029817

RESUMO

The RAS pathway participates in the cascade of proliferation and cell division process, and the activated RAS pathway can lead to tumorigenesis including hepatocellular carcinoma (HCC). However, few studies have explored the effects of genetic variants in the RAS pathway-related genes on the survival of patients with HBV-related HCC. In the present study, we assessed the associations between 11,658 single-nucleotide polymorphisms (SNPs) in 62 RAS pathway genes and the overall survival (OS) of 866 HBV-related HCC individuals, which were randomly split (1:1) into discovery and validation datasets. As a result, three potentially functional SNPs were identified, based on multivariable cox proportional hazards regression analyses, in SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2, rs4632055 A > G), Ras protein-specific guanine nucleotide releasing factor 2 (RASGRF2, rs26418A > G) and mitogen-activated protein kinase 1 (MAP2K1,rs57120695 C > T), which were significantly and independently associated with OS of HBV-related HCC patients [adjusted hazards ratios (HRs) of 1.42, 1.32 and 1.50, respectively; 95% confidence intervals (CI), 1.14 to 1.76, 1.15 to 1.53 and 1.15 to 1.97, respectively; P = 0.001, < 0.001 and 0.003, respectively]. Additionally, the joint effects as the unfavorable genotypes of these three SNPs showed a significant association with the poor survival of HCC (trend test P < 0.001). The expression quantitative trait loci (eQTL) analysis further revealed that the rs4632055 G allele and the rs26418 A allele were associated with lower mRNA expression levels of SOS2 and RASGRF2, respectively. Collectively, these potentially functional SNPs of RASGRF2, SOS2 and M2PAK1 may become potential prognostic biomarkers for HBV-related HCC after hepatectomy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Genótipo , Alelos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , MAP Quinase Quinase 1/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
3.
J Orthop Surg Res ; 18(1): 184, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895017

RESUMO

BACKGROUND: Hip or knee osteoarthritis (OA) is one of the main causes of disability worldwide and occurs mostly in the older adults. Total hip or knee arthroplasty is the most effective method to treat OA. However, severe postsurgical pain leading to a poor prognosis. So, investigating the population genetics and genes related to severe chronic pain in older adult patients after lower extremity arthroplasty is helpful to improve the quality of treatment. METHODS: We collected blood samples from elderly patients who underwent lower extremity arthroplasty from September 2020 to February 2021 at the Drum Tower Hospital Affiliated to Nanjing University Medical School. The enrolled patients provided measures of pain intensity using the numerical rating scale on the 90th day after surgery. Patients were divided into the case group (Group A) and the control group (Group B) including 10 patients respectively by the numerical rating scale. DNA was isolated from the blood samples of the two groups for whole-exome sequencing. RESULTS: In total, 661 variants were identified in the 507 gene regions that were significantly different between both groups (P < 0.05), including CASP5, RASGEF1A, CYP4B1, etc. These genes are mainly involved in biological processes, including cell-cell adhesion, ECM-receptor interaction, metabolism, secretion of bioactive substances, ion binding and transport, regulation of DNA methylation, and chromatin assembly. CONCLUSIONS: The current study shows some variants within genes are significantly associated with severe postsurgical chronic pain in older adult patients after lower extremity arthroplasty, indicating a genetic predisposition for chronic postsurgical pain. The study was registered according to ICMJE guidelines. The trial registration number is ChiCTR2000031655 and registration date is April 6th, 2020.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Dor Crônica , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Idoso , Dor Crônica/genética , Dor Crônica/cirurgia , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/complicações , Dor Pós-Operatória/genética , Nucleotídeos , Resultado do Tratamento , Fatores ras de Troca de Nucleotídeo Guanina
4.
J Leukoc Biol ; 113(5): 504-517, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826998

RESUMO

Acute myeloid leukemia is a heterogeneous hematologic malignancy with high mortality in the world. NPM1 gene mutations are a frequent occurrence in acute myeloid leukemia, leading to abnormal autophagy, while the mechanism of NPM1 mutation-driven acute myeloid leukemia pathogenesis remains to be fully elucidated. GEO microarrays were used to screen for dysregulated autophagy-related genes in NPM1-mutant acute myeloid leukemia and analysis of RASGRP3 expression and prognosis. Next, we explored the potential molecular mechanisms relationship between RASGRP3 and NPM1 through utilizing immunoprecipitation, Western blot, and cycloheximide assay. Further, CCK8, EdU staining, immunofluorescence, and Western blot were performed to explore the effect of RASGRP3 on cell proliferation and apoptosis in NPM1-mutated acute myeloid leukemia. Finally, Western blot was used to study the mechanism of action of RASGRP3. RASGRP3 expression was upregulated in NPM1-mutated acute myeloid leukemia. Mislocalized NPM1-mA in the cytoplasm could bind to E3 ubiquitin-protein ligase MID1 to block degradation of the RASGRP3 protein. RASGRP3 could also activate the EGFR-STAT3 axis to promote proliferation and autophagy in acute myeloid leukemia. In conclusion, our results identified RASGRP3 as a proto-oncogene in NPM1-mutated acute myeloid leukemia. The RASGRP3-EGFR/STAT3 axis may be a promising therapeutic target for this unique leukemic subtype.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Autofagia/genética , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
5.
Cancer Biomark ; 36(2): 103-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36404533

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a significantly heterogeneous malignancy of the blood. Cytogenetic abnormalities are crucial for the prognosis of AML. However, since more than half of patients with AML are cytogenetically normal AML (CN-AML), predictive prognostic indicators need to be further refined. In recent years, gene abnormalities are considered to be strong prognostic factors of CN-AML, already having clinical significance for treatment. In addition, the relationship of methylation in some genes and AML prognosis predicting has been discovered. RASGEF1A is a guanine nucleotide exchange factors of Ras and widely expressed in brain tissue, bone marrow and 17 other tissues. RASGEF1A has been reported to be associated with a variety of malignant tumors, examples include Hirschsprung disease, renal cell carcinoma, breast cancer, diffuse large B cell lymphoma, intrahepatic cholangiocarcinoma and so on [1, 2]. However, the relationship between the RASGEF1A gene and CN-AML has not been reported. METHODS: By integrating the Cancer Genome Atlas (TCGA) database 75 patients with CN-AML and 240 Gene Expression Omnibus (GEO) database CN-AML samples, we examined the association between RASGEF1A's RNA expression level and DNA methylation of and AML patients' prognosis. Then, we investigated the RASGEF1A RNA expression and DNA methylation's prognostic value in 77 patients with AML after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) as well as 101 AML patients after chemotherapy respectively. We investigated the association between sensitivity to Crenolanib and expression level of RASGED1A in patients by integrating 191 CN-AML patients from BeatAML dadataset. We integrated the expression and methylation of RASGEF1A to predict the CN-AML patients' prognosis and investigated the relationship between prognostic of AML patients with different risk classification and expression levels or methylation levels of RASGEF1A. RESULTS: We found that RASGEF1A gene high expression group predicted poorer event-free survival (EFS) (P< 0.0001) as well as overall survival (OS) (P< 0.0001) in CN-AML samples, and the identical results were found in AML patients receiving chemotherapy (P< 0.0001) and Allo-HSCT (P< 0.0001). RASGEF1A RNA expression level is an CN-AML patients' independent prognostic factor (EFS: HR = 5.5534, 95% CI: 1.2982-23.756, P= 0.0208; OS: HR = 5.3615, 95% CI: 1.1014-26.099, P= 0.0376). The IC50 (half maximal inhibitory concentration) of Crenolanib of CN-AML samples with RASGEF1A high expression level is lower. In addition, patients with high RASGEF1A methylation level had significant favorable prognosis (EPS: P< 0.0001, OS: P< 0.0001). Furthermore, the integrative analysis of expression and methylation of RASGEF1A could classify CN-AML patients into subgroups with different prognosis (EFS: P= 0.034, OS: P= 0.0024). Expression levels or methylation levels of RASGEF1A help to improve risk classification of 2010 European Leukemia Net. CONCLUSION: Higher RASGEF1A RNA expression and lower DNA methylation predicts CN-AML patients' poorer prognosis. The RASGEF1A high expression level from patients with CN-AML have better sensitivity to Crenolanib. The integrative analysis of RASGEF1A RNA expression and DNA methylation can provide a more accurate classification for prognosis. Lower RASGEF1A expression is a favorable prognostic factor for AML patients receiving chemotherapy or Allo-HSCT. 2010 European Leukemia Net's risk classification can be improved by RASGEF1A expression levels or methylation levels.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Prognóstico , Metilação de DNA , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , RNA , Fatores ras de Troca de Nucleotídeo Guanina/genética
6.
J Mol Endocrinol ; 70(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103132

RESUMO

Estrogen accounts for several biological processes in the body; embryo implantation and pregnancy being one of the vital events. This manuscript aims to unearth the nuclear role of Son of sevenless1 (SOS1), its interaction with estrogen receptor alpha (ERα), and signal transducer and activator of transcription 3 (STAT3) in the uterine nucleus during embryo implantation. SOS1, a critical cytoplasmic linker between receptor tyrosine kinase and rat sarcoma virus signaling, translocates into the nucleus via its bipartite nuclear localization signal (NLS) during the 'window of implantation' in pregnant mice. SOS1 associates with chromatin, interacts with histones, and shows intrinsic histone acetyltransferase (HAT) activity specifically acetylating lysine 16 (K16) residue of histone H4. SOS1 is a coactivator of STAT3 and a co-repressor of ERα. SOS1 creates a partial mesenchymal-epithelial transition by acting as a transcriptional modulator. Finally, our phylogenetic tree reveals that the two bipartite NLS surface in reptiles and the second acetyl coenzymeA (CoA) (RDNGPG) important for HAT activity emerges in mammals. Thus, SOS1 has evolved into a moonlighting protein, the special class of multi-tasking proteins, by virtue of its newly identified nuclear functions in addition to its previously known cytoplasmic function.


Assuntos
Implantação do Embrião , Receptor alfa de Estrogênio , Proteína SOS1 , Fator de Transcrição STAT3 , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Filogenia , Fatores ras de Troca de Nucleotídeo Guanina , Fator de Transcrição STAT3/genética , Proteína SOS1/genética
7.
BMC Genom Data ; 23(1): 60, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35909123

RESUMO

BACKGROUND: Bladder cancer has the characteristics of high morbidity and mortality, and the prevalence of bladder cancer has been increasing in recent years. Immune and autophagy related genes play important roles in cancer, but there are few studies on their effects on the prognosis of bladder cancer patients. METHODS: Using gene expression data from the TCGA-BLCA database, we clustered bladder cancer samples into 6 immune-related and autophagy-related molecular subtypes with different prognostic outcomes based on 2208 immune-related and autophagy-related genes. Six subtypes were divided into two groups which had significantly different prognosis. Differential expression analysis was used to explore genes closely related to the progression of bladder cancer. Then we used Cox stepwise regression to define a combination of gene expression levels and immune infiltration indexes to construct the risk model. Finally, we built a Nomogram which consist of risk score and several other prognosis-related clinical indicators. RESULTS: The risk model suggested that high expression of C5AR2, CSF3R, FBXW10, FCAR, GHR, OLR1, PGLYRP3, RASGRP4, S100A12 was associated with poor prognosis, while high expression level of CD96, IL10, MEFV pointed to a better prognosis. Validation by internal and external dataset suggested that our risk model had a high ability to discriminate between the outcomes of patients with bladder cancer. The immunohistochemical results basically confirmed our results. The C-Index value and Calibration curves verified the robustness of Nomogram. CONCLUSIONS: Our study constructed a model that included a risk score for patients with bladder cancer, which provided a lot of helps to predict the prognosis of patients with bladder cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária , Autofagia/genética , Humanos , Imunidade/genética , Nomogramas , Prognóstico , Pirina , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Fatores ras de Troca de Nucleotídeo Guanina
8.
Metabolism ; 131: 155177, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218794

RESUMO

INTRODUCTION: Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression. METHODS: CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice. Diabetes was induced by a high-fat diet combined with five consecutive daily intraperitoneal injections of streptozotocin (60 mg/kg) in C57BL/6J wild-type (WT) mice and RasGRP4 KO mice. Hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining were used to observe the histology of pathological injury. Immunohistochemical staining was used to analyze inflammatory cell infiltration. Quantitative PCR and Western blotting were used to detect the expression of inflammatory mediators and the activation of signaling pathways in renal tissues. In vitro cell co-culture experiments were performed to explore the interactions between peripheral blood mononuclear cells (PBMCs) and glomerular endothelial cells (GEnCs). RESULTS: RasGRP4 KO mice developed less severe diabetic kidney injury compared to WT mice, exhibiting lower proteinuria, reduced CD3+ T lymphocyte and F4/80+ macrophage infiltration, less inflammatory mediator expression including interleukin 6, tumor necrosis alpha, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, and lower expression levels of critical signal transduction molecules in the NLR family pyrin domain-containing 3 inflammasome and mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathways in the diabetic kidney. In vitro experiments showed that the adhesion function of PBMCs of RasGRP4 KO mice was reduced compared to that of WT mice. Moreover, the expression of adhesion molecules and critical signal transduction molecules in the NLRP3 inflammasome and MAPK/NF-κB signaling pathways in GEnCs was stimulated by the supernatant of PBMCs, which were derived from RasGRP4 KO mice treated with high glucose and were also significantly reduced compared to those derived from WT mice. CONCLUSION: RasGRP4 promotes the inflammatory injury mediated by PBMCs in diabetes, probably by regulating the interaction between PBMCs and GEnCs and further activating the NLRP3 inflammasome and MAPK/NF-κB signaling pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Células Endoteliais/metabolismo , Feminino , Nucleotídeos de Guanina , Humanos , Inflamassomos/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
9.
Sci Rep ; 12(1): 779, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039569

RESUMO

Diffuse large B cell lymphoma (DLBCL) is successfully treated with combination immuno-chemotherapy, but relapse with resistant disease occurs in ~ 40% of patients. However, little is known regarding relapsed/refractory DLBCL (rrDLBCL) genetics and alternative therapies. Based on findings from other tumors, we hypothesized that RAS-MEK-ERK signaling would be upregulated in resistant tumors, potentially correlating with mutations in RAS, RAF, or associated proteins. We analyzed mutations and phospho-ERK levels in tumor samples from rrDLBCL patients. Unlike other tumor types, rrDLBCL is not mutated in any Ras or Raf family members, despite having increased expression of p-ERK. In paired biopsies comparing diagnostic and relapsed specimens, 33% of tumors gained p-ERK expression, suggesting a role in promoting survival. We did find mutations in several Ras-associating proteins, including GEFs, GAPs, and downstream effectors that could account for increased ERK activation. We further investigated mutations in one such protein, RASGRP4. In silico modeling indicated an increased interaction between H-Ras and mutant RASGRP4. In cell lines, mutant RASGRP4 increased basal p-ERK expression and lead to a growth advantage in colony forming assays when challenged with doxorubicin. Relapsed/refractory DLBCL is often associated with increased survival signals downstream of ERK, potentially corresponding with mutations in protein controlling RAS/MEK/ERK signaling.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Linfoma Difuso de Grandes Células B/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Proteínas ras/genética , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Recidiva Local de Neoplasia/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
10.
Small GTPases ; 13(1): 196-204, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304710

RESUMO

The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.


Assuntos
Leucemia , Proteína rhoA de Ligação ao GTP , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato , Proteínas rho de Ligação ao GTP/metabolismo
11.
BMC Cardiovasc Disord ; 21(1): 351, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301176

RESUMO

BACKGROUND: CVD is the leading cause of death in T2DM patients. However, few biomarkers have been identified to detect and diagnose CVD in the early stage of T2DM. The aim of our study was to identify the important mRNAs, micro (mi)RNAs and SNPs (single nucleotide polymorphisms) that are associated with metabolic cardiovascular disease. MATERIALS AND METHODS: Expression profiles and GWAS data were obtained from Gene Expression Omnibus (GEO) database. MiRNA-sequencing was conducted by Illumina HiSeq 2000 platform in T2DM patients and T2DM with CVD patients. EQTL analysis and gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. MRNA-miRNA co-expression network and mRNA-SNP-miRNA interaction network were established and visualized by Cytoscape 3.7.2. RESULTS: In our study, we identified 56 genes and 16 miRNAs that were significantly differentially expressed. KEGG analyses results indicated that B cell receptor signaling pathway and hematopoietic cell lineage were included in the biological functions of differentially expressed genes. MRNA-miRNA co-expression network and mRNA-SNP-miRNA interaction network illustrated that let-7i-5p, RASGRP3, KRT1 and CEP41 may be potential biomarkers for the early detection and diagnosis of CVD in T2DM patients. CONCLUSION: Our results suggested that downregulated let-7i-5p, and upregulated RASGRP3, KRT1 and CEP41 may play crucial roles in molecular mechanisms underlying the initiation and development of CVD in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Isquemia Miocárdica/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Transcriptoma , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Queratina-1/genética , Isquemia Miocárdica/complicações , Isquemia Miocárdica/diagnóstico , Proteínas/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
12.
Pigment Cell Melanoma Res ; 34(6): 1074-1083, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310073

RESUMO

The WHO classification identifies nine classes of melanocytic proliferations according to location, UV exposure, histological, and genetic features. Only a minority of lesions remain unclassified. We describe five cases that harbored either an ERBIN-RASGRF2 or an ATP2B4-RASGRF2 in-frame fusion transcript. These lesions were collected from different studies, unified only by the lack of identifiable known mutations, with a highly variable phenotype. One case was a large abdominal congenital nevus, three were slowly growing pigmented nodules, and the last was an ulcerated nodule arising on the site of a preexisting small nevus, known since childhood. The latter was diagnosed as a 4 mm thick melanoma with loss of BAP1 expression. The four other cases were compound, melanocytic proliferations with an unusual deep pattern of small dense nests of bland melanocytes encased in a fibrous background. The RASGRF2 fusion was confirmed by a break-apart FISH technique. Array CGH performed in three cases found non-recurrent secondary copy number alterations. Follow-up was uneventful. In silico analysis identified a single RASGRF2 fusion in the TCGA pan-cancer database, whereas RASGRF2 variants were stochastically distributed in all cancer subtypes.


Assuntos
Melanócitos , Melanoma , Proteínas de Fusão Oncogênica , Neoplasias Cutâneas , Fatores ras de Troca de Nucleotídeo Guanina , Adulto , Criança , Feminino , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
13.
Oncogene ; 40(27): 4538-4551, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120142

RESUMO

SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.


Assuntos
Dinâmica Mitocondrial , Homeostase , Fatores ras de Troca de Nucleotídeo Guanina
14.
Methods Mol Biol ; 2262: 361-395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977490

RESUMO

Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.


Assuntos
Modelos Animais de Doenças , Marcação de Genes/métodos , Homeostase , Isquemia/patologia , Neoplasias/patologia , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neurogênese , Fatores ras de Troca de Nucleotídeo Guanina/antagonistas & inibidores , Fatores ras de Troca de Nucleotídeo Guanina/genética
15.
Neurobiol Learn Mem ; 181: 107435, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831510

RESUMO

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been shown to play an important role in fear acquisition. However, little information is known regarding the mechanisms that contribute to the regulation of this pathway in terms of the learning of conditioned fears. Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) is one of two guanine nucleotide exchange factors (GEF) that regulates the Ras-ERK signaling pathway in a Ca2+-dependent manner via control of the cycling of Ras isoforms between an inactive and active state. Here we sought to determine the role of RasGRF2 on contextual fear conditioning in RasGRF2 knockout (KO) and their wild type (WT) counterparts. Male KO and WT mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by either daily 12-min retention trials or the molecular analysis of Ras activation and pERK1/2 activity. KO mice showed an impaired acquisition of contextual fear, as demonstrated by reduced freezing during fear conditioning and 24-hr retention tests relative to WT mice. Ras analysis following fear conditioning demonstrated a reduction in Ras activation in the hippocampus as well as a reduction in pERK1/2 in the CA1 region of the hippocampus in KO mice, suggesting that the decrease in fear conditioning in KO mice is at least in part due to the impairment of Ras-ERK signaling in the hippocampus during learning. These data indicate a role for RasGRF2 in contextual fear conditioning in mice that may be Ras-ERK-dependent.


Assuntos
Condicionamento Clássico/fisiologia , Medo , Hipocampo/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética , Animais , Região CA1 Hipocampal/metabolismo , Locomoção , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases raf/metabolismo
16.
Pathol Int ; 71(4): 255-260, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709437

RESUMO

The expression of Ras-specific guanine nucleotide-releasing factor 2 (RasGRF2) in lung adenocarcinomas was examined using immunohistochemistry in relation to clinicopathological characteristics and prognosis. In comparison to low expression, high expression of RasGRF2 was more closely associated with poor prognosis. Interestingly, expression of phosphorylated epithelial cell transforming 2 (pECT2), which - like RasGRF2 - is also a guanine-nucleotide exchange factor, was also associated with prognosis, and patients with high expression of both RasGRF2 and pECT2 had a much poorer outcome than those who were negative for both.


Assuntos
Adenocarcinoma de Pulmão/patologia , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Prognóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
17.
Genome Res ; 30(11): 1618-1632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32948616

RESUMO

It is widely recognized that noncoding genetic variants play important roles in many human diseases, but there are multiple challenges that hinder the identification of functional disease-associated noncoding variants. The number of noncoding variants can be many times that of coding variants; many of them are not functional but in linkage disequilibrium with the functional ones; different variants can have epistatic effects; different variants can affect the same genes or pathways in different individuals; and some variants are related to each other not by affecting the same gene but by affecting the binding of the same upstream regulator. To overcome these difficulties, we propose a novel analysis framework that considers convergent impacts of different genetic variants on protein binding, which provides multiscale information about disease-associated perturbations of regulatory elements, genes, and pathways. Applying it to our whole-genome sequencing data of 918 short-segment Hirschsprung disease patients and matched controls, we identify various novel genes not detected by standard single-variant and region-based tests, functionally centering on neural crest migration and development. Our framework also identifies upstream regulators whose binding is influenced by the noncoding variants. Using human neural crest cells, we confirm cell stage-specific regulatory roles of three top novel regulatory elements on our list, respectively in the RET, RASGEF1A, and PIK3C2B loci. In the PIK3C2B regulatory element, we further show that a noncoding variant found only in the patients affects the binding of the gliogenesis regulator NFIA, with a corresponding up-regulation of multiple genes in the same topologically associating domain.


Assuntos
Elementos Facilitadores Genéticos , Doença de Hirschsprung/genética , Regiões Promotoras Genéticas , Classe II de Fosfatidilinositol 3-Quinases/genética , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Variação Genética , Humanos , Íntrons , Fatores de Transcrição NFI/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Sequenciamento Completo do Genoma , Fatores ras de Troca de Nucleotídeo Guanina/genética
18.
Int J Biochem Cell Biol ; 127: 105840, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32866686

RESUMO

Ras Guanine Exchange Factor (RasGEF) domain family member 1b is encoded by a Toll-like receptor (TLR)-inducible gene expressed in macrophages, but transcriptional mechanisms that govern its expression are still unknown. Here, we have functionally characterized the 5' flanking Rasgef1b sequence and analyzed its transcriptional activation. We have identified that the inflammation-responsive promoter is contained within a short sequence (-183 to +119) surrounding the transcriptional start site. The promoter sequence is evolutionarily conserved and harbors a cluster of five NF-κB binding sites. Luciferase reporter gene assay showed that the promoter is responsive to TLR activation and RelA or cRel, but not RelB, transcription factors. Besides, site-directed mutagenesis showed that the κB binding sites are required for maximal promoter activation induced by LPS. Analysis by Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that the promoter is located in an accessible chromatin region. More important, Chromatin Immunoprecipitation sequencing (ChIP-seq) showed that RelA is recruited to the promoter region upon LPS stimulation of bone marrow-derived macrophages. Finally, studies with Rela-deficient macrophages or pharmacological inhibition by Bay11-7082 showed that NF-κB is required for optimal Rasgef1b expression induced by TLR agonists. Our data provide evidence of the regulatory mechanism mediated by NF-κB that facilitates Rasgef1b expression after TLR activation in macrophages.


Assuntos
Macrófagos/metabolismo , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/biossíntese , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
19.
Environ Microbiol ; 22(12): 5109-5124, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32537857

RESUMO

Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Transdução de Sinais , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Parede Celular/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Tricotecenos/metabolismo , Virulência/genética , Proteínas ras/metabolismo
20.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365959

RESUMO

We hypothesized that DNA methylation patterns may contribute to the development of active pulmonary tuberculosis (TB). Illumina's DNA methylation 450 K assay was used to identify differentially methylated loci (DML) in a discovery cohort of 12 active pulmonary TB patients and 6 healthy subjects (HS). DNA methylation levels were validated in an independent cohort of 64 TB patients and 24 HS. Microarray analysis identified 1028 DMLs in TB patients versus HS, and 3747 DMLs in TB patients after versus before anti-TB treatment, while autophagy was the most enriched signaling pathway. In the validation cohort, PARP9 and miR505 genes were hypomethylated in the TB patients versus HS, while RASGRP4 and GNG12 genes were hypermethylated, with the former two further hypomethylated in those with delayed sputum conversion, systemic symptoms, or far advanced lesions. MRPS18B and RPTOR genes were hypomethylated in TB patients with pleural involvement. RASGRP4 gene hypermethylation and RPTOR gene down-regulation were associated with high mycobacterial burden. TB patients with WIPI2/GNG12 hypermethylation or MRPS18B/FOXO3 hypomethylation had lower one-year survival. In vitro ESAT6 and CFP10 stimuli of THP-1 cells resulted in DNA de-methylation changes of the PARP9, RASGRP4, WIPI2, and FOXO3 genes. In conclusions, aberrant DNA methylation over the PARP9/miR505/RASGRP4/GNG12 genes may contribute to the development of active pulmonary TB disease and its clinical phenotypes, while aberrant DNA methylation over the WIPI2/GNG12/MARPS18B/FOXO3 genes may constitute a determinant of long-term outcomes.


Assuntos
Metilação de DNA/fisiologia , Regiões Promotoras Genéticas/genética , Tuberculose Pulmonar/genética , Estudos de Coortes , Metilação de DNA/genética , Proteína Forkhead Box O3/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Ligação a Fosfato/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína Regulatória Associada a mTOR/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA