RESUMO
Mutations in nucleus-encoded mitochondrial aminoacyl-tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl-tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild-type enzyme with reduced solubility in vitro. The presence of aggregation-prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141-1149, 2019 © 2019 IUBMB Life, 71(8):1141-1149, 2019.
Assuntos
Esclerose Cerebral Difusa de Schilder/enzimologia , Mitocôndrias/enzimologia , Paraplegia/enzimologia , Fenilalanina-tRNA Ligase/fisiologia , Trifosfato de Adenosina/química , Aminoacilação , Esclerose Cerebral Difusa de Schilder/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Luz , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mutação , Paraplegia/genética , Tamanho da Partícula , Fenilalanina/química , Fenilalanina-tRNA Ligase/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Solubilidade , TemperaturaRESUMO
Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.