Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 558, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091550

RESUMO

Five New World mammarenaviruses (NWMs) cause life-threatening hemorrhagic fever (HF). Cellular entry by these viruses is mediated by human transferrin receptor 1 (hTfR1). Here, we demonstrate that an antibody (ch128.1/IgG1) which binds the apical domain of hTfR1, potently inhibits infection of attenuated and pathogenic NWMs in vitro. Computational docking of the antibody Fab crystal structure onto the known structure of hTfR1 shows an overlapping receptor-binding region shared by the Fab and the viral envelope glycoprotein GP1 subunit that binds hTfR1, and we demonstrate competitive inhibition of NWM GP1 binding by ch128.1/IgG1 as the principal mechanism of action. Importantly, ch128.1/IgG1 protects hTfR1-expressing transgenic mice against lethal NWM challenge. Additionally, the antibody is well-tolerated and only partially reduces ferritin uptake. Our findings provide the basis for the development of a novel, host receptor-targeted antibody therapeutic broadly applicable to the treatment of HF of NWM etiology.


Assuntos
Antígenos CD/metabolismo , Arenaviridae/metabolismo , Febre Hemorrágica Americana/metabolismo , Receptores da Transferrina/metabolismo , Proteínas do Envelope Viral/metabolismo , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Arenaviridae/efeitos dos fármacos , Arenaviridae/fisiologia , Chlorocebus aethiops , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Vírus Junin/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/imunologia , Células Vero
2.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996435

RESUMO

Argentine hemorrhagic fever is a potentially lethal disease that is caused by Junin virus (JUNV). There are currently around 5 million individuals at risk of infection within regions of endemicity in Argentina. The live attenuated vaccine strain Candid #1 (Can) is approved for use in regions of endemicity and has substantially decreased the number of annual Argentine hemorrhagic fever (AHF) cases. The glycoprotein (GPC) gene is primarily responsible for attenuation of the Can strain, and we have shown that the absence of an N-linked glycosylation motif in the subunit G1 of the glycoprotein complex of Can, which is otherwise present in the wild-type pathogenic JUNV, causes GPC retention in the endoplasmic reticulum (ER). Here, we show that Can GPC aggregates in the ER of infected cells, forming incorrect cross-chain disulfide bonds, which results in impaired GPC processing into G1 and G2. The GPC fails to cleave into its G1 and G2 subunits and is targeted for degradation within lysosomes. Cells infected with the wild-type Romero (Rom) strain do not produce aggregates that are observed in Can infection, and the stress on the ER remains minimal. While the mutation of the N-linked glycosylation motif (T168A) is primarily responsible for the formation of aggregates, other mutations within G1 that occurred earlier in the passage history of the Can strain also contribute to aggregation of the GPC within the ER.IMPORTANCE The development of vaccines and therapeutics to combat viral hemorrhagic fevers remains a top priority within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. The Can strain, derived from the pathogenic XJ strain of JUNV, has been demonstrated to be both safe and protective against AHF. While the vaccine strain is approved for use in regions of endemicity within Argentina, the mechanisms of Can attenuation have not been elucidated. A better understanding of the viral genetic determinants of attenuation will improve our understanding of the mechanisms contributing to disease pathogenesis and provide critical information for the rational design of live attenuated vaccine candidates for other viral hemorrhagic fevers.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Glicoproteínas/imunologia , Vírus Junin/imunologia , Lisossomos/metabolismo , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Autofagia , Encéfalo/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/imunologia , Glicoproteínas/genética , Glicosilação , Células HEK293 , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/prevenção & controle , Humanos , Vírus Junin/genética , Camundongos , Mutação , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
3.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748396

RESUMO

Several clade B New World arenaviruses (NWAs) can cause severe and often fatal hemorrhagic fever, for which preventive and therapeutic measures are severely limited. These NWAs use human transferrin receptor 1 (hTfR1) as a host cell receptor for virus entry. The most prevalent of the pathogenic NWAs is Junín virus (JUNV), the etiological agent of Argentine hemorrhagic fever. Small animal models of JUNV infection are limited because most laboratory rodent species are refractory to disease. Only guinea pigs are known to develop disease following JUNV infection, but the underlying mechanisms are not well characterized. In the present study, we demonstrate marked susceptibility of Hartley guinea pigs to uniformly lethal disease when challenged with as few as 4 PFU of the Romero strain of JUNV. In vitro, we show that infection of primary guinea pig macrophages results in greater JUNV replication compared to infection of hamster or mouse macrophages. We provide evidence that the guinea pig TfR1 (gpTfR1) is the principal receptor for JUNV, while hamster and mouse orthologs fail to support viral entry/infection of pseudotyped murine leukemia viruses expressing pathogenic NWA glycoproteins or JUNV. Together, our results indicate that gpTfR1 serves as the primary receptor for pathogenic NWAs, enhancing viral infection in guinea pigs.IMPORTANCE JUNV is one of five known NWAs that cause viral hemorrhagic fever in humans. Countermeasures against JUNV infection are limited to immunization with the Candid#1 vaccine and immune plasma, which are available only in Argentina. The gold standard small animal model for JUNV infection is the guinea pig. Here, we demonstrate high sensitivity of this species to severe JUNV infection and identify gpTfR1 as the primary receptor. Use of hTfR1 for host cell entry is a feature shared by pathogenic NWAs. Our results show that expression of gpTfR1 or hTfR1 comparably enhances JUNV virus entry/infectivity. Our findings shed light on JUNV infection in guinea pigs as a model for human disease and suggest that similar pathophysiological mechanisms related to iron sequestration during infection and regulation of TfR1 expression may be shared between humans and guinea pigs. A better understanding of the underlying disease process will guide development of new therapeutic interventions.


Assuntos
Vírus Junin/imunologia , Vírus Junin/patogenicidade , Receptores da Transferrina/metabolismo , Animais , Arenavirus/imunologia , Arenavirus/patogenicidade , Células CHO , Chlorocebus aethiops , Cricetulus , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Cobaias/imunologia , Cobaias/metabolismo , Células HEK293 , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/virologia , Humanos , Vírus Junin/metabolismo , Macrófagos/virologia , Masculino , Receptores da Transferrina/imunologia , Células Vero , Internalização do Vírus , Replicação Viral
4.
Nat Commun ; 9(1): 1884, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760382

RESUMO

While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Arenavirus do Novo Mundo/imunologia , Febre Hemorrágica Americana/prevenção & controle , Fragmentos Fab das Imunoglobulinas/química , Vírus Junin/imunologia , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Arenavirus do Novo Mundo/genética , Sítios de Ligação de Anticorpos , Reações Cruzadas , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Humanos , Soros Imunes/química , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Vírus Junin/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Receptores da Transferrina/química , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
5.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187543

RESUMO

Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.


Assuntos
Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno , Vírus Junin/patogenicidade , Proteoma/metabolismo , Proteômica/métodos , Replicação Viral , Células HEK293 , Febre Hemorrágica Americana/metabolismo , Humanos , Vírus Junin/isolamento & purificação , Proteoma/análise , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus
6.
Rev. Soc. Bras. Med. Trop ; 50(1): 3-8, Jan.-Feb. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-842821

RESUMO

Abstract Emerging infectious diseases are a global threat. In countries like Brazil, where biodiversity is high and public health conditions in terms of infrastructure and medical care are often precarious, emerging diseases are particularly worrisome. The lack of monitoring strategies to identify pathogens with the potential to cause outbreaks or epidemics is another problem in Brazil and other developing countries. In this article, we present the history of the Sabiá virus (SABV), a pathogen that was described in the 1990s in Brazil. Several aspects of the biology and ecology of the SABV remain unknown. The SABV has the potential to cause hemorrhagic fever in humans. To date, four cases of human infections have been reported worldwide; two were naturally acquired (both in Brazil), whereas the other two were linked to occupational exposure in the laboratory environment (one in Brazil and one in the USA). In this review, we summarize the basic biological and ecological characteristics of the SABV. This is the first work to gather all available data on the historical aspects involving the cases of SABV infection along with an update on its characteristic features.


Assuntos
Humanos , Masculino , Adulto , Acidentes de Trabalho , Arenavirus do Novo Mundo , Febre Hemorrágica Americana/virologia , Brasil , Pessoal de Laboratório
7.
J Virol ; 89(11): 5949-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810546

RESUMO

UNLABELLED: The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), a potentially deadly disease endemic to central regions of Argentina. The live-attenuated Candid #1 (Can) strain of JUNV is currently used to vaccinate the human population at risk. However, the mechanism of attenuation of this strain is still largely unknown. Therefore, the identification and functional characterization of viral genetic determinants dictating JUNV virulence or attenuation would significantly improve the understanding of the mechanisms underlying AHF and facilitate the development of novel, more effective, and safer vaccines. Here, we utilized a reverse genetics approach to generate recombinant JUNV (rJUNV) strains encoding different gene combinations of the pathogenic Romero (Rom) and attenuated Can strains of JUNV. All strains of rJUNV exhibited in vitro growth kinetics similar to those of their parental counterparts. Analysis of virulence of the rJUNV in a guinea pig model of lethal infection that closely reproduces the features of AHF identified the envelope glycoproteins (GPs) as the major determinants of pathogenesis and attenuation of JUNV. Accordingly, rJUNV strains expressing the full-length GPs of Rom and Can exhibited virulent and attenuated phenotypes, respectively, in guinea pigs. Mutation F427I in the transmembrane region of JUNV envelope glycoprotein GP2 has been shown to attenuate the neurovirulence of JUNV in suckling mice. We document that in the guinea pig model of AHF, mutation F427I in GP2 is also highly attenuating but insufficient to prevent virus dissemination and development of mild clinical and pathological symptoms, indicating that complete attenuation of JUNV requires additional mutations present in Can glycoprotein precursor (GPC). IMPORTANCE: Development of antiviral strategies against viral hemorrhagic fevers, including AHF, is one of the top priorities within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Live-attenuated Candid #1 strain, derived from the 44th mouse brain passage of the prototype XJ strain of JUNV, has been demonstrated to be safe, immunogenic, and highly protective and is currently licensed for human use in Argentina. However, the bases for the attenuated phenotype of Candid #1 have not been established. Therefore, the identification and functional characterization of viral genetic factors implicated in JUNV pathogenesis and attenuation would significantly improve the understanding of the molecular mechanisms underlying AHF and facilitate the development of novel antiviral strategies.


Assuntos
Glicoproteínas/metabolismo , Febre Hemorrágica Americana/virologia , Vírus Junin/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Modelos Animais de Doenças , Glicoproteínas/genética , Cobaias , Febre Hemorrágica Americana/patologia , Vírus Junin/genética , Genética Reversa , Proteínas do Envelope Viral/genética , Virulência , Fatores de Virulência
8.
Mol Cell Proteomics ; 14(3): 646-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573744

RESUMO

The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV(1)) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens.


Assuntos
Febre Hemorrágica Americana/virologia , Pulmão/enzimologia , Vírus Pichinde/fisiologia , Proteínas Quinases/isolamento & purificação , Proteoma/análise , Animais , Modelos Animais de Doenças , Feminino , Febre Hemorrágica Americana/enzimologia , Interleucinas/isolamento & purificação , Pulmão/virologia , Mesocricetus , NF-kappa B/isolamento & purificação , Fosforilação , Transdução de Sinais , Especificidade da Espécie , Receptores Toll-Like/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação
9.
Arch Virol ; 160(2): 469-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488290

RESUMO

In previous work, we demonstrated that the arenavirus Junín virus (JUNV) is able to activate Akt by means of the phosphatidylinositol-3-kinase (PI3K) survival pathway during virus entry. This work extends our study, emphasizing the relevance of this pathway in the establishment and maintenance of persistent infection in vitro. During the course of infection, JUNV-infected Vero cells showed a typical cytopathic effect that may be ascribed to apoptotic cell death. Treatment of infected cultures with Ly294002, an inhibitor of the PI3K/Akt pathway, produced an apoptotic response similar to that observed for uninfected cells treated with the drug. This result suggests that virus-induced activation of the PI3K/Akt pathway does not deliver a strong enough anti-apoptotic signal to explain the low proportion of apoptotic cells observed during infection. Also, inhibition of the PI3K/Akt pathway during the acute stage of infection did not prevent the establishment of persistence. Furthermore, treatment of persistently JUNV-infected cells with Ly294002 did not alter viral protein expression. These findings indicate that despite the positive modulation of the PI3/Akt pathway during Junín virus entry, this would not play a critical role in the establishment and maintenance of JUNV persistence in Vero cells.


Assuntos
Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Febre Hemorrágica Americana/virologia , Vírus Junin/efeitos dos fármacos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular , Chlorocebus aethiops , Febre Hemorrágica Americana/tratamento farmacológico , Vírus Junin/crescimento & desenvolvimento , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Células Vero , Proteínas Virais/biossíntese
10.
PLoS One ; 9(6): e99610, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918927

RESUMO

Junin virus (JUNV) is the etiological agent of Argentine hemorrhagic fever (AHF), a human disease with a high case-fatality rate. It is widely accepted that arenaviral infections, including JUNV infections, are generally non-cytopathic. In contrast, here we demonstrated apoptosis induction in human lung epithelial carcinoma (A549), human hepatocarcinoma and Vero cells upon infection with the attenuated Candid#1 strain of, JUNV as determined by phosphatidylserine (PS) translocation, Caspase 3 (CASP3) activation, Poly (ADP-ribose) polymerase (PARP) cleavage and/or chromosomal DNA fragmentation. Moreover, as determined by DNA fragmentation, we found that the pathogenic Romero strain of JUNV was less cytopathic than Candid#1 in human hepatocarcinoma and Vero, but more apoptotic in A549 and Vero E6 cells. Additionally, we found that JUNV-induced apoptosis was enhanced by RIG-I signaling. Consistent with the previously reported role of RIG-I like helicase (RLH) signaling in initiating programmed cell death, we showed that cell death or DNA fragmentation of Candid#1-infected A549 cells was decreased upon siRNA or shRNA silencing of components of RIG-I pathway in spite of increased virus production. Similarly, we observed decreased DNA fragmentation in JUNV-infected human hepatocarcinoma cells deficient for RIG-I when compared with that of RIG-I-competent cells. In addition, DNA fragmentation detected upon Candid#1 infection of type I interferon (IFN)-deficient Vero cells suggested a type I IFN-independent mechanism of apoptosis induction in response to JUNV. Our work demonstrated for the first time apoptosis induction in various cells of mammalian origin in response to JUNV infection and partial mechanism of this cell death.


Assuntos
Apoptose/genética , RNA Helicases DEAD-box/metabolismo , Febre Hemorrágica Americana/genética , Interferon Tipo I/genética , Vírus Junin/imunologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Morte Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteína DEAD-box 58 , Fragmentação do DNA , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais/genética , Células Vero
11.
Am J Trop Med Hyg ; 90(6): 993-1002, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24710609

RESUMO

Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers.


Assuntos
Junções Aderentes/virologia , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Febre Hemorrágica Americana/virologia , Vírus Junin/fisiologia , Sigmodontinae/virologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Permeabilidade da Membrana Celular , Quimiocina CCL2/metabolismo , Reservatórios de Doenças , Fluoresceína-5-Isotiocianato/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Permeabilidade , delta Catenina
12.
Biochem Biophys Res Commun ; 441(3): 612-617, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24183720

RESUMO

The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host.


Assuntos
Moléculas de Adesão Celular/metabolismo , Febre Hemorrágica Americana/metabolismo , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno , Vírus Junin/fisiologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Internalização do Vírus , Células 3T3 , Animais , Antígenos CD/metabolismo , Chlorocebus aethiops , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores da Transferrina/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo
13.
J Virol ; 87(23): 13070-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049182

RESUMO

Guanarito virus (GTOV) is an emergent and deadly pathogen. We present the crystal structure of the glycosylated GTOV fusion glycoprotein to 4.1-Å resolution in the postfusion conformation. Our structure reveals a classical six-helix bundle and presents direct verification that New World arenaviruses exhibit class I viral membrane fusion machinery. The structure provides visualization of an N-linked glycocalyx coat, and consideration of glycan dynamics reveals extensive coverage of the underlying protein surface, following virus-host membrane fusion.


Assuntos
Arenavirus do Novo Mundo/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Arenavirus do Novo Mundo/química , Arenavirus do Novo Mundo/genética , Linhagem Celular , Cristalografia por Raios X , Glicosilação , Febre Hemorrágica Americana/virologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Proteínas Virais de Fusão/genética , Internalização do Vírus
14.
PLoS Negl Trop Dis ; 6(5): e1659, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629479

RESUMO

Junín virus (JUNV), an arenavirus, is the causative agent of Argentine hemorrhagic fever, an infectious human disease with 15-30% case fatality. The pathogenesis of AHF is still not well understood. Elevated levels of interferon and cytokines are reported in AHF patients, which might be correlated to the severity of the disease. However the innate immune response to JUNV infection has not been well evaluated. Previous studies have suggested that the virulent strain of JUNV does not induce IFN in human macrophages and monocytes, whereas the attenuated strain of JUNV was found to induce IFN response in murine macrophages via the TLR-2 signaling pathway. In this study, we investigated the interaction between JUNV and IFN pathway in human epithelial cells highly permissive to JUNV infection. We have determined the expression pattern of interferon-stimulated genes (ISGs) and IFN-ß at both mRNA and protein levels during JUNV infection. Our results clearly indicate that JUNV infection activates the type I IFN response. STAT1 phosphorylation, a downstream marker of activation of IFN signaling pathway, was readily detected in JUNV infected IFN-competent cells. Our studies also demonstrated for the first time that RIG-I was required for IFN production during JUNV infection. IFN activation was detected during infection by either the virulent or attenuated vaccine strain of JUNV. Curiously, both virus strains were relatively insensitive to human IFN treatment. Our studies collectively indicated that JUNV infection could induce host type I IFN response and provided new insights into the interaction between JUNV and host innate immune system, which might be important in future studies on vaccine development and antiviral treatment.


Assuntos
Infecções por Arenaviridae/imunologia , RNA Helicases DEAD-box/imunologia , Células Epiteliais/virologia , Febre Hemorrágica Americana/virologia , Interferon Tipo I/imunologia , Vírus Junin/imunologia , Linhagem Celular , Proteína DEAD-box 58 , Células Epiteliais/imunologia , Perfilação da Expressão Gênica , Humanos , Vírus Junin/patogenicidade , Fosforilação , Receptores Imunológicos , Fator de Transcrição STAT1/metabolismo
15.
Virus Res ; 145(1): 166-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19595723

RESUMO

In this paper we demonstrate that infection of cell cultures with the arenavirus Junín (JUNV), agent of the argentine haemorrhagic fever, leads to the activation of PI3K/Akt signalling pathway. Phosphorylation of Akt occurs early during JUNV infection of Vero cells and is blocked by the PI3K inhibitor, Ly294002. Infection of cells with UV-irradiated JUNV redeemed the pattern of stimulation observed for infectious virus indicating that an early stage of multiplication cycle would be enough to trigger activation. Treatment of cells with chlorpromazine abrogated phosphorylation of Akt upon JUNV infection suggesting virus internalization as responsible for activation. Inhibition of Akt phosphorylation by Ly294002 impaired viral protein synthesis and expression leading to a reduced infectious virus yield without blocking the onset of persistent stage of infection. This impairment is linked to a reduced amount of virus bound to cells probably due to a blockage on the recycling of transferrin cell-receptor, employed by the virus to adsorb to the cell surface. Early Akt activation was also observed in BHK-21 and A549 JUNV infected cells suggesting an important role of PI3K/Akt signalling in JUNV multiplication in vitro.


Assuntos
Febre Hemorrágica Americana/metabolismo , Vírus Junin/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Cromonas/farmacologia , Cricetinae , Inibidores Enzimáticos/farmacologia , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Células Vero , Internalização do Vírus
16.
Virus Res ; 140(1-2): 24-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19041349

RESUMO

Machupo virus and Chapare virus are members of the Tacaribe serocomplex (virus family Arenaviridae) and etiological agents of hemorrhagic fever in humans in Bolivia. The nucleotide sequences of the complete Z genes, a large fragment of the RNA-dependent RNA polymerase genes, the complete glycoprotein precursor genes, and the complete nucleocapsid protein genes of 8 strains of Machupo virus were determined to increase our knowledge of the genetic diversity among the Bolivian arenaviruses. The results of analyses of the predicted amino acid sequences of the glycoproteins of the Machupo virus strains and Chapare virus strain 200001071 indicated that immune plasma from hemorrhagic fever cases caused by Machupo virus may prove beneficial in the treatment of Bolivian hemorrhagic fever but not hemorrhagic fever caused by Chapare virus.


Assuntos
Arenavirus do Novo Mundo/genética , Variação Genética , RNA Viral/genética , Sequência de Aminoácidos , Animais , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/classificação , Bolívia , Chlorocebus aethiops , Evolução Molecular , Glicoproteínas/genética , Febre Hemorrágica Americana/virologia , Humanos , Proteínas do Nucleocapsídeo/genética , Filogenia , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Especificidade da Espécie , Células Vero , Proteínas do Envelope Viral/genética
17.
In. Instituto Evandro Chagas (Ananindeua). Memórias do Instituto Evandro Chagas. Ananindeua, IEC, 2006. p.165-172, tab. (Produção Cientifica, 8).
Monografia em Português | LILACS | ID: lil-583717

RESUMO

Um nôvo membro do grupo Tacaribe, o vírus Amapari, tem sido inoculado repetidas vêzes das vísceras e sangue de Oryzomys e Neacomys, capturados em SN, Território Federal do Amapá. Um único isolamento foi obtido da urina das crias e de ectoparasitos dêsses animais. Os autores analisam algumas implicações ecológicas, bem como do ponto de vista de patogenicidade humana do referido agente. Referem, ainda, a importância da prova de FC’ como recurso de grande valor no isolamento dêste vírus, uma vez que os camundongos inoculados com os espécimens provenientes de animais infectados freqüentemente desenvolvem infecção inaparente.


A new member of the Tacaribe group, Amapari virus, has been repeatedly isolated from the viscera and blood of rodents belonging to the genera Oryzomys and Neacomys captured in the Serra do Navio region, Federal Territory of Amapá, Brazil. Single isolations were also obtained from the urine, young, and ectoparasites of these animals. The authors discuss certain aspects of the epizootiology of the above mentioned virus, with special reference to its pathogenicity in man. They also refer the importance of FC’ test as a tool of great value for isolation of this virus, since mice inoculated with specimens obtained from infected animals frequently develop inapparent infection.


Assuntos
Animais , Arenavirus do Novo Mundo/patogenicidade , Febre Hemorrágica Americana/virologia
18.
Am J Trop Med Hyg ; 64(3-4): 111-8, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11442204

RESUMO

Adult Syrian golden hamsters inoculated intraperitoneally with Pirital virus, a recently discovered member of the Tacaribe complex of New World arenaviruses, developed a progressively severe, fatal illness with many of the pathologic features observed in fatal human cases of Lassa fever and other arenaviral hemorrhagic fevers. Most of the animals became moribund by Day 5 and were dead by Day 7 after inoculation. The most consistent histopathologic changes included interstitial pneumonitis, splenic lymphoid depletion and necrosis, and multifocal hepatic necrosis without significant inflammatory cell infiltration. The liver changes ranged from single cell death by apoptosis to coagulative necrosis of clusters of hepatocytes. Immunohistochemical studies of the liver demonstrated the presence and accumulation ot Pirital virus antigen within hepatocytes as well as Kupffer cells. An in situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay showed progressively increasing apoptotic activity in the liver of infected hamsters. A human hepatoblastoma cell line (Hep G2/C3A) inoculated with Pirital virus also developed progressive cell destruction and accumulation of viral antigen, as demonstrated by immunofluorescence. Results of this pilot study suggest that the Pirital virus-hamster model is a very promising new small animal model for studying the pathogenesis of arenavirus infections, particularly, the mechanism of direct virus-induced hepatic injury. It may also be useful for testingantiviral agents for treatment of arenaviral hemorrhagic fevers.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Modelos Animais de Doenças , Febre Hemorrágica Americana/virologia , Fígado/virologia , Mesocricetus/virologia , Animais , Antígenos Virais/isolamento & purificação , Cricetinae , Feminino , Imunofluorescência , Febre Hemorrágica Americana/patologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Células de Kupffer/patologia , Células de Kupffer/virologia , Fígado/patologia , Camundongos , Projetos Piloto , Células Tumorais Cultivadas/virologia
19.
Virology ; 221(2): 318-24, 1996 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-8661442

RESUMO

Sabiá virus, one of five arenaviruses from South America known to cause hemorrhagic fever in humans, emerged in 1990 when it was isolated from a fatal case in Sao Paulo, Brazil. Subsequently, it has caused two laboratory-acquired infections. Its natural distribution and host are still unknown. Using viral RNA and multiple polymerase chain reaction products as templates, the nucleotide sequence of the small (S) RNA segment of Sabiá virus, which codes for the nucleocapsid (N) and glycoprotein precursor, was determined. This virus shares an ambisense genome in common with other arenaviruses, although it has a unique predicted three stem--loop structure in the S RNA intergenic region. Phylogenetic analysis of a portion of the N gene sequence confirmed that Sabiá virus is distinct from all other members of the Arenaviridae and shares a progenitor with Junin, Machupo, Tacaribe, and Guanarito viruses.


Assuntos
Arenavirus do Novo Mundo/classificação , Arenavirus do Novo Mundo/genética , Febre Hemorrágica Americana/virologia , Sequência de Aminoácidos , Animais , Arenavirus do Novo Mundo/isolamento & purificação , Sequência de Bases , Brasil , Capsídeo/genética , Chlorocebus aethiops , DNA Viral , Humanos , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Precursores de Proteínas/genética , RNA Viral , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas do Core Viral/genética
20.
Neurosci Lett ; 200(3): 175-8, 1995 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9064605

RESUMO

Cultured astrocytes derived from newborn rat brain were inoculated with Junin virus (JV) to characterize their response to infection by means of their glial fibrillary acidic protein (GFAP) immunochemical profile. Samples from 1 to 11 days post-inoculation (pi), as well as matched controls, were serially harvested for GFAP labeling by peroxidase-antiperoxidase (PAP) method. It was only at day 3 that significantly greater values of GFAP staining (P < 0.05) were disclosed by three complementary approaches: image analysis, ELISA and immunoblot densitometry. Since such increase was abolished by Triton X-100 treatment, soluble GFAP fraction appeared responsible for the early though transient enhancement of GFAP immunoreactivity that followed viral inoculation.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Febre Hemorrágica Americana/metabolismo , Vírus Junin , Animais , Animais Recém-Nascidos , Astrócitos/virologia , Células Cultivadas , Densitometria , Ensaio de Imunoadsorção Enzimática , Febre Hemorrágica Americana/virologia , Processamento de Imagem Assistida por Computador , Immunoblotting , Imunoquímica , Técnicas Imunoenzimáticas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA