Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Molecules ; 29(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39407699

RESUMO

Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.


Assuntos
Produtos Biológicos , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Estrutura Molecular , Animais , Relação Estrutura-Atividade , Antiparasitários/química , Antiparasitários/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
2.
J Agric Food Chem ; 72(39): 21364-21379, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39300971

RESUMO

Phenazine natural products are a class of nitrogen-containing heterocyclic compounds produced by microorganisms. The tricyclic ring molecules show various chemical structures and extensive pharmacological activities, such as antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal activities, with low toxicity to the environment. Since phenazine-1-carboxylic acid has been developed as a registered biopesticide, the application of phenazine natural products will be promising in the field of agriculture pathogenic fungi control based on broad-spectrum antifungal activity, minimal toxicity to the environment, and improvement of crop production. Currently, there are still plenty of intriguing hidden biosynthetic pathways of phenazine natural products to be discovered, and the titer of naturally occurring phenazine natural products is insufficient for agricultural applications. In this review, we spotlight the progress regarding biosynthesis and metabolic engineering research of phenazine natural products in the past decade. The review provides useful insights concerning phenazine natural products production and more clues on new phenazine derivatives biosynthesis.


Assuntos
Produtos Biológicos , Fungos , Engenharia Metabólica , Fenazinas , Fenazinas/metabolismo , Fenazinas/química , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Fungos/metabolismo , Fungos/genética , Vias Biossintéticas , Bactérias/metabolismo , Bactérias/genética
3.
J Nat Prod ; 87(8): 1930-1940, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39140432

RESUMO

Eighteen nitrogen-containing compounds (1-18) were isolated from cultures of the lichen-associated Streptomyces flavidovirens collected from the Qinghai-Tibet Plateau, including seven phenazine derivatives with three new ones, named subphenazines A-C (2-4), two new furan pyrrolidones (8-9), and nine known alkaloids. The structures were elucidated by spectroscopic data analysis, and absolute configurations were determined by single-crystal X-ray diffraction and ECD calculations. The phenazine-type derivatives, in particular compound 3, exhibited significantly better antineuroinflammatory activity than other isolated compounds (8-18). Compound 3 inhibited the release of proinflammatory cytokines including IL-6, TNF-α, and PGE2, and the nuclear translocation of NF-κB; it also reduced the oxidative stress and activated the Nrf2 signaling pathway in LPS-induced BV2 microglia cells. In vivo anti-inflammatory activity in zebrafish indicated that 3 inhibited LPS-stimulated ROS generation. These findings suggested that compound 3 might be a potent antineuroinflammatory agent through the regulation of the NF-κB/Nrf2 signaling pathways.


Assuntos
Anti-Inflamatórios , Líquens , NF-kappa B , Fenazinas , Streptomyces , Peixe-Zebra , Animais , Streptomyces/química , Líquens/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenazinas/farmacologia , Fenazinas/química , Estrutura Molecular , NF-kappa B/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Chem Commun (Camb) ; 60(62): 8111-8114, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994648

RESUMO

1,4-Dimethylphenazine endoperoxide releases singlet oxygen with a half-life of 89 hours at 37 °C. The thermal cycloreversion reaction is accompanied by a strong increase in the emission intensity with a peak at 490 nm, due to the formation of the phenazine core. The endoperoxide is effective against cancer cells in culture medium and tumor spheroids, with singlet oxygen-mediated cytotoxicity.


Assuntos
Fenazinas , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Humanos , Fenazinas/química , Fenazinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Estrutura Molecular
5.
Talanta ; 278: 126516, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972276

RESUMO

The residues of organophosphorus pesticides (OPs) are increasing environmental pollution and public health concerns. Thus, the development of simple, convenient and sensitive method for detection of OPs is crucial. Herein, a multifunctional Fe-based MOF with fluorescence, catalytic and adsorption, is synthesized by a simple one-pot hydrothermal method. The ratiometric fluorescence sensor for detection of OPs is constructed by using only one multifunctional sensing material. The NH2-MIL-101(Fe) is able catalyze the o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP) in the presence of H2O2. The generated DAP can significantly quench the intrinsic fluorescence of NH2-MIL-101(Fe) by the fluorescence resonance energy transfer (FRET) and internal filtration effect (IFE), while producing a new measurable fluorescence. Without immobilization or molecular imprinting, pyrophosphate ion (PPi) can inhibit the peroxidase-like activity of the NH2-MIL-101(Fe) by chelating with Fe3+/Fe2+ redox couple. Moreover, PPi can also be hydrolyzed by alkaline phosphatase (ALP), the presence of OPs inhibits the activity of ALP, resulting in the increase of extra PPi preservation and signal changes of ratiometric fluorescence, the interactions of ALP with different OPs are explored by molecular docking, the OPs (e.g., glyphosate) interact with crucial amino acid residues (Asp, Ser, Ala, Lys and Arg) are indicated. The proposed sensor exhibits excellent detection performance for OPs with the detection limit of 18.7 nM, which provides a promising strategy for detection of OPs.


Assuntos
Ferro , Estruturas Metalorgânicas , Compostos Organofosforados , Praguicidas , Fenilenodiaminas , Estruturas Metalorgânicas/química , Praguicidas/análise , Praguicidas/química , Compostos Organofosforados/análise , Compostos Organofosforados/química , Ferro/química , Fenilenodiaminas/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/química , Difosfatos/química , Difosfatos/análise , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Simulação de Acoplamento Molecular , Limite de Detecção , Fenazinas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Fluorescência
6.
J Inorg Biochem ; 257: 112600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759261

RESUMO

Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 µM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 µM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Rênio , Rênio/química , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , DNA/metabolismo , Fenantrolinas/química , Fenantrolinas/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Linhagem Celular Tumoral , Células HeLa
7.
J Am Chem Soc ; 146(18): 12836-12849, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683943

RESUMO

The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.


Assuntos
Antineoplásicos , Cátions , Fenazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Cátions/química , Cátions/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células HEK293 , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Animais , Nanomedicina Teranóstica , Estrutura Molecular
8.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675600

RESUMO

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Assuntos
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/síntese química , Alanina/química , Alanina/farmacologia , Phytophthora/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Floema/metabolismo , Floema/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Desenho de Fármacos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química
9.
Drug Deliv Transl Res ; 14(8): 2079-2084, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38388815

RESUMO

Achieving a controlled release of several active pharmaceutical ingredients (APIs) remains a challenge for improving their therapeutic effects and reduced their side effects. In the current work, stimulable Drug Delivery Systems (DDS) based on supramolecular hydrogels were designed by combining two APIs featuring anticancer activities, namely the doxorubicin and phenazine 14. In vitro studies revealed promising physicochemical properties for all the investigated API loaded gels. Fluorinated GlycoNucleoLipid (GNF) based supramolecular gels remain stable in the presence of either doxorubicin (Doxo) or phenazine 14 (Phe) as anticancer drugs. Noteworthy, the stiffness of the GNF-based supramolecular gels was enhanced in the presence of both APIs while maintaining their thixotropic properties. We demonstrated that the storage modulus (G') of the GNF gels was increased from 1.3 kPa to 9.3 kPa upon loading of both APIs within the same gels. With a low mechanical stimulation (within the LVR), a passive diffusion out of gels was observed for Dox whereas Phe remained trapped in the GNF gels over several hours. Also, in this work we showed that mechanical stress triggered the release of both Phe and Doxo at different rates.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Glicolipídeos , Hidrogéis , Hidrogéis/química , Hidrogéis/administração & dosagem , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Glicolipídeos/química , Glicolipídeos/administração & dosagem , Fenazinas/química , Halogenação , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química
10.
ACS Appl Bio Mater ; 6(2): 410-424, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36638050

RESUMO

Due to a number of unpleasant considerations, marketed drugs have steadily lost their importance in the treatment of cancer. In order to find a viable cancer cell diagnostic agent, we therefore focused on metal complexes that displayed target adequacy, permeability to cancer cells, high standard water solubility, cytoselectivity, and luminescent behavior. In this aspect, luminescent 11-{naphthalen-1-yl} dipyrido [3,2-a:2',3'-c] phenazine based Ru(II)/Ir(III)/Re(I) complexes have been prepared for HCT-116 colorectal cancer stem cell therapy. Our study successfully established the possible cytotoxicity of IrL complex at different doses on HCT-116 colorectal cancer stem cells (CRCSCs). Additionally, an immunochemistry analysis of the complex IrL showed that the molecule was subcellularly localized in the nucleus and other regions of the cytoplasm, where it caused nuclear DNA damage and mitochondrial dysfunction. The level of BAX and Bcl-2 was further quantified by qRT-PCR. The expression of proapoptotic BAX showed increased expression in the complex IrL-treated cell compared to the control, indicating the potential of complex IrL for apoptotic induction. Upon further validation, complex IrL was developed as an inhibitor of autophagy for the eradication of cancer stem cells.


Assuntos
Neoplasias Colorretais , Complexos de Coordenação , Células-Tronco Neoplásicas , Fenazinas , Humanos , Proteína X Associada a bcl-2/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , DNA/química , Fenazinas/química , Fenazinas/metabolismo , Luminescência , Células HCT116 , Células-Tronco Neoplásicas/efeitos dos fármacos
11.
Inorg Chem ; 61(38): 14947-14961, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094851

RESUMO

The synthesis and photophysical characterization of two osmium(II) polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2',3'-c]phenazine) and dppp2 (pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene) ancillary ligands, are reported. The complexes exhibit complex electrochemistry with five distinct reductive redox couples, the first of which is assigned to a TAP-based process. The complexes emit in the near-IR (1 at 761 nm and 2 at 740 nm) with lifetimes of >35 ns with a low quantum yield of luminescence in aqueous solution (∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT and GC oligodeoxynucleotides with high affinities. In the presence of natural DNA, the visible absorption spectra are found to display significant hypochromic shifts, which is strongly evident for the ligand-centered π-π* dppp2 transition at 355 nm, which undergoes 46% hypochromism. The emission of both complexes increases upon DNA binding, which is observed to be sensitive to the Δ or Λ enantiomer and the DNA composition. A striking result is the sensitivity of Λ-2 to the presence of AT DNA, where a 6-fold enhancement of luminescence is observed and reflects the nature of the binding for the enantiomer and the protection from solution. Thermal denaturation studies show that both complexes are found to stabilize natural DNA. Finally, cellular studies show that the complexes are internalized by cultured mammalian cells and localize in the nucleus.


Assuntos
Substâncias Intercalantes , Rutênio , Animais , DNA/química , Substâncias Intercalantes/química , Ligantes , Mamíferos/metabolismo , Oligodesoxirribonucleotídeos , Osmio , Fenantrolinas/química , Fenazinas/química , Rutênio/química
12.
Dalton Trans ; 51(41): 15686-15695, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36173180

RESUMO

We have developed a one pot three component synthetic protocol for half-sandwich Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues for selective cancer therapy under light irradiation. On average, the cytotoxicity of all the complexes is indeed doubled upon light irradiation and also exhibited significant photo and dark selectivity against cancer cells with respect to normal cells. Out of five Ru(II) complexes (RuL1-RuL5), [(η6-p-cymene)RuIICl(K2-N,N-11-nitrodipyrido[3,2-a:2',3'-c]phenazine]PF6 (RuL4) exhibited the best phototoxicity (lowest IC50 under light irradiation). Intracellular ROS generation was studied by the 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Moreover, these complexes exhibited a strong serum albumin and DNA binding capacity. These complexes also exhibited good stability in 10% DMSO-buffer and under 1 mM GSH conditions. Overall, the remarkable photocytotoxic efficacy of new Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues (RuL1-RuL5) makes them potential photochemotherapeutics as an alternative of current PDT agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Rutênio/farmacologia , Rutênio/química , Dimetil Sulfóxido , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Antineoplásicos/química , Fenazinas/farmacologia , Fenazinas/química , DNA/química , Albumina Sérica , Complexos de Coordenação/química
13.
J Med Chem ; 65(3): 2225-2237, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34994554

RESUMO

The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.


Assuntos
Complexos de Coordenação/química , Raios Infravermelhos , Rutênio/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Desenho de Fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/uso terapêutico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Hipertermia Induzida , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fenazinas/química , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Teoria Quântica , Espectroscopia de Luz Próxima ao Infravermelho
14.
Microb Biotechnol ; 15(4): 1168-1177, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34487423

RESUMO

Two phenazine compounds, diastaphenazine and izumiphenazine C, with complex structures and promising antitumour activity have been isolated from the plant endophytic actinomycete Streptomyces diastaticus W2. Their putative biosynthetic gene cluster (dap) was identified by heterologous expression and gene knockout. There are twenty genes in the dap cluster. dap14-19 related to shikimic pathway were potentially involved in the precursor chorismic acid biosynthesis, and dapBCDEFG were confirmed to be responsible for the biosynthesis of the dibenzopyrazine ring, the nuclear structure of phenazines. Two transcriptional regulatory genes dapR and dap4 played the positive regulatory roles on the phenazine biosynthetic pathway. Most notably, the dimerization of the dibenzopyrazine ring in diastaphenazine and the loading of the complex side chain in izumiphenazine C could be catalysed by the cyclase homologous gene dap5, suggesting an unusual modification strategy tailoring complex phenazine biosynthesis. Moreover, metabolite analysis of the gene deletion mutant strain S. albus::23C5Δdap2 and substrate assay of the methyltransferase Dap2 clearly revealed the biosynthetic route of the complex side chain in izumiphenazine C.


Assuntos
Endófitos , Fenazinas , Vias Biossintéticas/genética , Endófitos/metabolismo , Família Multigênica , Fenazinas/química , Fenazinas/metabolismo , Streptomyces
15.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500750

RESUMO

A phenazine-1-carboxylic acid intermediate was synthesized from the reaction of aniline and 2-bromo-3-nitro-benzoic acid. It was then esterified and reacted with hydrazine hydrate to afford phenazine-1-carboxylic hydrazine. Finally, 10 new hydrazone compounds 3a-3j were obtained by the condensation reaction of phenazine-1-carboxylic acid hydrazide and the respective aldehyde-containing compound. The structures were characterized by 1H and 13C NMR spectroscopy, MS and single crystal X-ray diffraction. The antitumor activity of the target compounds in vitro (HeLa and A549) was determined by thiazolyl blue tetrazolium bromide. The results showed that compound (E)-N'-(2-hydroxy-4-(2-(piperidine-1-yl) ethoxy) benzyl) phenazine-1-carbonyl hydrazide 3d exhibited good cytotoxic activity.


Assuntos
Hidrazonas/farmacologia , Células A549 , Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Fenazinas/farmacologia , Relação Estrutura-Atividade
16.
J Am Chem Soc ; 143(36): 14766-14779, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464120

RESUMO

Assessment of the DNA photo-oxidation and synthetic photocatalytic activity of chromium polypyridyl complexes is dominated by consideration of their long-lived metal-centered excited states. Here we report the participation of the excited states of [Cr(TMP)2dppz]3+ (1) (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) in DNA photoreactions. The interactions of enantiomers of 1 with natural DNA or with oligodeoxynucleotides with varying AT content (0-100%) have been studied by steady state UV/visible absorption and luminescence spectroscopic methods, and the emission of 1 is found to be quenched in all systems. The time-resolved infrared (TRIR) and visible absorption spectra (TA) of 1 following excitation in the region between 350 to 400 nm reveal the presence of relatively long-lived dppz-centered states which eventually yield the emissive metal-centered state. The dppz-localized states are fully quenched when bound by GC base pairs and partially so in the presence of an AT base-pair system to generate purine radical cations. The sensitized formation of the adenine radical cation species (A•+T) is identified by assigning the TRIR spectra with help of DFT calculations. In natural DNA and oligodeoxynucleotides containing a mixture of AT and GC of base pairs, the observed time-resolved spectra are consistent with eventual photo-oxidation occurring predominantly at guanine through hole migration between base pairs. The combined targeting of purines leads to enhanced photo-oxidation of guanine. These results show that DNA photo-oxidation by the intercalated 1, which locates the dppz in contact with the target purines, is dominated by the LC centered excited state. This work has implications for future phototherapeutics and photocatalysis.


Assuntos
Adenina/química , Complexos de Coordenação/química , DNA/química , Substâncias Intercalantes/química , Oxidantes/química , Cromo/química , DNA/efeitos da radiação , Teoria da Densidade Funcional , Cinética , Ligantes , Modelos Químicos , Oxirredução/efeitos da radiação , Fenantrolinas/química , Fenazinas/química
17.
Mar Drugs ; 19(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205180

RESUMO

Three dermacozines, dermacozines N-P (1-3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV-Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)-UV-Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 µM, respectively.


Assuntos
Actinobacteria/química , Sedimentos Geológicos/microbiologia , Fenazinas/química , Fenazinas/isolamento & purificação , Processos Fotoquímicos , Luz , Espectroscopia de Ressonância Magnética , Análise de Regressão , Espectrofotometria/métodos
18.
Eur J Med Chem ; 222: 113562, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116325

RESUMO

Triple-negative breast cancer (TNBC) is a cancer subtype critically dependent upon excessive activation of Wnt pathway. The anti-mycobacterial drug clofazimine is an efficient inhibitor of canonical Wnt signaling in TNBC, reducing tumor cell proliferation in vitro and in animal models. These properties make clofazimine a candidate to become first targeted therapy against TNBC. In this work, we optimized the clofazimine structure to enhance its water solubility and potency as a Wnt inhibitor. After extensive structure-activity relationships investigations, the riminophenazine 5-(4-(chlorophenyl)-3-((2-(piperazin-1-yl)ethyl)imino)-N-(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (MU17) was identified as the new lead compound for the riminophenazine-based targeted therapy against TNBC and Wnt-dependent cancers. Compared to clofazimine, the water-soluble MU17 displayed a 7-fold improved potency against Wnt signaling in TNBC cells resulting in on-target suppression of tumor growth in a patient-derived mouse model of TNBC. Moreover, allowing the administration of reduced yet effective dosages, MU17 displayed no adverse effects, most notably no clofazimine-related skin coloration.


Assuntos
Clofazimina/farmacologia , Fenazinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clofazimina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Solubilidade , Relação Estrutura-Atividade , Água/química , Via de Sinalização Wnt/efeitos dos fármacos
19.
Nucleic Acids Res ; 49(W1): W530-W534, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33950214

RESUMO

With the growth of protein structure data, the analysis of molecular interactions between ligands and their target molecules is gaining importance. PLIP, the protein-ligand interaction profiler, detects and visualises these interactions and provides data in formats suitable for further processing. PLIP has proven very successful in applications ranging from the characterisation of docking experiments to the assessment of novel ligand-protein complexes. Besides ligand-protein interactions, interactions with DNA and RNA play a vital role in many applications, such as drugs targeting DNA or RNA-binding proteins. To date, over 7% of all 3D structures in the Protein Data Bank include DNA or RNA. Therefore, we extended PLIP to encompass these important molecules. We demonstrate the power of this extension with examples of a cancer drug binding to a DNA target, and an RNA-protein complex central to a neurological disease. PLIP is available online at https://plip-tool.biotec.tu-dresden.de and as open source code. So far, the engine has served over a million queries and the source code has been downloaded several thousand times.


Assuntos
DNA/química , Proteínas de Ligação a RNA/química , RNA/química , Software , Algoritmos , Antineoplásicos/química , Guanosina Trifosfato/química , Ligantes , Conformação de Ácido Nucleico , Fenazinas/química , Conformação Proteica , RNA Polimerase II/química , Elementos de Resposta
20.
J Med Chem ; 64(11): 7272-7274, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988992

RESUMO

Halogenated phenazines (HPs) are potent antimicrobial agents. A newly developed halogenated phenazine, HP-29, displays remarkable minimum inhibitory concentration (MIC) of 0.08 µM against methicillin-resistant Staphylococcus aureus, MRSA. HP-29 eradicates preformed biofilm via iron starvation, is nontoxic to mammalian cell lines and is efficacious in wound infection models.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ferro/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Quelantes/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Modelos Animais de Doenças , Halogenação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA