Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862073

RESUMO

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Febre de Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
Viral Immunol ; 34(8): 559-566, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34415813

RESUMO

Dengue virus and Chikungunya virus are arboviruses that affect thousands of people worldwide annually. The mechanisms involved in viral pathogenesis still need to be better understood. Single nucleotide polymorphisms (SNPs) in immune genes may be involved in the protection, susceptibility, and/or progression of these diseases. This study was performed to investigate the SNP -174 G/C in the interleukin-6 (IL-6) gene in patients with dengue or chikungunya from Northeastern Brazil. A total of 581 blood samples were analyzed, of which 244 were part of the negative control group, genomic DNA was extracted, and the SNP was genotyped using real-time polymerase chain reaction (PCR). The data obtained were used to conduct statistical analyses of the genotype and allele frequencies. We suggest that the G/C genotype and C allele of the SNP -174 G/C in the IL-6 gene are related to protection against dengue in the studied population. No significant differences were observed in chikungunya patients. This is the first study that assessed the association of the SNP -174 G/C in patients with chikungunya. We identified the presence of the C allele as a protective factor against dengue in the studied population.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Interleucina-6 , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/genética , Dengue/epidemiologia , Dengue/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único , Prevalência
3.
J Med Virol ; 92(2): 139-148, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483508

RESUMO

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes. CHIKV infection leads to polyarthritis and polyarthralgia among patients. The synovial fibroblasts are the primary target for CHIKV. The microRNAs (miRNAs) are the small endogenous noncoding RNAs which posttranscriptionally regulate the expression of genes by binding to their target messenger RNAs (mRNAs) through their 3'-untranslated regions. The miRNAs are the key regulators for various pathological processes including viral infection, cancer, cardiovascular disease, and neurodegeneration. This study was designed to dissect out the roles of miRNAs during CHIKV (Ross Strain E1: A226V) infection in primary human synovial fibroblasts. The miRNA microarray profiling was performed on the primary human synovial fibroblasts infected by CHIKV. The gene target prediction analysis, enrichment, and network analysis were performed by various bioinformatics analyses. The subset of 26 differentially expressed microRNAs (DEMs) were identified through microarray profiling and were further screened for gene predictions, Gene Ontology, pathway enrichment, and miRNA-mRNA network using various bioinformatics tools. The bioinformatics analysis indicates the role of DEMs by suppressing the immune response which may contribute to CHIKV persistence in human primary synovial fibroblasts. Our study provides the plausible roles of DEMs, miRNAs, and mRNA interactions and pathways involved in the molecular pathogenesis of CHIKV.


Assuntos
Febre de Chikungunya/genética , Fibroblastos/virologia , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Células Cultivadas , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Análise em Microsséries , Membrana Sinovial/virologia , Células Vero
4.
Front Immunol ; 10: 2563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736977

RESUMO

Chikungunya virus (CHIKV) infections can cause severe and debilitating joint and muscular pain that can be long lasting. Current CHIKV vaccines under development rely on the generation of neutralizing antibodies for protection; however, the role of T cells in controlling CHIKV infection and disease is still unclear. Using an overlapping peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in C57BL/6 infected mice at 7 and 14 days post-infection. A fusion protein containing peptides 451, 416, a small region of nsP4, peptide 47, and an HA tag (CHKVf5) was expressed using adenovirus and cytomegalovirus-vectored vaccines. Mice vaccinated with CHKVf5 elicited robust T cell responses to higher levels than normally observed following CHIKV infection, but the vaccine vectors did not elicit neutralizing antibodies. CHKVf5-vaccinated mice had significantly reduced infectious viral load when challenged by intramuscular CHIKV injection. Depletion of both CD4+ and CD8+ T cells in vaccinated mice rendered them fully susceptible to intramuscular CHIKV challenge. Depletion of CD8+ T cells alone reduced vaccine efficacy, albeit to a lesser extent, but depletion of only CD4+ T cells did not reverse the protective phenotype. These data demonstrated a protective role for CD8+ T cells in CHIKV infection. However, CHKVf5-vaccinated mice that were challenged by footpad inoculation demonstrated equal viral loads and increased footpad swelling at 3 dpi, which we attributed to the presence of CD4 T cell receptor epitopes present in the vaccine. Indeed, vaccination of mice with vectors expressing only CHIKV-specific CD8+ T cell epitopes followed by CHIKV challenge in the footpad prevented footpad swelling and reduced proinflammatory cytokine and chemokines associated with disease, indicating that CHIKV-specific CD8+ T cells prevent CHIKV disease. These results also indicate that a T cell-biased prophylactic vaccination approach is effective against CHIKV challenge and reduces CHIKV-induced disease in mice.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/imunologia , Vírus Chikungunya/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células Vero , Vacinas Virais/genética
5.
Indian J Med Res ; 149(6): 771-777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31496530

RESUMO

Background & objectives: Chikungunya virus (CHIKV), a mosquito-borne arthritogenic virus causes infections ranging from febrile illness to debilitating polyarthralgia in humans. Re-emergence of the virus has affected millions of people in Africa and Asia since 2004. During the outbreak, a new lineage of the virus has evolved as an adaptation for enhanced replication and transmission by Aedes albopictus mosquito. A study was designed to compare the susceptibility of four vertebrate cell lines, namely Vero E6 (African green monkey kidney), BHK-21 (Baby hamster kidney), RD (human rhabdomyosarcoma), A-549 (human alveolar basal epithelial cell) and C6/36 (Ae. albopictus) to Asian genotype and two lineages of East, Central and South African (E1:A226 and E1:A226V) of CHIKV. Methods: One-step growth kinetics of different CHIKV strains was carried out in the above five cell lines to determine the growth kinetics and virus yield. Virus titre was determined by 50 per cent tissue culture infectious dose assay and titres were calculated by the Reed and Muench formula. Growth and virus yield of the three strains in Ae. aegypti mosquitoes was studied by intrathoracic inoculation and virus titration in Vero E6 cell line. Results: Virus titration showed Vero E6, C6/36 and BHK-21 cell lines are high virus yielding with all the three lineages while RD and A-549 yielded low virus titres. C6/36 cell line was the most sensitive and yielded the maximum titre. Ae. aegypti mosquitoes, when inoculated with high titre virus, yielded an almost equal growth with the three strains while rapid growth of E1:A226V and Asian strain was observed with 1 log virus. Interpretation & conclusions: C6/36 cell line was found to be the most sensitive and high yielding for CHIKV irrespective of lineages while Vero E6 and BHK-21 cell lines yielded high titres and may find application for vaccine/diagnostic development. Infection of Ae. aegypti mosquitoes with the three CHIKV strains gave almost identical pattern of growth.


Assuntos
Aedes/virologia , Febre de Chikungunya/virologia , Vírus Chikungunya/crescimento & desenvolvimento , Culicidae/virologia , Células A549/virologia , África/epidemiologia , Animais , Ásia/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/genética , Vírus Chikungunya/genética , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Surtos de Doenças , Genótipo , Humanos , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Saliva/virologia , Células Vero/virologia
6.
PLoS Pathog ; 15(6): e1007842, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199850

RESUMO

G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs.


Assuntos
Proteínas de Transporte/metabolismo , Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , DNA Helicases/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Febre de Chikungunya/genética , Febre de Chikungunya/patologia , Cricetinae , DNA Helicases/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Domínios Proteicos , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
7.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404808

RESUMO

Chikungunya virus (CHIKV) is transmitted to people by mosquitoes, and CHIKV infection causes fever and joint pain. Fatty acid synthase (FASN) has been identified as a proviral factor for CHIKV. How FASN participates in CHIKV replication remains to be elucidated. In this study, we demonstrated that palmitic acid (PA) can restore the suppression of CHIKV replication by FASN inhibitors. The palmitoylation and plasma membrane localization of CHIKV nsP1 were reduced by FASN inhibitors. Triple mutation of Cys417, Cys418, and Cys419 in nsP1 blocked its palmitoylation and severely disrupted CHIKV replication. Furthermore, two zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19, promoted nsP1 palmitoylation and CHIKV replication. Our results not only identified the key enzymes for the palmitoylation of nsP1 but also provided mechanistic insights into the roles of FASN in CHIKV replication.IMPORTANCE S-palmitoylation is an important form of lipid posttranslational modification, which affects the function of proteins by regulating their transport, stability, and localization. Previous studies have shown that FASN is critical for CHIKV replication; however, the mechanism for this function of FASN remains unknown. The key zinc finger DHHC domain-containing palmitoyltransferases involved in the palmitoylation of nsP1 are not clear. We demonstrated that FASN promoted CHIKV replication through nsP1 palmitoylation. ZDHHC2 and ZDHHC19 were identified as the major enzymes for nsP1 palmitoylation. Since nsP1 proteins are conserved in alphaviruses, our results highlight the mechanisms by which alphavirus nsP1 is palmitoylated.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Ácido Graxo Sintase Tipo I/metabolismo , Lipoilação , Ácido Palmítico/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Aciltransferases/genética , Aciltransferases/metabolismo , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Ácido Graxo Sintase Tipo I/genética , Células HeLa , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas não Estruturais Virais/genética
8.
J Gen Virol ; 99(4): 525-535, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517478

RESUMO

Low-passage clinical isolates of chikungunya virus (CHIKV) were found to be a mixture of large- and small-plaque viruses, with small-plaque viruses being the predominant species. To investigate the contribution of plaque variants to the pathology of the joint, primary human fibroblast-like synoviocytes (HFLS) were used. Large- and small-plaque viruses were purified from two clinical isolates, CHIKV-031C and CHIKV-033C, and were designated CHIKV-031L and CHIKV-031S and CHIKV-033L and CHIKV-033S, respectively. The replication efficiencies of these viruses in HFLSs were compared and it was found that CHIKV-031S and CHIKV-033S replicated with the highest efficiency, while the parental clinical isolates had the lowest efficiency. Interestingly, the cytopathic effects (CPE) induced by these viruses correlated with neither the efficiency of replication nor the plaque size. The small-plaque viruses and the clinical isolates induced cell death rapidly, while large-plaque viruses induced slow CPE in which only 50 % of the cells in infected cultures were rounded up and detached on day 5 of infection. The production of proinflammatory cytokines and chemokines from infected HFLSs was evaluated. The results showed that the large-plaque viruses and the clinical isolates, but not small-plaque variants, were potent inducers of IL-6, IL-8 and MCP-1, and were able to migrate monocytes/macrophages efficiently. Sequencing data revealed a number of differences in amino acid sequences between the small- and large-plaque viruses. The results suggest that it is common for clinical isolates of CHIKV to be heterogeneous, while the variants may have distinct roles in the pathology of the joint.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Fibroblastos/virologia , Sinoviócitos/virologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Febre de Chikungunya/genética , Febre de Chikungunya/imunologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Efeito Citopatogênico Viral , Fibroblastos/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Sinoviócitos/imunologia
9.
PLoS Negl Trop Dis ; 11(10): e0006036, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084215

RESUMO

BACKGROUND: The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. METHODOLOGY/PRINCIPAL FINDINGS: By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. CONCLUSIONS/SIGNIFICANCE: Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.


Assuntos
Apresentação de Antígeno , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA-A/imunologia , Antígeno HLA-A2/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/química , Vírus Chikungunya/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Antígenos HLA-A/química , Antígenos HLA-A/genética , Humanos , Camundongos , Proteínas Virais/química , Proteínas Virais/genética
10.
Sci Rep ; 6: 37124, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845418

RESUMO

Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/metabolismo , Poliproteínas/metabolismo , Proteólise , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Febre de Chikungunya/genética , Cricetinae , Cisteína Endopeptidases/genética , Mutação de Sentido Incorreto , Poliproteínas/genética , RNA Viral/genética , Proteínas Virais/genética
11.
Sci Rep ; 5: 12727, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224141

RESUMO

Chikungunya virus (CHIKV) infection in human is associated with debilitating and persistent arthralgia and arthritis. Currently, there is no specific vaccine or effective antiviral available. Anti-CHIKV Phosphorodiamidate Morpholino Oligomer (CPMO) was evaluated for its antiviral efficacy and cytotoxcity in human cells and neonate murine model. Two CPMOs were designed to block translation initiation of a highly conserved sequence in CHIKV non-structural and structural polyprotein, respectively. Pre-treatment of HeLa cells with CPMO1 significantly suppressed CHIKV titre, CHIKV E2 protein expression and prevented CHIKV-induced CPE. CPMO1 activity was also CHIKV-specific as shown by the lack of cross-reactivity against SINV or DENV replication. When administered prophylactically in neonate mice, 15 µg/g CPMO1v conferred 100% survival against CHIKV disease. In parallel, these mice demonstrated significant reduction in viremia and viral load in various tissues. Immunohistological examination of skeletal muscles and liver of CPMO1v-treated mice also showed healthy tissue morphology, in contrast to evident manifestation of CHIKV pathogenesis in PBS- or scrambled sCPMO1v-treated groups. Taken together, our findings highlight for the first time that CPMO1v has strong protective effect against CHIKV infection. This warrants future development of morpholino as an alternative antiviral agent to address CHIKV infection in clinical applications.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/metabolismo , Morfolinos/farmacologia , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Febre de Chikungunya/patologia , Vírus Chikungunya/genética , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos
12.
Virus Genes ; 50(2): 200-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25563600

RESUMO

The envelope proteins of Chikungunya virus (CHIKV) are known to play crucial roles in viral infection and spread. Although the role of envelope proteins in viral infection has been studied, the cellular interactors of these proteins are still elusive. In the present study, the ectodomains of CHIKV envelope proteins (E1 and E2) have been used for a high throughput yeast two-hybrid (Y2H) screening to identify the interacting host protein partners. Following a comparative analysis between the viral-host protein interaction data generated from Y2H and computational approach, five host proteins interacting with E1 and three host proteins interacting with E2 common to both datasets were identified. These associations were further verified independently by pull down and protein interaction ELISA. The identified interactions shed light on the possible cellular machinery that CHIKV might be employing during viral entry, trafficking, and evasion of immune system.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Receptores Virais/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas do Envelope Viral/genética
13.
EMBO Mol Med ; 7(1): 24-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25452586

RESUMO

RNA-sensing toll-like receptors (TLRs) mediate innate immunity and regulate anti-viral response. We show here that TLR3 regulates host immunity and the loss of TLR3 aggravates pathology in Chikungunya virus (CHIKV) infection. Susceptibility to CHIKV infection is markedly increased in human and mouse fibroblasts with defective TLR3 signaling. Up to 100-fold increase in CHIKV load was observed in Tlr3-/- mice, alongside increased virus dissemination and pro-inflammatory myeloid cells infiltration. Infection in bone marrow chimeric mice showed that TLR3-expressing hematopoietic cells are required for effective CHIKV clearance. CHIKV-specific antibodies from Tlr3-/- mice exhibited significantly lower in vitro neutralization capacity, due to altered virus-neutralizing epitope specificity. Finally, SNP genotyping analysis of CHIKF patients on TLR3 identified SNP rs6552950 to be associated with disease severity and CHIKV-specific neutralizing antibody response. These results demonstrate a key role for TLR3-mediated antibody response to CHIKV infection, virus replication and pathology, providing a basis for future development of immunotherapeutics in vaccine development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Receptor 3 Toll-Like/genética , Replicação Viral , Adulto , Idoso , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/patologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Receptor 3 Toll-Like/imunologia , Adulto Jovem
14.
J Proteomics ; 108: 445-64, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24933005

RESUMO

Chikungunya virus (CHIKV) is an arthropod-borne, positive-sense, single-stranded RNA virus belonging to genus Alphavirus and family Togaviridae. The clinical manifestations developed upon CHIKV-infection include fever, myositis, arthralgia and maculopapular rash. Thus, the re-emergence of CHIKV has posed serious health threats worldwide. Due to the fact that myositis is induced upon CHIKV-infection, we sought to understand the dynamic proteomic regulation in SJCRH30, a human rhabdomyosarcoma cell line, to gain insights on CHIKV pathogenesis. Two-dimensional gel electrophoresis (2DE) in combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to profile differential cellular proteins expression in CHIKV-infected SJCRH30 cells. 2DE analysis on CHIKV-infected cells has revealed 44 protein spots. These spots are found to be involved in various biological pathways such as biomolecules synthesis and metabolism, cell signaling and cellular reorganization. siRNA-mediated gene silencing on selected genes has elucidated the biological significance of these gene-translated host proteins involved in CHIKV-infection. More importantly, the interaction of vimentin with non-structural protein (nsP3) of CHIKV was shown, suggesting the role played by vimentin during CHIKV replication by forming an anchorage network with the CHIKV replication complexes (RCs). BIOLOGICAL SIGNIFICANCE: Chikungunya virus (CHIKV) is a re-emerging virus that has caused various disease outbreaks in Africa and Asia. The clinical symptoms of CHIKV-infection include fever, skin rash, recurrent joint paint, and myositis. Neuronal implications and death may be resulted from the severe viral infection. Up to date, there are no effective treatments and vaccines against CHIKV-infection. More importantly, little is known about the differential regulation of host proteins upon CHIKV infection, hence deciphering the viral-host cell interactions during viral infection provide critical information on our understanding on the mechanisms of virus infection and its dependency of host proteins for replication. In light of the muscle-related clinical manifestations of myositis resulting from CHIKV-infection, human rhabdomyosarcoma cells, SJCRH30 were utilized in this protein profiling study, in order to decipher the pathogenesis of CHIKV. This study has identified an arrays of host proteins that are differentially regulated upon CHIKV infection including that of the cytoskeletal protein, vimentin that plays significant role in aiding the replication of CHIKV within the host cells through 2DE assay. Immunofluorescence assay further shows that the novel interaction between cytoskeleton structure and CHIKV replication complex by forming an intercalating network around the replication complexes and facilitating various stages of the virus life cycle. This novel finding has inevitably led to a deeper understanding of CHIKV pathogenesis in revealing the importance of host proteins during CHIKV replication, as well as contributing to the development of specific antiviral strategies against this medically important viral pathogen.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteômica , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Febre de Chikungunya/genética , Febre de Chikungunya/patologia , Cricetinae , Citoesqueleto/genética , Citoesqueleto/patologia , Humanos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA