Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458287

RESUMO

African Swine Fever Virus (ASFV) is a highly contagious pathogen posing a serious threat to the global swine industry. Despite this, there is currently no effective vaccine against this virus. Within ASFV's core shell structure, p37, a product of polyprotein pp220, shares sequence similarity with SUMO-1 proteases. Localization studies show p37 in various nuclear regions during early infection, shifting to the cytoplasm later on. Research indicates active export of p37 from the nucleus, mediated by CRM1-dependent and -independent pathways. Hydrophobic amino acids in p37 are crucial for these pathways, highlighting their importance throughout the ASFV replication cycle. Additionally, p37 serves as the first nucleocytoplasmic shuttle protein encoded by ASFV, participating in the intranuclear material transport process during ASFV infection of host cells. In this study, we successfully screened five murine monoclonal antibodies targeting p37. Through the truncated expression method, we identified four dominant antigenic epitopes of p37 for the first time. Furthermore, utilizing alanine scanning technology, we determined the key amino acid residues for each epitope. This research not only provides essential information for a deeper understanding of the protein's function but also establishes a significant theoretical foundation for the design and development of ASFV vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Camundongos , Anticorpos Monoclonais , Proteínas Virais/química , Febre Suína Africana/prevenção & controle
2.
Emerg Microbes Infect ; 12(2): 2233643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401832

RESUMO

African swine fever (ASF) is an acute and highly contagious lethal infectious disease in swine that severely threatens the global pig industry. At present, a safe and efficacious vaccine is urgently required to prevent and control the disease. In this study, we evaluated the safety and immunogenicity of replication-incompetent type-2 adenoviruses carrying African swine fever virus (ASFV) antigens, namely CP204L (p30), E183L (p54), EP402R (CD2v), B646L (p72), and B602L (p72 chaperone). A vaccine cocktail delivered by simultaneous intramuscular (IM) and intranasal (IN) administration robustly elicited both systemic and mucosal immune responses against AFSV in mice and swine and provided highly effective protection against the circulating ASFV strain in farmed pigs. This multi-antigen cocktail vaccine was well tolerated in the vaccinated animals. No significant interference among antigens was observed. The combined IM and IN vaccination using this adenovirus-vectored antigen cocktail vaccine warrants further evaluation for providing safe and effective protection against ASFV infection and transmission.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Camundongos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Adenoviridae/genética , Antígenos Virais/genética , Vacinação
3.
Viruses ; 16(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38257738

RESUMO

African swine fever (ASF) is a highly contagious disease caused by African swine fever virus (ASFV), affecting domestic and wild boars. The polyprotein pp220 of ASFV is responsible for producing the major structural proteins p150, p37, p14, p34, and p5 via proteolytic processing. The p34 protein is the main component of the ASFV core shell. However, the immunologic properties of the p34 protein in vitro and in vivo remain unclear. The results showed that the recombinant p34 protein expressed in prokaryotes and eukaryotes could react with convalescent swine sera to ASFV, suggesting that p34 is an immunogenic protein. Significantly, anti-p34 antibodies were found to inhibit the replication of ASFV in target cells. Furthermore, rabbits immunized with the recombinant C-strain of classical swine fever virus containing p34 produced both anti-p34 humoral and cellular immune responses. In addition, the p34 protein could induce a cell-mediated immune response, and a T-cell epitope on the p34 protein was identified using immunoinformatics and enzyme-linked immunospot (ELIspot) assay. Our study demonstrates that the p34 protein is a novel antigen of ASFV with protective potential.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Clássica , Animais , Coelhos , Suínos , Antígenos Virais , Febre Suína Africana/prevenção & controle , Poliproteínas
4.
Sci Rep ; 12(1): 15614, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114368

RESUMO

African swine fever (ASF) is a tick-borne infectious disease initially described in Shenyang province China in 2018 but is now currently present nationwide. ASF has high infectivity and mortality rates, which often results in transportation and trade bans, and high expenses to prevent and control the, hence causing huge economic losses and a huge negative impact on the Chinese pig farming industry. Ecological niche modeling has long been adopted in the epidemiology of infectious diseases, in particular vector-borne diseases. This study aimed to establish an ecological niche model combined with data from ASF incidence rates in China from August 2018 to December 2021 in order to predict areas for African swine fever virus (ASFV) distribution in China. The model was developed in R software using the biomod2 package and ensemble modeling techniques. Environmental and topographic variables included were mean diurnal range (°C), isothermality, mean temperature of wettest quarter (°C), precipitation seasonality (cv), mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm), normalized difference vegetation index, wind speed (m/s), solar radiation (kJ /day), and elevation/altitude (m). Contribution rates of the variables normalized difference vegetation index, mean temperature of wettest quarter, mean precipitation of coldest quarter, and mean precipitation of warmest quarter were, respectively, 47.61%, 28.85%, 10.85%, and 7.27% (according to CA), which accounted for over 80% of contribution rates related to variables. According to model prediction, most of areas revealed as suitable for ASF distribution are located in the southeast coast or central region of China, wherein environmental conditions are suitable for soft ticks' survival. In contrast, areas unsuitable for ASFV distribution in China are associated with arid climate and poor vegetation, which are less conducive to soft ticks' survival, hence to ASFV transmission. In addition, prediction spatial suitability for future ASFV distribution suggests narrower areas for ASFV spread. Thus, the ensemble model designed herein could be used to conceive more efficient prevention and control measure against ASF according to different geographical locations in China.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Algoritmos , Animais , China/epidemiologia , Ecossistema , Suínos
5.
Microbiol Spectr ; 10(4): e0241921, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35758684

RESUMO

African swine fever (ASF), an acute, severe, highly contagious disease caused by African swine fever virus (ASFV) infection in domestic pigs and boars, has a mortality rate of up to 100%. Because effective vaccines and treatments for ASF are lacking, effective control of the spread of ASF remains a great challenge for the pig industry. Host epigenetic regulation is essential for the viral gene transcription. Bromodomain and extraterminal (BET) family proteins, including BRD2, BRD3, BRD4, and BRDT, are epigenetic "readers" critical for gene transcription regulation. Among these proteins, BRD4 recognizes acetylated histones via its two bromodomains (BD1 and BD2) and recruits transcription factors, thereby playing a pivotal role in transcriptional regulation and chromatin remodeling during viral infection. However, how BET/BRD4 regulates ASFV replication and gene transcription is unknown. Here, we randomly selected 12 representative BET family inhibitors and compared their effects on ASFV infection in pig primary alveolar macrophages (PAMs). These were found to inhibit viral infection by interfering viral replication. The four most effective inhibitors (ARV-825, ZL0580, I-BET-762, and PLX51107) were selected for further antiviral activity analysis. These BET/BRD4 inhibitors dose dependently decreased the ASFV titer, viral RNA transcription, and protein production in PAMs. Collectively, we report novel function of BET/BRD4 inhibitors in inducing suppression of ASFV infection, providing insights into the role of BET/BRD4 in the epigenetic regulation of ASFV and potential new strategies for ASF prevention and control. IMPORTANCE Due to the continuing spread of the ASFV in the world and the lack of commercial vaccines, the development of improved control strategies, including antiviral drugs, is urgently needed. BRD4 is an important epigenetic factor and has been commonly used for drug development for tumor treatment. Furthermore, the latest research showed that BET/BRD4 inhibition could suppress replication of virus. In this study, we first showed the inhibitory effect of agents targeting BET/BRD4 on ASFV infection with no significant host cytotoxicity. Then, we found four BET/BRD4 inhibitors that can inhibit ASFV replication, RNA transcription, and protein synthesis. Our findings support the hypothesis that BET/BRD4 can be considered as attractive host targets in antiviral drug discovery against ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Antivirais/farmacologia , Epigênese Genética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Immunol ; 13: 832264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558083

RESUMO

African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.


Assuntos
Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana , Animais , Raios gama , Imunogenicidade da Vacina , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais , Vacinas Virais/imunologia
7.
Methods Mol Biol ; 2503: 73-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575887

RESUMO

Genetic manipulation of ASFV has been increasingly used not only for the development of live attenuated vaccines but also as an indispensable tool to further our understanding of the virus-host interactions. Here we present methods for isolation of porcine bone marrow cells and purification of recombinant ASFV using both chromogenic and fluorescent reporters. We also describe in detail a newly developed method to purify genetically modified ASFV using fluorescence-activated cell sorting (FACS).


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Células da Medula Óssea , Suínos , Vacinas Atenuadas , Proteínas Virais/genética
8.
J Virol ; 96(6): e0189921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044212

RESUMO

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vacinas Virais , Virulência , Replicação Viral , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Deleção de Genes , Genótipo , Macrófagos/virologia , Família Multigênica/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
9.
Open Vet J ; 11(3): 346-355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722195

RESUMO

Background: African swine fever (ASF) is an important disease affecting swine and has a significant economic loss in both the developed and developing world. Aim: In this study, we evaluated the potential effects of medium-chain fatty acids (MCFAs) in individual and synergistic forms to prevent and/or reduce ASF virus (ASFV) infection using in vitro feed model. Methods: The cytotoxicity of MCFAs on porcine alveolar macrophages cells was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The potential effects of MCFAs, including C8 (caprylic acid), C8-C6-C10 (caprylic acid-caproic acid-capric acid; 1:1:1 ratio) and C8-C10-C12 (caprylic acid-capric acid-lauric acid; 1:1:1 ratio) against a field ASFV strain isolated in the capital Hanoi of Vietnam, were further examined by real-time PCR and haemadsorption assays in in vitro feed model. Results: Our results indicated that all tested products do not induce cytotoxicity at the dose of 100 µg/ml and are suitable for further in vitro examination. These products have shown a strong antiviral effect against ASFV infectivity at doses of 0.375% and 0.5%. Interestingly, the synergistic MCFAs have shown clearly their potential activities against ASFV in which at a lower dose of 0.25%, pre-treatment with product two and three induced significant increases at the level of Cq value when compared to positive control and/or product 1 (p < 0.05). However, the viral titre was not changed after 24 hours post-inoculation when compared to positive control. Our findings suggested that all tested products, both individual and synergistic forms of MCFAs, have possessed a strong anti-ASFV effect, and this effect is dose-dependence in in vitro feed model. Additionally, synergistic effects of MCFAs are more effective against ASFV when compared to individual forms. Conclusion: Together, the findings in this study indicate that MCFAs, both individual and synergistic forms, inhibit against a field ASFV strain in the feed model, which may support minimizing the risk of ASF transmission in the pig population. Further studies focusing on in vivo anti-ASFV effects of MCFAs are important to bring new insight into the mode of ASFV-reduced action by these compounds in swine feed.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Animais , Ácidos Graxos , Macrófagos , Suínos , Vietnã/epidemiologia
10.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578263

RESUMO

African swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level. The implementation of molecular techniques has allowed the generation of a collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding ß-glucuronidase as a reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2 as a template: the single mutant BA71∆CD2f, this time containing the fluorescent mCherry reporter gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R) or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2f, BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that deletion of either DP96R or EP153R from BA71∆CD2f decreases vaccine efficacy and does not improve safety. Our results additionally confirm ASFV challenge as the only available method today to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the fine equilibrium between attenuation and inducing protection in vivo deserves further study and might contribute to more rational vaccine designs in the future.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Anticorpos Antivirais/sangue , Deleção de Genes , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Cultivadas , Genótipo , Macrófagos/virologia , Masculino , Suínos , Eficácia de Vacinas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Fatores de Virulência/genética , Replicação Viral
11.
J Virol ; 95(21): e0113921, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406865

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine within an extended geographical area from Central Europe to East Asia, resulting in economic losses for the regional swine industry. There are no commercial vaccines; therefore, disease control relies on identification and culling of infected animals. We report here that the deletion of the ASFV gene A137R from the highly virulent ASFV-Georgia2010 (ASFV-G) isolate induces a significant attenuation of virus virulence in swine. A recombinant virus lacking the A137R gene, ASFV-G-ΔA137R, was developed to assess the role of this gene in ASFV virulence in domestic swine. Animals inoculated intramuscularly with 102 50% hemadsorption doses (HAD50) of ASFV-G-ΔA137R remained clinically healthy during the 28-day observational period. All animals inoculated with ASFV-G-ΔA137R had medium to high viremia titers and developed a strong virus-specific antibody response. Importantly, all ASFV-G-ΔA137R-inoculated animals were protected when challenged with the virulent parental strain ASFV-G. No evidence of replication of challenge virus was observed in the ASFV-G-ΔA137R-inoculated animals. Therefore, ASFV-G-ΔA137R is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce protection against the highly virulent ASFV Georgia virus that is the cause of the current Eurasian pandemic. IMPORTANCE No commercial vaccine is available to prevent African swine fever. The ASF pandemic caused by ASFV Georgia2007 strain (ASFV-G) is seriously affecting pork production in a contiguous area from Central Europe to East Asia. Here we report the rational development of a potential live attenuated vaccine strain by deleting a virus-specific gene, A137R, from the genome of ASFV-G. The resulting virus presented a completely attenuated phenotype and, importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. ASFV-G-ΔA137R confers protection even at low doses (102 HAD50), demonstrating its potential as a vaccine candidate. Therefore, ASFV-G-ΔA137R is a novel experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/genética , Deleção de Genes , Pandemias , Proteínas Virais/genética , Fatores de Virulência/genética , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , República da Geórgia , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Virulência , Replicação Viral
12.
Viruses ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203302

RESUMO

African swine fever (ASF) is an emerging disease threat to the swine industry worldwide. There is no vaccine against ASF, and progress is hindered by a lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. We have previously demonstrated that homologous ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin are required for protection against challenge with the virulent ASFV strain Congo (Genotype I, Serogroup 2), and we have identified T-cell epitopes on CD2v which may be associated with serotype-specific protection. Here, using a cell-culture adapted derivative of the ASFV strain Congo (Congo-a) with specific deletion of the EP402R gene (ΔCongoCD2v) in swine vaccination/challenge experiments, we demonstrated that deletion of the EP402R gene results in the failure of ΔCongoCD2v to induce protection against challenge with the virulent strain Congo (Congo-v). While ΔCongoCD2v growth kinetics in COS-1 cells and primary swine macrophage culture were almost identical to parental Congo-a, replication of ΔCongoCD2v in vivo was significantly reduced compared with parental Congo-a. Our data support the idea that the CD2v protein is important for the ability of homologous live-attenuated vaccines to induce protective immunity against the ASFV strain Congo challenge in vivo.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Proteínas Virais/genética , Vacinas Virais/imunologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células COS , Chlorocebus aethiops , Feminino , Genes Virais , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Macrófagos/virologia , Masculino , Suínos , Vacinas Atenuadas/imunologia , Proteínas Virais/imunologia , Replicação Viral
13.
J Virol ; 95(14): e0012321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952643

RESUMO

African swine fever virus (ASFV) causes a virulent, deadly infection in wild and domestic swine and is currently causing a pandemic covering a contiguous geographical area from Central and Eastern Europe to Asia. No commercial vaccines are available to prevent African swine fever (ASF), resulting in devastating economic losses to the swine industry. The most advanced vaccine candidates are live attenuated strains developed using a genetically modified virulent parental virus. Recently, we developed a vaccine candidate, ASFV-G-ΔI177L, by deleting the I177L gene from the genome of the highly virulent ASFV pandemic strain Georgia (ASFV-G). ASFV-G-ΔI177L is safe and highly efficacious in challenge studies using parental ASFV-G. Large-scale production of ASFV-G-ΔI177L has been limited because it can replicate efficiently only in primary swine macrophages. Here, we present the development of an ASFV-G-ΔI177L derivative strain, ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine cell line. In challenge studies, ASFV-G-ΔI177L/ΔLVR maintained the same level of attenuation, immunogenic characteristics, and protective efficacy as ASFV-G-ΔI177L. ASFV-G-ΔI177L/ΔLVR is the first rationally designed ASF vaccine candidate that can be used for large-scale commercial vaccine manufacture. IMPORTANCE African swine fever is currently causing a pandemic resulting in devastating losses to the swine industry. Experimental ASF vaccines rely on the production of vaccine in primary swine macrophages, which are difficult to use for the production of a vaccine on a commercial level. Here, we report a vaccine for ASFV with a deletion in the left variable region (LVR). This deletion allows for growth in stable cell cultures while maintaining the potency and efficacy of the parental vaccine strain. This discovery will allow for the production of an ASF vaccine on a commercial scale.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Vacinas Virais/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Imunogenicidade da Vacina , Macrófagos/virologia , Pandemias , Deleção de Sequência , Suínos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Cultura de Vírus/métodos , Replicação Viral
14.
Viruses ; 13(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567491

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a major epidemic disease endangering the swine industry. Although a number of vaccine candidates have been reported, none are commercially available yet. To explore the effect of unknown genes on the biological characteristics of ASFV and the possibility of a gene-deleted isolate as a vaccine candidate, the strain SY18ΔL7-11, with deletions of L7L-L11L genes from ASFV SY18, was constructed, and its biological properties were analyzed. The results show that deletion of genes L7L-L11L did not affect replication of the virus in vitro. Virulence of SY18△L7-11 was significantly reduced, as 11 of the 12 pigs survived for 28 days after intramuscular inoculation with a low dose (103 TCID50) or a high dose (106 TCID50) of SY18ΔL7-11. All 11 surviving pigs were completely protected against challenge with the parental ASFV SY18 on 28 days postinoculation (dpi). Transient fever and/or irregularly low levels of genomic DNA in the blood were monitored in some pigs after inoculation. No ASF clinical signs or viremia were monitored after challenge. Antibodies to ASFV were induced in all pigs from 14 to 21 days postinoculation. IFN-γ was detected in most of the inoculated pigs, which is usually inhibited in ASFV-infected pigs. Overall, the results demonstrate that SY18ΔL7-11 is a candidate for further constructing safer vaccine(s), with better joint deletions of other gene(s) related to virulence.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Genes Virais/genética , Vacinas Virais/genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Deleção de Genes , Injeções Intramusculares , Interferon gama/sangue , Macrófagos/virologia , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Virais/administração & dosagem , Virulência/genética
15.
Sci Rep ; 10(1): 8951, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488046

RESUMO

African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.


Assuntos
Febre Suína Africana/prevenção & controle , Ligases/genética , NF-kappa B/genética , Febre Suína Africana/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Ligases/metabolismo , NF-kappa B/metabolismo , Engenharia de Proteínas/métodos , Sus scrofa/genética , Suínos
16.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31969432

RESUMO

African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The disease is devastating the swine industry in Central Europe and East Asia, with current outbreaks caused by circulating strains of ASFV derived from the 2007 Georgia isolate (ASFV-G), a genotype II ASFV. In the absence of any available vaccines, African swine fever (ASF) outbreak containment relies on the control and culling of infected animals. Limited cross-protection studies suggest that in order to ensure a vaccine is effective, it must be derived from the current outbreak strain or at the very least from an isolate with the same genotype. Here, we report the discovery that the deletion of a previously uncharacterized gene, I177L, from the highly virulent ASFV-G produces complete virus attenuation in swine. Animals inoculated intramuscularly with the virus lacking the I177L gene, ASFV-G-ΔI177L, at a dose range of 102 to 106 50% hemadsorbing doses (HAD50), remained clinically normal during the 28-day observational period. All ASFV-G-ΔI177L-infected animals had low viremia titers, showed no virus shedding, and developed a strong virus-specific antibody response; importantly, they were protected when challenged with the virulent parental strain ASFV-G. ASFV-G-ΔI177L is one of the few experimental vaccine candidate virus strains reported to be able to induce protection against the ASFV Georgia isolate, and it is the first vaccine capable of inducing sterile immunity against the current ASFV strain responsible for recent outbreaks.IMPORTANCE Currently, there is no commercially available vaccine against African swine fever. Outbreaks of this disease are devastating the swine industry from Central Europe to East Asia, and they are being caused by circulating strains of African swine fever virus derived from the Georgia 2007 isolate. Here, we report the discovery of a previously uncharacterized virus gene, which when deleted completely attenuates the Georgia isolate. Importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. Interestingly, ASFV-G-ΔI177L confers protection even at low doses (102 HAD50) and remains completely attenuated when inoculated at high doses (106 HAD50), demonstrating its potential as a safe vaccine candidate. At medium or higher doses (104 HAD50), sterile immunity is achieved. Therefore, ASFV-G-ΔI177L is a novel efficacious experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/prevenção & controle , Animais , Formação de Anticorpos , Temperatura Corporal , Células Cultivadas , Epidemias , Deleção de Genes , Genótipo , Macrófagos/virologia , Mutação , Suínos , Proteínas Virais/genética , Viremia/virologia , Virulência , Replicação Viral
17.
Trop Anim Health Prod ; 52(3): 1447-1457, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31758385

RESUMO

Education on pig farming has been recognized as an important method of transferring knowledge and improving production among smallholder pig producers in rural settings, but the effectiveness of this in different rural settings remains unknown. A community-based intervention trial on smallholder pig farmers was conducted with the aim of evaluating the effectiveness of pig farming education. Baseline information was collected using interview-based questionnaires and observations regarding pig welfare and husbandry practices followed by participatory pig farming education and field demonstrations. The study was carried out between May 2014 and May 2016 and involved 90 smallholder pig farmers from six villages in Angónia district, of Tete province in Mozambique. The baseline questionnaire among several aspects regarding pig management highlighted that most farmers had an overall knowledge on aspects of transmission (55.1%) and prevention (48.9%) of African swine fever (ASF), porcine cysticercosis (PC) transmission (8.2%), and field diagnosis (36.7%), and they were not aware of the zoonotic potential of PC or the basic husbandry procedures of pigs kept under permanent confinement. Forty-nine of the 90 farmers enrolled, participated in the pig farming education, which provided the basis for making a comparison between trained (54%) and non-trained (46%) pig farmers. Since knowledge for ASF transmission (P < 0.036), pig pen design (P < 0.014), reasons for confine the pigs (P < 0.016), as well as the adoption of the new introduced pig pen model (P < 0.025), and the practices of acceptable, good hygiene of the pig pen (P < 0.009 and P < 0.014, respectively), improved significantly in both groups, a remarkable spill-over was observed, proving villagers capable of transferring knowledge within the villages. However, water provision and total confinement in both groups were still not practiced by the most farmers following the pig farming education (P > 0.174 and 0.254). It is concluded that despite improved knowledge, the farmers failed to follow several recommendations, most likely due to poverty such as lack of basic resources like food and water, which even the farmers themselves lacked for their day to day living.


Assuntos
Criação de Animais Domésticos/educação , Fazendeiros/educação , Conhecimentos, Atitudes e Prática em Saúde , Doenças dos Suínos/prevenção & controle , Suínos , Adulto , Febre Suína Africana/prevenção & controle , Criação de Animais Domésticos/métodos , Animais , Cisticercose/prevenção & controle , Fazendeiros/estatística & dados numéricos , Fazendas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Moçambique , Fatores de Risco , População Rural/estatística & dados numéricos , Inquéritos e Questionários , Adulto Jovem
18.
Viruses ; 11(7)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269702

RESUMO

African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs, African swine fever (ASF). The ASFV Georgia 2007 isolate (ASFV-G) is responsible for the current epidemic situation in Europe and Asia. Genetically modified ASFVs containing deletions of virulence-associated genes have produced attenuated phenotypes and induced protective immunity in swine. Here we describe the differential behavior of two viral genes, NL (DP71L) and UK (DP96R), both originally described as being involved in virus virulence. Deletion of either of these genes efficiently attenuated ASFV strain E70. We demonstrated that deletion of the UK gene from the ASFV-G genome did not decrease virulence when compared to the parental virus. Conversely, deletion of the NL gene produced a heterogeneous response, with early death in one of the animals and transient fever in the other animals. With this knowledge, we attempted to increase the safety profile of the previously reported experimental vaccine ASFV-GΔ9GL/ΔUK by deleting the NL gene. A triple gene-deletion virus was produced, ASFV-GΔ9GL/ΔNL/ΔUK. Although ASFV-GΔ9GL/ΔNL/ΔUK replicated in primary cell cultures of swine macrophages, it demonstrated a severe replication deficiency in pigs, failing to induce protection against challenge with parental ASFV-G.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Genes Virais/genética , Deleção de Sequência , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Fatores de Virulência/genética , Febre Suína Africana/imunologia , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/virologia , Fenótipo , Alinhamento de Sequência , Taxa de Sobrevida , Sus scrofa , Suínos , Vacinas Atenuadas/genética , Vacinas Virais/genética , Virulência/genética , Replicação Viral
19.
Vet Microbiol ; 235: 10-20, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282366

RESUMO

African Swine Fever Virus (ASFV) causes a hemorrhagic disease in swine and wild boars with a fatality rate close to 100%. Less virulent strains cause subchronic or chronic forms of the disease. The virus is endemic in sub-Saharan Africa and an outbreak in Georgia in 2007 spread to Armenia, Russia, Ukraine, Belarus, Poland, Lithuania, and Latvia. In August 2018, there was an outbreak in China and in April 2019, ASFV was reported in Vietnam and Cambodia. Since no vaccine or treatment exists, a vaccine is needed to safeguard the swine industry. Previously, we evaluated immunogenicity of two adenovirus-vectored cocktails containing ASFV antigens and demonstrated induction of unprecedented robust antibody and T cell responses, including cytotoxic T lymphocytes. In the present study, we evaluated protective efficacy of both cocktails by intranasal challenge of pigs with ASFV-Georgia 2007/1. A nine antigen cocktail-(I) formulated in BioMize adjuvant induced strong IgG responses, but when challenged, the vaccinees had more severe reaction relative to the controls. A seven antigen cocktail-(II) was evaluated using two adjuvants: BioMize and ZTS-01. The BioMize formulation induced stronger antibody responses, but 8/10 vaccinees and 4/5 controls succumbed to the disease or reached experimental endpoint at 17 days post-challenge. In contrast, the ZTS-01 formulation induced weaker antibody responses, but 4/9 pigs succumbed to the disease while the 5 survivors exhibited low clinical scores and no viremia at 17 days post-challenge, whereas 4/5 controls succumbed to the disease or reached experimental endpoint. Overall, none of the immunogens conferred statistically significant protection.


Assuntos
Febre Suína Africana/prevenção & controle , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vacinas Virais/imunologia , Adenoviridae , Administração Intranasal , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Antígenos Virais/genética , Imunoglobulina G/sangue , Suínos , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Viremia , Virulência
20.
Virus Res ; 271: 197614, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30953662

RESUMO

Over the last decade, African swine fever (ASF) has changed from an exotic disease of Sub-Saharan Africa to a considerable and serious threat to pig industry in Central Europe and Asia. With the introduction of genotype II strains into the European Union in 2014, the disease has apparently found a fertile breeding ground in the abundant wild boar population. Upon infection with highly virulent ASF virus (ASFV), a haemorrhagic fever like illness with high lethality is seen in naïve domestic pigs and wild boar. Despite intensive research, virulence factors, host-virus interactions and pathogenesis are still far from being understood, and neither vaccines nor treatment exist. However, to better understand the disease, and to work towards a safe and efficacious vaccine, this information is needed. The presented review targets the knowledge gained over the last five years with regard to ASF pathogenesis in the broader sense but with a focus on the pandemic genotype II strains. In this way, it is designed as an update and supplement to existing review articles on the same topic.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Suscetibilidade a Doenças , Sus scrofa/virologia , Febre Suína Africana/metabolismo , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/fisiologia , Animais , Biópsia , Suscetibilidade a Doenças/imunologia , Variação Genética , Genótipo , Testes Hematológicos , Proteoma , Proteômica , Suínos , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA