Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
Genome Biol ; 25(1): 131, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773623

RESUMO

BACKGROUND: High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS: We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS: This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.


Assuntos
Edição de Genes , Oryza , Proteínas de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade/genética , Técnicas de Silenciamento de Genes , Proteína 1 Homóloga a MutL/genética , Interferência de RNA , Sistemas CRISPR-Cas , Plantas Geneticamente Modificadas
2.
PLoS One ; 19(5): e0303115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776353

RESUMO

The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.


Assuntos
Drosophila melanogaster , Fertilidade , Mutação , Raios Ultravioleta , Animais , Drosophila melanogaster/efeitos da radiação , Drosophila melanogaster/genética , Raios Ultravioleta/efeitos adversos , Fertilidade/efeitos da radiação , Fertilidade/genética , Mutação/efeitos da radiação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estresse Oxidativo/efeitos da radiação , Estresse Oxidativo/genética , Masculino , Feminino , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos da radiação
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731841

RESUMO

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Assuntos
Quinase 5 Dependente de Ciclina , Proteínas Proto-Oncogênicas c-akt , Interferência de RNA , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Fertilidade/efeitos da radiação , Fertilidade/genética , Mariposas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Reprodução/efeitos da radiação , Reprodução/genética
4.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612746

RESUMO

Signal peptide peptidase (SPP) and its homologs, signal peptide peptidase-like (SPPL) proteases, are members of the GxGD-type aspartyl protease family, which is widespread in plants and animals and is a class of transmembrane proteins with significant biological functions. SPP/SPPLs have been identified; however, the functions of SPP/SPPL in rapeseed (Brassica napus L.) have not been reported. In this study, 26 SPP/SPPLs were identified in rapeseed and categorized into three groups: SPP, SPPL2, and SPPL3. These members mainly contained the Peptidase_A22 and PA domains, which were distributed on 17 out of 19 chromosomes. Evolutionary analyses indicated that BnaSPP/SPPLs evolved with a large number of whole-genome duplication (WGD) events and strong purifying selection. Members are widely expressed and play a key role in the growth and development of rapeseed. The regulation of rapeseed pollen fertility by the BnaSPPL4 gene was further validated through experiments based on bioinformatics analysis, concluding that BnaSPPL4 silencing causes male sterility. Cytological observation showed that male infertility caused by loss of BnaSPPL4 gene function occurs late in the mononucleate stage due to microspore dysplasia.


Assuntos
Brassica napus , Brassica rapa , Infertilidade Masculina , Animais , Humanos , Masculino , Brassica napus/genética , Ácido Aspártico Endopeptidases , Fertilidade/genética , Peptídeo Hidrolases
5.
FEBS Open Bio ; 14(3): 390-409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320757

RESUMO

Post-translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post-translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH-7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH-7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel-Lindau (VHL) E3 ligase, suggesting a potential role for PPH-7 in the regulation of VHL.


Assuntos
Caenorhabditis elegans , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Caenorhabditis elegans/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Temperatura , Proteínas Tirosina Fosfatases , Desenvolvimento Embrionário/genética , Fertilidade/genética
6.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396941

RESUMO

Semen proteins play an important role in male reproductive performance and sperm fertilization ability and can be used as potential biomarkers to evaluate male fertility. The role of cysteine-rich secretory protein 3 (CRISP3) in male reproduction remains unknown. This study aimed to investigate the role of CRISP3 in the reproductive performance of boars. Our results showed that the CRISP3 protein content was significantly and positively correlated with boar fertility, sow delivery rate, and litter size. CRISP3 is highly expressed in the bulbourethral gland of adult boars and is enriched in the seminal plasma. It is localized in the post-acrosomal region of the sperm head and migrates to the anterior end of the tail after capacitation. The CRISP3 recombinant protein did not affect sperm motility and cleavage rate, but it significantly downregulated the mRNA expression of inflammatory factors IL-α, IL-1ß, and IL-6 and the protein expression of IL-α and IL-6 in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that CRISP3 has an immunomodulatory function. In conclusion, our study suggests that semen CRISP3 protein levels positively correlate with reproductive performance, which may be achieved by regulating immune responses in the female reproductive tract.


Assuntos
Fertilidade , Imunomodulação , Interleucina-6 , Sêmen , Proteínas do Líquido Seminal , Suínos , Animais , Feminino , Masculino , Gravidez , Fertilidade/genética , Interleucina-6/metabolismo , Tamanho da Ninhada de Vivíparos , Sêmen/fisiologia , Análise do Sêmen , Proteínas do Líquido Seminal/fisiologia , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/imunologia
7.
Cell Death Dis ; 15(1): 30, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212646

RESUMO

Development of the gonads under complex androgen regulation is critical for germ cells specification. In this work we addressed the relationship between androgens and genomic integrity determining human fertility. We used different study groups: individuals with Differences of Sex Development (DSD), including Complete Androgen Insensitivity Syndrome (CAIS) due to mutated androgen receptor (AR), and men with idiopathic nonobstructive azoospermia. Both showed genome integrity status influenced by androgen signaling via innate immune response activation in blood and gonads. Whole proteome analysis connected low AR to interleukin-specific gene expression, while compromised genome stability and tumorigenesis were also supported by interferons. AR expression was associated with predominant DNA damage phenotype, that eliminated AR-positive Sertoli cells as the degeneration of gonads increased. Low AR contributed to resistance from the inhibition of DNA repair in primary leukocytes. Downregulation of androgen promoted apoptosis and specific innate immune response with higher susceptibility in cells carrying genomic instability.


Assuntos
Androgênios , Receptores Androgênicos , Masculino , Humanos , Androgênios/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Gônadas , Fertilidade/genética , Células de Sertoli/metabolismo , Imunidade Inata/genética , Mutação
8.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203848

RESUMO

A genome-wide association study (GWAS) of fat percentage (FPC) using 1,231,898 first lactation cows and 75,198 SNPs confirmed a previous result that a Chr14 region about 9.38 Mb in size (0.14-9.52 Mb) had significant inter-chromosome additive × additive (A×A) effects with all chromosomes and revealed many new such effects. This study divides this 9.38 Mb region into two sub-regions, Chr14a at 0.14-0.88 Mb (0.74 Mb in size) with 78% and Chr14b at 2.21-9.52 Mb (7.31 Mb in size) with 22% of the 2761 significant A×A effects. These two sub-regions were separated by a 1.3 Mb gap at 0.9-2.2 Mb without significant inter-chromosome A×A effects. The PPP1R16A-FOXH1-CYHR1-TONSL (PFCT) region of Chr14a (29 Kb in size) with four SNPs had the largest number of inter-chromosome A×A effects (1141 pairs) with all chromosomes, including the most significant inter-chromosome A×A effects. The SLC4A4-GC-NPFFR2 (SGN) region of Chr06, known to have highly significant additive effects for some production, fertility and health traits, specifically interacted with the PFCT region and a Chr14a region with CPSF1, ADCK5, SLC52A2, DGAT1, SMPD5 and PARP10 (CASDSP) known to have highly significant additive effects for milk production traits. The most significant effects were between an SNP in SGN and four SNPs in PFCT. The CASDSP region mostly interacted with the SGN region. In the Chr14b region, the 2.28-2.42 Mb region (138.46 Kb in size) lacking coding genes had the largest cluster of A×A effects, interacting with seventeen chromosomes. The results from this study provide high-confidence evidence towards the understanding of the genetic mechanism of FPC in Holstein cows.


Assuntos
Cromossomos Humanos Par 14 , Estudo de Associação Genômica Ampla , Feminino , Humanos , Bovinos/genética , Animais , Fertilidade/genética , Lactação , Fenótipo , NF-kappa B , Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas
9.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052102

RESUMO

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Gemelação Dizigótica , Animais , Feminino , Humanos , Gravidez , Proteínas de Transporte/genética , Fertilidade/genética , Hormônios , Proteínas/genética , Estados Unidos , Peixe-Zebra/genética
10.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38066676

RESUMO

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.


Assuntos
Receptor alfa de Estrogênio , Motilidade dos Espermatozoides , Masculino , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Motilidade dos Espermatozoides/genética , Sêmen/metabolismo , Estrogênios , Camundongos Knockout , Fertilidade/genética
11.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114195

RESUMO

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Fertilidade/genética
12.
Biol Reprod ; 110(4): 684-697, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38145487

RESUMO

The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.


Assuntos
Proteínas de Ancoragem à Quinase A , Proteína Quinase Tipo I Dependente de AMP Cíclico , Motilidade dos Espermatozoides , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fertilidade/genética , Sêmen/metabolismo , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Capacitação Espermática/genética
13.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37942801

RESUMO

Ciliary action performs a critical role in the oviduct (Fallopian tube) during pregnancy establishment through sperm and egg transport. The disruption of normal ciliary function in the oviduct affects oocyte pick-up and is a contributing factor to female infertility. Estrogen is an important regulator of ciliary action in the oviduct and promotes ciliogenesis in several species. Global loss of estrogen receptor α (ESR1) leads to infertility. We have previously shown that ESR1 in the oviductal epithelial cell layer is required for female fertility. Here, we assessed the role of estrogen on transcriptional regulation of ciliated epithelial cells of the oviduct using single-cell RNA-sequencing analysis. We observed minor variations in ciliated cell genes in the proximal region (isthmus and uterotubal junction) of the oviduct. However, 17ß-estradiol treatment had little impact on the gene expression profile of ciliated epithelial cells. We also conditionally ablated Esr1 from ciliated epithelial cells of the oviduct (called ciliated Esr1d/d mice). Our studies showed that ciliated Esr1d/d females had fertility rates comparable to control females, did not display any disruptions in preimplantation embryo development or embryo transport to the uterus, and had comparable cilia formation to control females. However, we observed some incomplete deletion of Esr1 in the ciliated epithelial cells, especially in the ampulla region. Nevertheless, our data suggest that ESR1 expression in ciliated cells of the oviduct is dispensable for ciliogenesis and nonessential for female fertility in mice.


Assuntos
Tubas Uterinas , Infertilidade Feminina , Feminino , Masculino , Gravidez , Humanos , Animais , Camundongos , Sêmen , Oviductos , Fertilidade/genética , Células Epiteliais , Estrogênios/farmacologia
14.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834260

RESUMO

Meishan pigs are a well-known indigenous pig breed in China characterized by a high fertility. Notably, the number of endometrial grands is significantly higher in Meishan pigs than Duroc pigs. The characteristics of the endometrial tissue are related to litter size. Therefore, we used the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-sequencing (RNA-seq) to analyze the mechanisms underlying the differences in fecundity between the breeds. We detected the key transcription factors, including Double homeobox (Dux), Ladybird-like homeobox gene 2 (LBX2), and LIM homeobox 8 (Lhx8), with potentially pivotal roles in the regulation of the genes related to endometrial development. We identified the differentially expressed genes between the breeds, including SOX17, ANXA4, DLX3, DMRT1, FLNB, IRF6, CBFA2T2, TFCP2L1, EFNA5, SLIT2, and CYFIP2, with roles in epithelial cell differentiation, fertility, and ovulation. Interestingly, ANXA4, CBFA2T2, and TFCP2L1, which were upregulated in the Meishan pigs in the RNA-seq analysis, were identified again by the integration of the ATAC-seq and RNA-seq data. Moreover, we identified genes in the cancer or immune pathways, FoxO signaling, Wnt signaling, and phospholipase D signaling pathways. These ATAC-seq and RNA-seq analyses revealed the accessible chromatin and potential mechanisms underlying the differences in the endometrial tissues between the two types of pigs.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Fertilidade , Gravidez , Feminino , Suínos , Animais , RNA-Seq , Fertilidade/genética , Tamanho da Ninhada de Vivíparos/genética , Cromatina
15.
BMC Genomics ; 24(1): 600, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814208

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play an important regulatory role in mammalian reproduction. Currently, most studies are primarily concentrated on ovarian miRNAs, ignoring the influence of endometrial miRNAs on the fecundity of female sheep. To uncover potential regulators of sheep fecundity, RNA-seq was used to comparatively analyze miRNA expression profiles of endometrium between high prolificacy sheep (HP, litter size = 3) and low prolificacy sheep (LP, litter size = 1) with FecB genotype. RESULTS: Firstly, genomic features of miRNAs from endometrium were analyzed. Furthermore, 58 differentially expressed (DE) miRNAs were found in the endometrium of Hu sheep with different litter size. A co-expression network of DE miRNAs and target genes has been constructed, and hub genes related litter size are included, such as DE miRNA unconservative_NC_019472.2_1229533 and unconservative_NC_019481.2_1637827 target to estrogen receptor α (ESR1) and unconservative_NC_019481.2_1637827 targets to transcription factor 7 (TCF7). Moreover, functional annotation analysis showed that the target genes (NRCAM and NEGR1) of the DE miRNAs were significantly enriched in cell adhesion molecules (CAMs) signaling pathway, which was related to uterine receptivity. CONCLUSION: Taken together, this study provides a new valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.


Assuntos
MicroRNAs , Ovinos/genética , Feminino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Fertilidade/genética , Endométrio/metabolismo , Mamíferos/genética
16.
BMC Plant Biol ; 23(1): 434, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723448

RESUMO

BACKGROUND: Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS: H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION: Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.


Assuntos
MicroRNAs , Oryza , Oryza/genética , Tetraploidia , Melhoramento Vegetal , Fertilidade/genética , Pólen/genética , RNA-Seq , MicroRNAs/genética
17.
J Dairy Sci ; 106(12): 9778-9792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641334

RESUMO

The aims of this study were (1) to evaluate potential associations between genetic traits, postpartum phenotypes, cow factors, and postpartum vaginal discharge score (VDS); and (2) to investigate possible associations between postpartum VDS, plasma progesterone (P4) after first service, and reproductive performance. First- and second-parity (n = 2,842) spring-calving lactating dairy cows from 35 dairy herds were enrolled. Farm visits were performed every 2 wk during the postpartum period and weekly during the breeding period. Cows that were at wk 3 and wk 7 postpartum and between 7 and 13 d after first artificial insemination (AI) were examined. Body condition score (BCS) was measured on all farm visits using a 1-to-5 scale (low ≤2.5; target ≥2.75). Transrectal ultrasound examinations were conducted to determine the presence or absence of a corpus luteum (CL). Vaginal discharge score was determined at wk 3 and wk 7 using a Metricheck device (Simcro) and a 1-to-4 scale (1 = clear mucus; 4 = mucopurulent with >50% purulent material ± odor). At wk 3, cows having a VDS ≤2 were considered to have normal reproductive tract health status (RTHS). At wk 7, cows having VDS = 1 were considered to have normal RTHS. Blood samples were collected at each visit, and plasma concentrations of glucose, ß-hydroxybutyrate, fatty acids, and progesterone (only during breeding visit) were analyzed. Animals with target BCS at wk 3 and wk 7 had greater odds of having normal RTHS at wk 3 and wk 7, respectively, than cows with low BCS. Cows with a CL at wk 3 and wk 7 had greater prevalence of normal RTHS at wk 3 and wk 7, respectively, compared with cows without a CL. Cows with normal RTHS had a lesser plasma concentration of ß-hydroxybutyrate at wk 3 and wk 7 and greater plasma concentration of glucose at wk 3 compared with animals with abnormal RTHS. More cows in the greatest quartiles for the fertility subindex of the Economic Breeding Index and genetic merit for milk production traits (milk kg and milk protein [%]) had normal RTHS at wk 3 and wk 7 compared with the other quartiles. Cows with VDS = 4 at wk 7 postpartum had lesser plasma P4 concentration after first AI (-1.2, -1.1, and -1.0 ng/mL compared with cows with VDS = 1, 2, and 3, respectively). Similarly, cows with VDS = 4 at both wk 3 and wk 7 had lesser pregnancy at first service, lesser cumulative pregnancy rates at wk 3, 6, and 12 during the breeding period, and longer interval from mating start date to conception (+3 d if VDS = 4 at wk 3; +5 d if VDS = 4 at wk 7), compared with cows having other VDS. In conclusion, cows with superior genetic merit for fertility traits and milk production traits, and favorable fertility phenotypes at wk 3 and wk 7, were all associated with greater likelihood of having normal RTHS. In turn, abnormal postpartum RTHS and greater postpartum VDS (score = 4) were associated with lesser odds of successful pregnancy establishment.


Assuntos
Doenças dos Bovinos , Descarga Vaginal , Gravidez , Feminino , Bovinos , Animais , Lactação/genética , Progesterona , Estações do Ano , Ácido 3-Hidroxibutírico , Período Pós-Parto , Fertilidade/genética , Descarga Vaginal/veterinária , Fenótipo , Glucose
18.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511419

RESUMO

The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.


Assuntos
Neoplasias , Testículo , Gravidez , Animais , Humanos , Masculino , Feminino , Testículo/metabolismo , Placenta , Espermatogênese/genética , Reprodução , Neoplasias/genética , Neoplasias/metabolismo , Mamíferos , Poliploidia , Fertilidade/genética
19.
Biochem Biophys Res Commun ; 675: 46-53, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451217

RESUMO

Melanoma antigen (MAGE)-B4 belongs to the MAGE-B family genes, which are located on the X chromosome. The MAGE-B family genes are classified as cancer-testis antigens, as they are primarily expressed in the testis and are aberrantly expressed in most cancers. Although a no-stop mutation in MAGE-B4 causes rare X-linked azoospermia and oligozoospermia phenotype in humans, the specific function of MAGE-B4 on spermatogenesis in mice remains unclear. In this study, we identified MAGE-B4 as a binding partner of PRAME family member 12, which plays an important role in the maintenance of mouse spermatogenic lineage in juvenile testes. Additionally, we found that Mage-b4 transcripts were restricted to the testis and that Mage-b4 was specifically expressed in spermatogonia. To explore the function of MAGE-B4 in spermatogenesis, we generated a Mage-b4 knockout (KO) mouse model using CRISPR/Cas9 technology. However, we found that Mage-b4 KO males displayed normal testicular morphology and fertility. Further histological analysis revealed that all stages of spermatogenic cells were present in the seminiferous tubules of the Mage-b4 KO mice. Altogether, our data suggest that Mage-b4 is dispensable for mouse spermatogenesis and male fertility.


Assuntos
Melanoma , Espermatogênese , Animais , Masculino , Camundongos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Fertilidade/genética , Melanoma/metabolismo , Camundongos Knockout , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo
20.
Cell Death Dis ; 14(6): 349, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270544

RESUMO

Infertility is a worldwide reproductive health problem and there are still many unknown etiologies of infertility. In recent years, increasing evidence emerged and confirmed that epigenetic regulation played a leading role in reproduction. However, the function of m6A modification in infertility remains unknown. Here we report that METTL3-dependent m6A methylation plays an essential role in female fertility via balancing the estrogen and progesterone signaling. Analysis of GEO datasets reveal a significant downregulation of METTL3 expression in the uterus of infertile women with endometriosis or recurrent implantation failure. Conditional deletion of Mettl3 in female reproductive tract by using a Pgr-Cre driver results in infertility due to compromised uterine endometrium receptivity and decidualization. m6A-seq analysis of the uterus identifies the 3'UTR of several estrogen-responsive genes with METTL3-dependent m6A modification, like Elf3 and Celsr2, whose mRNAs become more stable upon Mettl3 depletion. However, the decreased expression levels of PR and its target genes, including Myc, in the endometrium of Mettl3 cKO mice indicate a deficiency in progesterone responsiveness. In vitro, Myc overexpression could partially compensate for uterine decidualization failure caused by Mettl3 deficiency. Collectively, this study reveals the role of METTL3-dependent m6A modification in female fertility and provides insight into the pathology of infertility and pregnancy management.


Assuntos
Infertilidade Feminina , Progesterona , Gravidez , Humanos , Feminino , Camundongos , Animais , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Metilação , Epigênese Genética , Receptores de Progesterona/metabolismo , Útero/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Fertilidade/genética , Metiltransferases/genética , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA