Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 177: 142-152, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828824

RESUMO

Phenylalanine ammonia lyase (PAL) has recently emerged as an important therapeutic enzyme with several biomedical applications. The enzyme catabolizes l-phenylalanine to trans-cinnamate and ammonia. PAL is widely distributed in higher plants, some algae, ferns, and microorganisms, but absent in animals. Although microbial PAL has been extensively exploited in the past for producing industrially important metabolites, its high substrate specificity and catalytic efficacy lately spurred interest in its biomedical applications. PEG-PAL drug named Palynziq™, isolated from Anabaena variabilis has been recently approved for the treatment of adult phenylketonuria (PKU) patients. Further, it has exhibited high potency in regressing tumors and treating tyrosine related metabolic abnormalities like tyrosinemia. Several therapeutically valuable metabolites have been biosynthesized via its catalytic action including dietary supplements, antimicrobial peptides, aspartame, amino-acids, and their derivatives. This review focuses on all the prospective biomedical applications of PAL. It also provides an overview of the structure, production parameters, and various strategies to improve the therapeutic potential of this enzyme. Engineered PAL with improved pharmacodynamic and pharmacokinetic properties will further establish this enzyme as a highly efficient biological drug.


Assuntos
Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/uso terapêutico , Fenilalanina Amônia-Liase/farmacologia , Fenilalanina Amônia-Liase/uso terapêutico , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Animais , Anti-Infecciosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Suplementos Nutricionais , Humanos , Neoplasias/tratamento farmacológico , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/genética
2.
Arch Pharm Res ; 43(1): 1-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989476

RESUMO

The term "single enzyme nanoparticle" (SEN) refers to a chemically or biologically engineered single enzyme molecule. SENs are distinguished from conventional protein nanoparticles in that they can maintain their individual structure and enzymatic activity following modification. Furthermore, SENs exhibit enhanced properties as biopharmaceuticals, such as reduced antigenicity, and increased stability and targetability, which are attributed to the introduction of specific moieties, such as poly(ethylene glycol), carbohydrates, and antibodies. Enzyme replacement therapy (ERT) is a crucial therapeutic option for controlling enzyme-deficiency-related disorders. However, the unfavorable properties of enzymes, including immunogenicity, lack of targetability, and instability, can undermine the clinical significance of ERT. As shown in the cases of Adagen®, Revcovi®, Palynziq®, and Strensiq®, SEN can be an effective technology for overcoming these obstacles. Based on these four licensed products, we expect that additional SENs will be introduced for ERT in the near future. In this article, we review the concepts and features of SENs, as well as their preparation methods. Additionally, we summarize different types of enzyme deficiency disorders and the corresponding therapeutic enzymes. Finally, we focus on the current status of SENs in ERT by reviewing FDA-approved products.


Assuntos
Adenosina Desaminase/uso terapêutico , Fosfatase Alcalina/uso terapêutico , Terapia de Reposição de Enzimas , Imunoglobulina G/uso terapêutico , Nanopartículas/química , Fenilalanina Amônia-Liase/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Humanos
3.
Sci Rep ; 10(1): 1315, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992763

RESUMO

Phenylalanine/tyrosine ammonia-lyases (PAL/TALs) have been approved by the FDA for treatment of phenylketonuria and may harbour potential for complementary treatment of hereditary tyrosinemia Type I. Herein, we explore ancestral sequence reconstruction as an enzyme engineering tool to enhance the therapeutic potential of PAL/TALs. We reconstructed putative ancestors from fungi and compared their catalytic activity and stability to two modern fungal PAL/TALs. Surprisingly, most putative ancestors could be expressed as functional tetramers in Escherichia coli and thus retained their ability to oligomerize. All ancestral enzymes displayed increased thermostability compared to both modern enzymes, however, the increase in thermostability was accompanied by a loss in catalytic turnover. One reconstructed ancestral enzyme in particular could be interesting for further drug development, as its ratio of specific activities is more favourable towards tyrosine and it is more thermostable than both modern enzymes. Moreover, long-term stability assessment showed that this variant retained substantially more activity after prolonged incubation at 25 °C and 37 °C, as well as an increased resistance to incubation at 60 °C. Both of these factors are indicative of an extended shelf-life of biopharmaceuticals. We believe that ancestral sequence reconstruction has potential for enhancing the properties of enzyme therapeutics, especially with respect to stability. This work further illustrates that resurrection of putative ancestral oligomeric proteins is feasible and provides insight into the extent of conservation of a functional oligomerization surface area from ancestor to modern enzyme.


Assuntos
Suplementos Nutricionais , Terapia de Reposição de Enzimas , Fenilalanina Amônia-Liase/uso terapêutico , Tirosinemias/terapia , Animais , Ativação Enzimática , Terapia de Reposição de Enzimas/métodos , Estabilidade Enzimática , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Humanos , Cinética , Modelos Moleculares , Fenilalanina Amônia-Liase/administração & dosagem , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/classificação , Conformação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Termodinâmica , Tirosinemias/etiologia
4.
Proc Natl Acad Sci U S A ; 105(52): 20894-9, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19095795

RESUMO

Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activity results in neurotoxic levels of phenylalanine. We used the Pah(enu2/enu2) PKU mouse model in short- and long-term studies of enzyme substitution therapy with PEGylated phenylalanine ammonia lyase (PEG-PAL conjugates) from 4 different species. The most therapeutically effective PAL (Av, Anabaena variabilis) species was one without the highest specific activity, but with the highest stability; indicating the importance of protein stability in the development of effective protein therapeutics. A PEG-Av-p.C503S/p.C565S-PAL effectively lowered phenylalanine levels in both vascular space and brain tissue over a >90 day trial period, resulting in reduced manifestations associated with PKU, including reversal of PKU-associated hypopigmentation and enhanced animal health. Phenylalanine reduction occurred in a dose- and loading-dependent manner, and PEGylation reduced the neutralizing immune response to the enzyme. Human clinical trials with PEG-Av-p.C503S/p.C565S-PAL as a treatment for PKU are underway.


Assuntos
Anabaena variabilis/enzimologia , Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Fenilalanina Amônia-Liase/farmacologia , Fenilcetonúrias/tratamento farmacológico , Polietilenoglicóis , Proteínas Recombinantes/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Proteínas de Bactérias/efeitos adversos , Proteínas de Bactérias/uso terapêutico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática/fisiologia , Humanos , Camundongos , Camundongos Mutantes , Especificidade de Órgãos/efeitos dos fármacos , Fenilalanina/metabolismo , Fenilalanina Amônia-Liase/efeitos adversos , Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/metabolismo , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico
5.
Artigo em Inglês | MEDLINE | ID: mdl-7719440

RESUMO

Oral binders remove intestinal bile acid and prevent its reabsorption and recycling thereby lowering systemic cholesterol levels. The results in this paper demonstrate the presence of another extensive enterorecirculation for amino acids. Pancreatic and other glandular secretions into the intestine contain large amounts of proteins, enzymes and polypeptides. Tryptic digestion converts these into amino acids which are then reabsorbed back into the body as they pass down the intestine. This paper shows that this forms a large enterorecirculation of amino acids between the body and intestine. The dietary protein source of amino acids is negligible when compared to the endogenous source, since this paper shows that protein-free diet did not alter the intestinal amino acid concentration. This raises the possibility of using this for the selective depletion of specific body amino acids. In this paper we use a phenylketonuria (PKU) model in rats to test the use of this hypothesis. In PKU rats, artificial cells microencapsulated phenylalanine ammonia lyase (PAL) given orally is more effective than a phenylalanine-free diet. The enzyme artificial cells are more efficient in lowering PHE in the intestine, plasma and cerebrospinal fluid. Compared to PKU on PHE-free diet, this has resulted in better weight gain and general physical condition. Preliminary studies also show that artificial cells microencapsulated asparaginase, glutaminase and tyrosinase given orally can deplete the corresponding amino acid from the intestine.


Assuntos
Mucosa Intestinal/metabolismo , Secreções Intestinais/metabolismo , Fenilalanina Amônia-Liase/uso terapêutico , Fenilalanina/metabolismo , Fenilcetonúrias/terapia , Aminoácidos/análise , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Peso Corporal , Dieta com Restrição de Proteínas , Modelos Animais de Doenças , Formas de Dosagem , Composição de Medicamentos , Secreções Intestinais/química , Intestinos/química , Masculino , Modelos Biológicos , Fenilalanina/sangue , Fenilalanina/líquido cefalorraquidiano , Fenilcetonúrias/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA