Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.077
Filtrar
1.
Daru ; 32(1): 263-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683491

RESUMO

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Fenantrolinas , Humanos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Fenantrolinas/química , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/química , Apoptose/efeitos dos fármacos
2.
J Med Chem ; 67(9): 7088-7111, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634624

RESUMO

The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Apoptose , Complexos de Coordenação , Fenantrolinas , Neoplasias de Mama Triplo Negativas , Apoptose/efeitos dos fármacos , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Animais , Fenantrolinas/farmacologia , Fenantrolinas/química , Fenantrolinas/síntese química , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Sinergismo Farmacológico , Relação Estrutura-Atividade , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais
3.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603561

RESUMO

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Assuntos
Antineoplásicos , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Células HeLa , Fenantrolinas/química , Fenantrolinas/farmacologia , Rênio/química , Rênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Apoptose/efeitos dos fármacos , Luz , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Fotoquimioterapia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
4.
J Inorg Biochem ; 255: 112524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507993

RESUMO

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Humanos , Cobre/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Hidrazinas , Hidrólise , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Difosfato de Adenosina , Cristalografia por Raios X
5.
Dalton Trans ; 53(13): 5993-6005, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469684

RESUMO

Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Fenantrolinas/farmacologia , Cloretos , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , DNA/metabolismo , Dano ao DNA , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
6.
Int J Nanomedicine ; 19: 2057-2070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482522

RESUMO

Purpose: Photodynamic therapy (PDT) has been an attractive strategy for skin tumor treatment. However, the hypoxic microenvironment of solid tumors and further O2 consumption during PDT would diminish its therapeutic effect. Herein, we developed a strategy using the combination of PDT and hypoxia-activated bioreductive drug tirapazamine (TPZ). Methods: TPZ was linked to DSPE-PEG-NHS forming DSPE-PEG-TPZ to solve leakage of water-soluble TPZ and serve as an antitumor agent and monomer molecule further forming the micellar. Chlorin e6 (Ce6) was loaded in DSPE-PEG-TPZ forming DSPE-PEG-TPZ@Ce6 (DPTC). To further improve tumor infiltration and accumulation, hyaluronic acid was adopted to make DPTC-containing microneedles (DPTC-MNs). Results: Both in vitro and in vivo studies consistently demonstrated the synergistic antitumor effect of photodynamic therapy and TPZ achieved by DPTC-MNs. With laser irradiation, overexpressions of PDT tolerance factors NQO1 and HIF-1α were inhibited by this PDT process. Conclusion: The synergistic effect of PDT and TPZ significantly improved the performance of DPTC-MNs in the treatment of melanoma and cutaneous squamous cell carcinoma and has good biocompatibility.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Compostos Organometálicos , Fenantrolinas , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Tirapazamina/farmacologia , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Microambiente Tumoral
7.
Int Immunopharmacol ; 132: 111980, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555819

RESUMO

BACKGROUND: In our previous study, Cu(sal)phen was found to have anti-tumor effects, yet its precise mechanism remains unknown. Research has shown that dying tumor cells release damage-associated molecular patterns (DAMPs) to promote anti-tumor immune response. Therefore, we have further explored the effects and potential molecular mechanisms of Cu(sal)phen-induced immunogenic cell death (ICD) in colorectal cancer (CRC). METHODS: ELISA and flow cytometry were used to detect the effects of Cu(sal)phen treatment on ICD markers. The molecular mechanisms of Cu(sal)phen-induced ICD were investigated through the detection of endoplasmic reticulum stress (ERS) and reactive oxygen species (ROS) in vitro using Western blot and flow cytometry. Additionally, a mouse model was constructed to study the effects of Cu(sal)phen on immune cells and anti-tumor-related cytokines in vivo. RESULTS: Cu(sal)phen induced the release of calreticulin (CRT), adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1), the main molecular markers of ICD, by promoting the accumulation of ROS and inducing ERS. Furthermore, Cu(sal)phen promoted the maturation of dendritic cells (DCs) and activation of CD8+T cells, as well as the secretion of interleukin-12 (IL-12) and interferon-γ (IFN-γ), while downregulating transforming growth factor-ß (TGF-ß) levels, thereby activating the anti-tumor immune response. CONCLUSION: Cu(sal)phen has the potential to induce ICD in tumors and activate the adaptive immune response to achieve anti-tumor effects. This makes Cu(sal)phen a promising candidate for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Cobre , Estresse do Retículo Endoplasmático , Morte Celular Imunogênica , Fenantrolinas , Espécies Reativas de Oxigênio , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Animais , Morte Celular Imunogênica/efeitos dos fármacos , Humanos , Camundongos , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Salicilatos/farmacologia , Linhagem Celular Tumoral , Proteína HMGB1/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Calreticulina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Complexos de Coordenação/farmacologia
8.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338328

RESUMO

Three new molecular complexes (phen)3(2-amino-Bz)2(H+)(BF4-)·3H2O 5, (phen)3(2-amino-5(6)-methyl-Bz)2(H+)(BF4-)·H2O 6, and (phen)(1-methyl-2-amino-Bz)(H+)(BF4-) 7, were prepared by self-assembly of 1,10-phenanthroline (phen) and various substituted 2-aminobenzimidazoles. Confirmation of their structures was established through spectroscopic methods and elemental analysis. The X-ray diffraction analysis revealed that the crystal structure of 7 is stabilized by the formation of hydrogen bonds and short contacts. In addition, the molecular geometry and electron structure of molecules 5 and 6 were theoretically evaluated using density functional theory (DFT) methods. According to the DFT B3LYP/6-311+G* calculations, the protonated benzimidazole (Bz) units act as NH hydrogen bond donors, binding two phenanthrolines and a BF4- ion. Non-protonated Bz unit form hydrogen bonds with the N-atoms of a third molecule phen. The molecular assembly is held together by π-π stacking between benzimidazole and phenanthroline rings, allowing for N-atoms to associate with water molecules. The complexes were tested in vitro for their tumor cell growth inhibitory effects on prostate (PC3), breast (MDA-MB-231 and MCF-7), and cervical (HeLa) cancer cell lines using MTT-dye reduction assay. The in vitro cytotoxicity analysis and spectrophotometric investigation in the presence of ct-DNA, showed that self-assembled molecules 5-7 are promising DNA-binding anticancer agents warranting further in-depth exploration.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Fenantrolinas/química , Benzimidazóis/farmacologia , Cristalografia por Raios X , Antineoplásicos/química , DNA/química , Complexos de Coordenação/química , Cobre/química , Estrutura Molecular
9.
J Biol Inorg Chem ; 29(1): 139-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175299

RESUMO

The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/farmacologia , Cobre/química , Antineoplásicos/química , Fenantrolinas/química , Vanádio/farmacologia , DNA/química , Células MCF-7 , Ânions , Fenômenos Magnéticos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
10.
Dalton Trans ; 53(11): 4952-4961, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38275106

RESUMO

Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 µM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 µM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Fenantrolinas/química , Oxiquinolina/farmacologia , Ligantes , Cobalto , Células HEK293 , Complexos de Coordenação/química , Cobre/química
11.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257344

RESUMO

The new diprotic ligand 3,5-di-tert-butylsalicylaldehyde 4-ethyl-3-thiosemicarbazone, abbreviated H2(3,5-t-Bu2)-sal4eT, exists as the thio-keto tautomer and adopts the E-configuration with respect to the imine double bond, as evidenced by single-crystal X-ray analysis and corroborated by spectroscopic characterisation. Upon treatment with Cu(OAc)2·H2O in the presence of either 2,9-dimethyl-1,10-phenanthroline (2,9-Me2-phen) or 1,10-phenanthroline (phen) as a co-ligand in MeOH, this thiosemicarbazone undergoes conformational transformation (relative donor-atom orientations: syn,anti → syn,syn) concomitantly with tautomerisation and double deprotonation to afford the ternary copper(II) complexes [Cu{(3,5-t-Bu2)-sal4eT}(2,9-Me2-phen)] (1) and [Cu2{3,5-t-Bu2)-sal4eT}2(phen)] (2). Crystallographic elucidation has revealed that complex 1 is a centrosymmetric dimer of mononuclear copper(II) complex molecules brought about by intermolecular H-bonding. The coordination geometry at the copper(II) centre is best described as distorted square pyramidal in accordance with the trigonality index (τ = 0.14). The co-ligand adopts an axial-equatorial coordination mode; hence, there is a disparity between its two Cu-N coordinate bonds arising from weakening of the apical one as a consequence of the tetragonal distortion. The axial X-band ESR spectrum of complex 1 is consistent with retention of this structure in solution. Complex 2 is a centrosymmetric dimer of dinuclear copper(II) complex molecules exhibiting intermolecular H-bonding and π-π-stacking interactions. The two copper(II) centres, which are 4.8067(18) Å apart and bridged by the thio-enolate nitrogen of the quadridentate thiosemicarbazonate ligand, display two different coordination geometries, one distorted square planar (τ4 = 0.082) and the other distorted square pyramidal (τ5 = 0.33). Such dinuclear copper(II) thiosemicarbazone complexes, which are crystallographically characterised, are extremely rare. In vitro, complexes 1 and 2 outperform cisplatin as antiproliferative agents in terms of potency and selectivity towards HeLa and MCF-7 cancer cell lines.


Assuntos
Cobre , Neoplasias , Humanos , Ligantes , Análise Espectral , Ácidos Carboxílicos , Cisplatino , Fenantrolinas/farmacologia , Fenóis , Polímeros
12.
J Inorg Biochem ; 251: 112440, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065049

RESUMO

As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Bases de Schiff/farmacologia , Cobre , Fenantrolinas/farmacologia , Ligantes , Cristalografia por Raios X
13.
J Inorg Biochem ; 251: 112443, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100902

RESUMO

Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 µM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Cisplatino/farmacologia , Cobre/química , Complexos de Coordenação/química , Oxiquinolina , 2,2'-Dipiridil/química , Zinco/química , Fenantrolinas/farmacologia , Antineoplásicos/química , Ligantes
14.
Eur J Med Chem ; 265: 116078, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141286

RESUMO

In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 µM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Fosfatos de Inositol , Humanos , Células Hep G2 , Lipossomos , Linhagem Celular Tumoral , Irídio/farmacologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fenantrolinas/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Apoptose , Espécies Reativas de Oxigênio/metabolismo
15.
Inorg Chem ; 62(51): 21181-21200, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38079387

RESUMO

Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 µs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 µs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 µM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 µM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.


Assuntos
Fotoquimioterapia , Rutênio , Fenantrolinas/farmacologia , Fenantrolinas/química , Oxigênio Singlete/química , Rutênio/farmacologia , Rutênio/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Ligantes
16.
Inorg Chem ; 62(48): 19720-19733, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37974075

RESUMO

Chemotherapy with the cytotoxic platinum (Pt) drugs cisplatin, carboplatin, and oxaliplatin is the mainstay of anticancer therapy in the clinic. The antitumor activity of Pt drugs originates from their ability to induce apoptosis via covalent adduct formation with nuclear DNA. While the phenomenal clinical success is highly encouraging, resistance and adverse toxic side effects limit the wider applicability of Pt drugs. To circumvent these limitations, we embarked on an effort to explore the antitumor potential of a new class of oxo-rhenium(V) complexes of the type [(N∧N)(EG)Re(O)Cl] (where EG = ethylene glycolate and N∧N = bipyridine, Bpy (1); phenanthroline, Phen (2); 3,4,7,8-tetramethyl-phenanthroline, Me4Phen (3)). Investigation of speciation chemistry in aqueous media revealed the formation of [(N∧N)Re(O)(OH)3] as the biologically active species. Complex 3 was found to be the most potent among the three, with IC50 values ranging from 0.1 to 0.4 µM against a panel of cancer cells, which is 5-70-fold lower when compared with cisplatin. The higher potency of 3 is attributed to its higher lipophilicity, which enhanced cellular uptake. Importantly, complex 3 efficiently overcomes cisplatin resistance in ovarian, lung, and prostate cancer cells. In addition to reporting the aquation chemistry and identifying the active species in aqueous media, we performed in-depth in vitro mechanistic studies, which revealed that complex 3 preferentially accumulates in mitochondria, depletes mitochondrial membrane potential, and upregulates intracellular reactive oxygen species (ROS), leading to ER stress-mediated necrosis-mediated cancer cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rênio , Humanos , Cisplatino/farmacologia , Rênio/farmacologia , Rênio/química , Fenantrolinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Necrose , Apoptose , Platina/farmacologia , Linhagem Celular Tumoral
17.
J Inorg Biochem ; 249: 112383, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804698

RESUMO

Reactive oxygen species(ROS) generation with subsequent DNA damage is one of the principle mechanisms of action assigned to copper-based anticancer complexes. The efficacy of this type of chemotherapeutic may be reduced in the low oxygen environment of tumours. In this study the cytotoxicity of three complexes, [Cu(dips)(phen)] (1), [Cu(ph)(phen)]·2H2O (2) and [Cu(ph)(bpy)]·H2O (3) (disp: 3,5-diisopropylsalicylate, phen: 1,10- phenanthroline, ph: phthalate, bpy: 2,2'-bipyridyl) were assessed for anticancer activity in the breast-cancer derived MCF-7 line under normoxic, hypoxic and anoxic conditions. In an immortalised keratinocyte HaCaT cell line, the cytotoxicity of complexes 2 and 3 was significantly reduced under both normoxic and hypoxic conditions, whilst the cytotoxicity of complex 1 was increased under hypoxic conditions. The ability of the complexes to generate ROS in the MCF-7 cell line was evaluated as was their ability to act as superoxide dismutase(SOD) and catalase mimics using a yeast cell assay. ROS generation was significant for complexes 2 and 3, less so for complex 1 though all three complexes had SOD mimetic ability. Given the ternary nature of the complexes, solution speciation studies were undertaken but were only successful for complex 3, due to solubility issues with the other two complexes. The concentration distribution of various species, formed in aqueous solution, was evaluated as a function of pH and confirmed that complex 3 is the dominant species at physiological pH in the mM concentration range. However, as its concentration diminishes, it experiences a progressive dissociation, leading to the formation of binary complexes of bpy alongside unbound phthalate.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Células MCF-7 , Cobre/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Biomimética , Superóxido Dismutase/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Fenantrolinas/química
18.
J Inorg Biochem ; 246: 112301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392615

RESUMO

A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.


Assuntos
Inibidores de Lipoxigenase , Neoplasias , Inibidores de Lipoxigenase/farmacologia , Ácido Ursodesoxicólico/farmacologia , Fenantrolinas/química , Cobre/farmacologia , Cobre/química , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Apoptose , Neoplasias Pancreáticas
19.
Oncol Rep ; 50(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37503758

RESUMO

Oxaliplatin (Oxa) is one of the most effective chemotherapeutic drugs used in the treatment of colorectal cancer (CRC). However, the use of this drug is associated with severe side­effects and patients eventually develop resistance to Oxa. In recent years, copper complexes have been extensively investigated as substitutes for platinum­based drugs. Therefore, a number of copper complexes have also been developed for cancer therapy, such as copper (II) complex of salicylate phenanthroline [Cu(sal)(phen)]. In the present study, the antitumor activity and the related molecular mechanisms of Cu(sal)(phen) were examined in CRC cells. As compared with the chemotherapeutic drug, Oxa, Cu(sal)(phen) was more effective in inducing apoptosis and reactive oxygen species (ROS) production, and in decreasing mitochondrial membrane potential in the CRC cell lines, HCT116 and SW480. In addition, the expression of the apoptosis­related proteins, Bcl­2 and survivin, and those of the upstream regulators, p­JAK2 and p­STAT5, were significantly decreased in the two cell lines following treatment with Cu(sal)(phen). Furthermore, the efficacy of the complex against CRC was found to be excellent in an animal model. The results of immunohistochemical analysis revealed that the expression levels of Bcl­2, survivin and Ki­67 in tumor tissues were decreased following Cu(sal)(phen) treatment. The antitumor mechanisms underlying Cu(Sal)(phen) treatment were the induction of ROS generation, the inhibition of the JAK2/STAT5 signaling pathway and the downregulation of the expression of anti­apoptotic proteins, such as Bcl­2 and survivin. On the whole, the findings of the present study indicated that Cu(sal)(phen) effectively inhibited the viability and proliferation of HCT116 and SW480 CRC cells; in the future, the authors aim to conduct further experiments in future studies to provide more evidence that supports the development of Cu(sal)(phen) as a therapeutic agent for CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Oxaliplatina/farmacologia , Cobre/farmacologia , Cobre/química , Cobre/metabolismo , Survivina/metabolismo , Fenantrolinas/farmacologia , Fenantrolinas/química , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Salicilatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
20.
Dalton Trans ; 52(42): 15365-15376, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37493615

RESUMO

Selective chemotherapeutic strategies necessitate the emergence of a photosensitive scaffold to abate the nuisance of cancer. In the current context, photo-activated chemotherapy (PACT) has, therefore, appeared to be very effective to vanquish the vehemence of triple-negative breast cancer (TNBC). Metal complexes have been identified to act well against cancer cell microenvironment (high GSH content, low pH, and hypoxia), and thus they have been employed in the treatment of various types of cancer. As TNBC is very challenging to treat owing to its poor prognosis, lack of a specific target, high chance of relapse, and strong metastatic ability, herein we have aspired to design GSH-resistant phototoxic Ru(II)/Ir(III)/Re(I) based pyrene imidazophenathroline complexes to selectively avert the triple-negative breast cancer. The application of complexes, [RuL], [IrL], and [ReL] in the absence and in the presence of GSH against MDA-MB-231TNBC cells, has revealed that they are very active upon irradiation of visible light compared to dark due to the creation of copious singlet oxygen (1O2) as reactive oxygen species (ROS). Among three synthesized complexes, [IrL] has shown outstanding potency (IC50 = 3.70 in the absence of GSH and IC50 = 3.90 in the presence of GSH). Also, the complex, [IrL] is capable of interacting with DNA with the highest binding constant (Kb = 0.023 × 106 M-1) along with higher protein binding affinity (KBSA = 0.0321 × 106 M-1). Here, it has been unveiled that all the complexes have been entitled to involve DNA covalent interaction through the available sites of both adenine and guanine bases.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fenantrolinas , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , DNA/química , Rutênio/farmacologia , Rutênio/química , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA