Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992783

RESUMO

Nearly 100 years ago, Otto Warburg investigated the metabolism of growing tissues and discovered that tumors reprogram their metabolism. It is poorly understood whether and how hypertrophying muscle, another growing tissue, reprograms its metabolism too. Here, we studied pyruvate kinase muscle (PKM), which can be spliced into two isoforms (PKM1, PKM2). This is of interest, because PKM2 redirects glycolytic flux towards biosynthetic pathways, which might contribute to muscle hypertrophy too. We first investigated whether resistance exercise changes PKM isoform expression in growing human skeletal muscle and found that PKM2 abundance increases after six weeks of resistance training, whereas PKM1 decreases. Second, we determined that Pkm2 expression is higher in fast compared to slow fiber types in rat skeletal muscle. Third, by inducing hypertrophy in differentiated C2C12 cells and by selectively silencing Pkm1 and/or Pkm2 with siRNA, we found that PKM2 limits myotube growth. We conclude that PKM2 contributes to hypertrophy in C2C12 myotubes and indicates a changed metabolic environment within hypertrophying human skeletal muscle fibers. PKM2 is preferentially expressed in fast muscle fibers and may partly contribute to the increased potential for hypertrophy in fast fibers.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Treinamento Resistido , Hormônios Tireóideos/metabolismo , Adulto , Linhagem Celular , Humanos , Hipertrofia , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Proteínas de Ligação a Hormônio da Tireoide
2.
Int J Sports Med ; 40(4): 253-262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30836391

RESUMO

Consequences of running mountain races on muscle damage were investigated by analysing serum muscle enzymes and fibre-type-specific sarcomere proteins. We studied 10 trained amateur and 6 highly trained runners who ran a 35 km and 55 km mountain trail race (MTR), respectively. Levels of creatine kinase (CK), CK-MB isoform (CK-MB), sarcomeric mitochondrial CK (sMtCK), transaminases (AST and ALT), cardiac troponin I (cTnI) and fast (FM) and slow myosin (SM) isoforms, were assessed before, 1 h, 24 h and 48 h after the beginning of MTR. Significant SM increases were found at 24 h in the 55 km group. Levels of CK, CK-MB, AST and cTnI were significantly elevated in both groups following MTR, but in the 55 km group they tended to stabilize in at 48 h. Using pooled data, time-independent serum peaks of SM and CK-MB were significantly correlated. Moreover, concentration of sMtCK was significantly elevated at 1 and 24 h after the race in the 35 km group. Although training volume could confer protection on the mitochondria, the increase in serum CK-MB and SM in the 55 km group might be related to damage to the contractile apparatus type I fibres. Competing in long-distance MTRs might be related to deeper type I muscle fibre damage, even in highly trained individuals.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Corrida/lesões , Adulto , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Comportamento Competitivo/fisiologia , Creatina Quinase/sangue , Creatina Quinase Forma MB/sangue , Creatina Quinase Mitocondrial , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Miosinas/metabolismo , Condicionamento Físico Humano , Isoformas de Proteínas/metabolismo , Sarcômeros/enzimologia , Troponina I/metabolismo
3.
FASEB J ; 33(2): 1946-1962, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30204503

RESUMO

Skeletal muscle mass is regulated by the coordinated activation of several anabolic and catabolic pathways. The endoplasmic reticulum (ER) is a major site of protein folding and a reservoir for calcium ions. Accretion of misfolded proteins or depletion in calcium concentration causes stress in the ER, which leads to the activation of a signaling network known as the unfolded protein response (UPR). In the present study, we investigated the role of the protein kinase R-like endoplasmic reticulum kinase (PERK) arm of the UPR in the regulation of skeletal muscle mass and function in naive conditions and in a mouse model of cancer cachexia. Our results demonstrate that the targeted inducible deletion of PERK reduces skeletal muscle mass, strength, and force production during isometric contractions. Deletion of PERK also causes a slow-to-fast fiber type transition in skeletal muscle. Furthermore, short hairpin RNA-mediated knockdown or pharmacologic inhibition of PERK leads to atrophy in cultured myotubes. While increasing the rate of protein synthesis, the targeted deletion of PERK leads to the increased expression of components of the ubiquitin-proteasome system and autophagy in skeletal muscle. Ablation of PERK also increases the activation of calpains and deregulates the gene expression of the members of the FGF19 subfamily. Furthermore, the targeted deletion of PERK increases muscle wasting in Lewis lung carcinoma tumor-bearing mice. Our findings suggest that the PERK arm of the UPR is essential for the maintenance of skeletal muscle mass and function in adult mice.-Gallot, Y. S., Bohnert, K. R., Straughn, A. R., Xiong, G., Hindi, S. M., Kumar, A. PERK regulates skeletal muscle mass and contractile function in adult mice.


Assuntos
Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , eIF-2 Quinase/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/genética , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética
4.
Exp Gerontol ; 75: 8-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747222

RESUMO

Na(+), K(+)-ATPase (NKA) isoforms (α1,α2,α3,ß1,ß2,ß3) are involved in the maintenance of membrane potential and hence are important regulators of cellular homeostasis. Given the age-related decline in skeletal muscle function, we investigated whether the natural physiological process of aging is associated with altered abundance of NKA isoforms (α1,α2,α3,ß1,ß2,ß3) or of the commonly used control protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, measurements were made in both whole muscle or specific fiber types obtained from skeletal muscle biopsies. Seventeen healthy older (AGED, 69.4 ± 3.5 years, mean ± SD) and 14 younger (YOUNG, 25.5 ± 2.8 years) adults underwent a muscle biopsy for biochemical analyses. Comparing homogenates from AGED and YOUNG individuals revealed higher ß3 isoform (p<0.05) and lower GAPDH (p<0.05). Analysis of individual fibers in muscle from YOUNG individuals, showed greater α3 and ß2 isoforms, and more GAPDH in Type II compared with Type I fibers (p<0.05). In the AGED, GAPDH was higher in Type II compared with Type I fibers (p<0.05), there were no fiber type differences in the NKA isoforms (p>0.05). Compared with the same fiber type in YOUNG, α1 was greater (Type I) and α3 lower (Type II), while in both fiber types, ß2 was lower, ß3 greater and GAPDH lower, in muscle from AGED individuals (all p<0.05). Overall, we demonstrate that (i) GAPDH is an inappropriate choice of protein for normalization in all skeletal muscle research and (ii) full understanding of the role of NKA isoforms in human skeletal muscle requires consideration of age and muscle fiber type.


Assuntos
Envelhecimento/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/análise , Músculo Esquelético/enzimologia , ATPase Trocadora de Sódio-Potássio/análise , Adulto , Idoso , Envelhecimento/patologia , Feminino , Humanos , Isoenzimas/análise , Masculino , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Proteínas Musculares/análise , Músculo Esquelético/citologia
5.
J Appl Physiol (1985) ; 119(4): 342-51, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26112243

RESUMO

Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (-38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fenótipo , RNA Mensageiro/metabolismo , Ratos Wistar , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
6.
Eur J Vasc Endovasc Surg ; 49(3): 306-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556082

RESUMO

OBJECTIVES: In cardiac muscle, ischemia reperfusion (IR) injury is attenuated by mitochondrial function, which may be upregulated by focal adhesion kinase (FAK). The aim of this study was to determine whether increased FAK levels reduced rhabdomyolysis in skeletal muscle too. MATERIAL AND METHODS: In a translational in vivo experiment, rat lower limbs were subjected to 4 hours of ischemia followed by 24 or 72 hours of reperfusion. FAK expression was stimulated 7 days before (via somatic transfection with pCMV-driven FAK expression plasmid) and outcomes were measured against non-transfected and empty transfected controls. Slow oxidative (i.e., mitochondria-rich) and fast glycolytic (i.e., mitochondria-poor) type muscles were analyzed separately regarding rhabdomyolysis, apoptosis, and inflammation. Severity of IR injury was assessed using paired non-ischemic controls. RESULTS: After 24 hours of reperfusion, marked rhabdomyolysis was found in non-transfected and empty plasmid-transfected fast-type glycolytic muscle, tibialis anterior. Prior transfection enhanced FAK concentration significantly (p = 0.01). Concomitantly, levels of BAX, promoting mitochondrial transition pores, were reduced sixfold (p = 0.02) together with a blunted inflammation (p = 0.01) and reduced rhabdomyolysis (p = 0.003). Slow oxidative muscle, m. soleus, reacted differently: although apoptosis was detectable after IR, rhabdomyolysis did not appear before 72 hours of reperfusion; and FAK levels were not enhanced in ischemic muscle despite transfection (p = 0.66). CONCLUSIONS: IR-induced skeletal muscle rhabdomyolysis is a fiber type-specific phenomenon that appears to be modulated by mitochondria reserves. Stimulation of FAK may exploit these reserves constituting a potential therapeutic approach to reduce tissue loss following acute limb IR in fast-type muscle.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/biossíntese , Terapia Genética/métodos , Isquemia/terapia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Rabdomiólise/prevenção & controle , Animais , Modelos Animais de Doenças , Eletroporação , Proteína-Tirosina Quinases de Adesão Focal/genética , Técnicas de Transferência de Genes , Glicólise , Membro Posterior , Isquemia/enzimologia , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Mitocôndrias Musculares/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Músculo Esquelético/patologia , Oxirredução , Projetos Piloto , Ratos Wistar , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Rabdomiólise/enzimologia , Rabdomiólise/genética , Rabdomiólise/fisiopatologia , Fatores de Tempo
7.
Metabolism ; 64(2): 296-304, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433920

RESUMO

OBJECTIVE: 5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key molecule of metabolic enhancement in skeletal muscle. We investigated whether metformin (MET) acts directly on skeletal muscle, is transported into skeletal muscle via organic cation transporters (OCTs), and activates AMPK. MATERIALS/METHODS: Isolated rat epitrochlearis and soleus muscles were incubated in vitro either in the absence or in the presence of MET. The activation status of AMPK, the intracellular energy status, and glucose and MET transport activity were then evaluated. The effect of cimetidine, which is an OCT inhibitor, on AMPK activation was also examined. RESULTS: MET (10 mmol/L, ≥60 min) increased the phosphorylation of Thr¹7² at the catalytic α subunit of AMPK in both muscles. AMPK activity assays showed that both AMPKα1 and AMPKα2 activity increased significantly. The AMPK activation was associated with energy deprivation, which was estimated from the ATP, phosphocreatine (PCr), and glycogen content, and with increased rates of 3-O-methyl-D-glucose (3MG) transport. MET did not change the basal phosphorylation status of insulin receptor signaling molecules. MET was transported into the cytoplasm in a time-dependent manner, and cimetidine suppressed MET-induced AMPK phosphorylation and 3MG transport. CONCLUSION: These results suggest that MET is acutely transported into skeletal muscle by OCTs, and stimulates AMPKα1 and α2 activity in both fast- and slow-twitch muscle types, at least in part by reducing the energy state.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , 3-O-Metilglucose/metabolismo , Proteínas Quinases Ativadas por AMP/química , Animais , Transporte Biológico/efeitos dos fármacos , Cimetidina/farmacologia , Metabolismo Energético , Ativação Enzimática/efeitos dos fármacos , Técnicas In Vitro , Masculino , Moduladores de Transporte de Membrana/farmacologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar
8.
J Cell Physiol ; 230(1): 160-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24905939

RESUMO

Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme implicated in motility, differentiation, and regeneration of skeletal muscle fibers through processing of extracellular substrates. Although MMP-2 has been found to be localized intracellularly in cardiomyocytes where the enzyme is thought to contribute to post-ischemic loss of contractility, little is known about intracellular MMP-2 activity in skeletal muscle fibers. In the present study we demonstrate intracellular MMP-2 in normal skeletal muscle by immunohistochemical staining. Immunogold electron microscopic analyses indicated that the enzyme was concentrated in Z-lines of the sarcomers, in the nuclear membrane, and in mitochondria. By use of in situ zymography, we found that gelatinolytic activity in muscle fibers was co-localized with immunofluorecent staining for MMP-2. Staining for MMP-9, the other member of the gelatinase group of the MMPs, was negative. The broad-spectrum metalloprotease inhibitor EDTA and the selective gelatinase inhibitor CTT2, but not the cysteine inhibitor E64, strongly reduced the gelatinolytic activity. The intracellular gelatinolytic activity was much more prominent in fast twitch type II fibers than in slow twitch type I fibers, and there was a decrease in intracellular gelatinolytic activity and MMP-2 expression in muscles from mice exposed to high intensity interval training. Together our results indicate that MMP-2 is part of the intracellular proteolytic network in normal skeletal muscle, especially in fast twitch type II fibers. Further, the results suggest that intracellular MMP-2 in skeletal muscle fibers is active during normal homeostasis, and affected by the level of physical activity.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Animais , Diferenciação Celular , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Ácido Edético/farmacologia , Gelatinases/antagonistas & inibidores , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Mioblastos/citologia , Peptídeos Cíclicos/farmacologia , Condicionamento Físico Animal , Sarcômeros/metabolismo
9.
Braz. j. biol ; 74(3,supl.1): S177-S183, 8/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-732279

RESUMO

A general analysis of the behaviour of “Cebus” shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral) and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) and Slow Twitc (SO). In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.


Uma análise geral do comportamento do “Cebus apella” mostra que este primata quando desloca para se alimentar ou realizar outra atividade apresenta diferentes maneiras de locomoção. Estas informações mostram que o músculo bíceps braquial deste animal é usado freqüentemente nas suas atividades de locomoção, mas deve ser lembrado ainda que este músculo é usado também para desenvolvimento de outras atividades como esconder-se, procurar objetos, vasculhar arboredos, além de cavar o chão. Considerando-se o exposto acima decidiu-se pesquisar as características histoenzimológicas do músculo bíceps braquial do macaco-prego com o objetivo de comparar se este músculo esta melhor adaptado para funções posturais ou fásicas. As amostras foram retiradas das regiões superficiais e profundas; inserções proximais (medial e lateral) e distal de seis macacos-prego machos e adultos, os quais foram submetidos às reações de m-ATPase, NADH-Tr. Baseado nos resultados das reações, as fibras foram classificadas em Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) e Slow Twitch (SO). Quanto à área dos diferentes tipos de fibras, os resultados encontrados foram semelhantes em todas as amostras estudadas, e as fibras de contração rápida foram sempre maiores do que as de contração lenta (FG=FOG>SO). Os dados obtidos sobre a frequência foram: nas três regiões superficiais estudadas FOG=FG>SO; nas regiões profundas das inserções proximais FOG=FG=SO e na inserção distal FOG>FG=SO. Baseado nestes dados pode-se concluir que o músculo bíceps braquial do macaco-prego está bem adaptado tanto para atividades posturais como fásicas.


Assuntos
Animais , Masculino , Braço/fisiologia , Cebus/metabolismo , Fibras Musculares Esqueléticas/enzimologia , Braço/inervação , Cebus/classificação , Cebus/fisiologia , Histocitoquímica , Locomoção , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/fisiologia
10.
J Appl Physiol (1985) ; 117(5): 544-55, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876362

RESUMO

The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice (P < 0.05). In contrast, SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser(16) phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training.


Assuntos
Condicionamento Físico Animal/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Isoenzimas/biossíntese , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , RNA/biossíntese , RNA/isolamento & purificação
11.
Am J Physiol Regul Integr Comp Physiol ; 306(7): R470-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24477538

RESUMO

Reduced mechanical loading during bedrest, spaceflight, and casting, causes rapid morphological changes in skeletal muscle: fiber atrophy and reduction of slow-twitch fibers. An emerging signaling event in response to unloading is the translocation of neuronal nitric oxide synthase (nNOSµ) from the sarcolemma to the cytosol. We used EUK-134, a cell-permeable mimetic of superoxide dismutase and catalase, to test the role of redox signaling in nNOSµ translocation and muscle fiber atrophy as a result of short-term (54 h) hindlimb unloading. Fischer-344 rats were divided into ambulatory control, hindlimb-unloaded (HU), and hindlimb-unloaded + EUK-134 (HU-EUK) groups. EUK-134 mitigated the unloading-induced phenotype, including muscle fiber atrophy and muscle fiber-type shift from slow to fast. nNOSµ immunolocalization at the sarcolemma of the soleus was reduced with HU, while nNOSµ protein content in the cytosol increased with unloading. Translocation of nNOS from the sarcolemma to cytosol was virtually abolished by EUK-134. EUK-134 also mitigated dephosphorylation at Thr-32 of FoxO3a during HU. Hindlimb unloading elevated oxidative stress (4-hydroxynonenal) and increased sarcolemmal localization of Nox2 subunits gp91phox (Nox2) and p47phox, effects normalized by EUK-134. Thus, our findings are consistent with the hypothesis that oxidative stress triggers nNOSµ translocation from the sarcolemma and FoxO3a dephosphorylation as an early event during mechanical unloading. Thus, redox signaling may serve as a biological switch for nNOS to initiate morphological changes in skeletal muscle fibers.


Assuntos
Antioxidantes/farmacologia , Elevação dos Membros Posteriores , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Óxido Nítrico Sintase Tipo I/metabolismo , Compostos Organometálicos/farmacologia , Salicilatos/farmacologia , Aldeídos/metabolismo , Animais , Citosol/efeitos dos fármacos , Citosol/enzimologia , Modelos Animais de Doenças , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Glicoproteínas de Membrana/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/patologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fosforilação , Transporte Proteico , Ratos , Ratos Endogâmicos F344 , Sarcolema/efeitos dos fármacos , Sarcolema/enzimologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
12.
Eur J Oral Sci ; 122(1): 36-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24224540

RESUMO

The aim of this study was to characterize the sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA) isoforms in rabbit masticatory muscles compared with those in fast-twitch muscle. It was hypothesized that combined expression of the SERCA isoforms in fast- and slow-twitch muscles accounts for lower Ca-ATPase activity. SERCA was isolated by differential centrifugation, the isoforms were determined by ELISA, and the activity of each isoform was measured using a colorimetric method. Activity was tested for significance by anova, and the distribution of isoforms was assessed using the chi-square test (P < 0.05) and correlated to SERCA activity using Spearman's rank correlation. SERCA1 was predominant (90.5%) in fast-twitch muscle, whereas a mixture of SERCA isoforms was found in masticatory muscles: 62-78% was SERCA2, 20-37% was SERCA1, and the SERCA3 content was negligible. Depressor muscles showed a significantly higher content (77.8%) of SERCA2, and elevator muscles showed a higher content (35.4%) of SERCA1. Elevator muscles showed higher expression of SERCA2a (58%), and depressor muscles showed higher expression of SERCA2b (20%). The SERCA1 content was mainly SERCA1a and significantly higher for elevator muscles (33%), whereas depressor muscles showed a higher content of SERCA1b (4%). The SERCA1 content of fast-twitch muscle was mainly SERCA1a (88.5%). It is concluded that the mixture of different SERCA isoforms, along with a substantial content of SERCA2b, in masticatory muscles would support lower Ca-ATPase activity and calcium transport.


Assuntos
Músculos da Mastigação/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/análise , Animais , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Isoenzimas/análise , Isoenzimas/classificação , Masculino , Músculo Masseter/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Músculos do Pescoço/enzimologia , Músculos Pterigoides/enzimologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/classificação , Músculo Temporal/enzimologia
13.
Aging Cell ; 13(1): 80-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24033924

RESUMO

Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid-life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast-twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal-muscle-specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast-twitch muscle growth in young vs. middle-aged animals fed standard low-fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1-mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age-associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age-related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Composição Corporal , Glicólise , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Anabolizantes/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transgenes
14.
Physiol Biochem Zool ; 86(6): 611-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24241060

RESUMO

The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited greater resistance to fatigue, followed by the regenerate tail and then the fast iliofibularis fibers. These results suggest that the relatively slow and oxidative fibers found within the tail musculature have a significant impact on contractile function, which translates into a trade-off between longevity of performance and power after autotomy.


Assuntos
Lagartos/fisiologia , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Adenosina Trifosfatases/análise , Animais , Fenômenos Biomecânicos , Feminino , Histocitoquímica , Masculino , Fibras Musculares de Contração Rápida/enzimologia , Succinato Desidrogenase/análise , Cauda/enzimologia , Gravação em Vídeo
15.
Med Sci Sports Exerc ; 45(9): 1674-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475169

RESUMO

PURPOSE: Training for improvement of oxidative capacity of muscle fibers may be attenuated when concurrently training for peak power. However, because of fiber type-specific recruitment, such attenuation may only account for high-oxidative muscle fibers. Here, we investigate the effects of concurrent training on oxidative capacity (as measured by succinate dehydrogenase (SDH) activity) by using task-specific recruitment of the high- and low-oxidative compartment of rat medial gastrocnemius muscle (GM). METHODS: Forty rats were subjected to 6 wk of peak power training (PT, n = 10), endurance training (ET, n = 10), concurrent peak power and endurance training (PET, n = 10), or no training (control, n = 10). SDH activity, mRNA expression of SDH, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), receptor-interacting protein 140, and BCL2/adenovirus E1B 19 kDa-interacting protein 3 as well as PGC-1α protein levels were analyzed in the low- and high-oxidative region of the GM. RESULTS: In the low-oxidative compartment, PT and PET induced a 30% decrease in SDH activity of Type IIB fibers compared with controls and ET (P < 0.001) without changes in mRNA or protein levels. In the high-oxidative compartment, after ET, SDH mRNA levels were 42% higher and RIP140 mRNA levels 33% lower compared with controls, which did not result in changes in SDH activity. CONCLUSION: These results indicate that in compartmentalized rat GM, peak power on top of endurance training attenuated transcription of mRNA for mitochondrial proteins in high-oxidative muscle fibers. In low-oxidative Type IIB fibers, peak power training substantially decreased SDH activity, which was not related to lower SDH mRNA levels. It is concluded that PT and PET enhanced mitochondrial degradation in the low-oxidative compartment of rat GM.


Assuntos
Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Succinato Desidrogenase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Feminino , Fibras Musculares de Contração Rápida/enzimologia , Músculo Esquelético/enzimologia , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal/métodos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Corrida/fisiologia , Succinato Desidrogenase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Clin Endocrinol Metab ; 98(5): 2027-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515448

RESUMO

CONTEXT: The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. OBJECTIVE: Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. DESIGN: Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. PARTICIPANTS AND SETTING: Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. MAIN OUTCOME MEASURES: Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. RESULTS: There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. CONCLUSION: Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects.


Assuntos
Resistência à Insulina , Síndrome Metabólica/patologia , Fibras Musculares de Contração Lenta/patologia , Músculo Quadríceps/patologia , Complexos de ATP Sintetase/metabolismo , Adulto , Antígenos CD/metabolismo , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Feminino , Transportador de Glucose Tipo 4/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/metabolismo , Obesidade/complicações , Músculo Quadríceps/enzimologia , Músculo Quadríceps/metabolismo , Receptor de Insulina/metabolismo , Risco , Comportamento Sedentário , Tennessee/epidemiologia
17.
Muscle Nerve ; 48(5): 722-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23494902

RESUMO

INTRODUCTION: Neurological disorders with low tissue coenzyme Q10 (CoQ10) levels are important to identify, as they may be treatable. METHODS: We evaluated retrospectively clinical, laboratory, and muscle histochemistry and oxidative enzyme characteristics in 49 children with suspected mitochondrial disorders. We compared 18 with CoQ10 deficiency in muscle to 31 with normal CoQ10 values. RESULTS: Muscle from CoQ10-deficient patients averaged 5.5-fold more frequent type 2C muscle fibers than controls (P < 0.0001). A type 2C fiber frequency of ≥ 5% had 89% sensitivity and 84% specificity for CoQ10 deficiency in this cohort. No biopsy showed active myopathy. There were no differences between groups in frequencies of mitochondrial myopathologic, clinical, or laboratory features. Multiple abnormalities in muscle oxidative enzyme activities were more frequent in CoQ10-deficient patients than in controls. CONCLUSIONS: When a childhood mitochondrial disorder is suspected, an increased frequency of type 2C fibers in morphologically normal muscle suggests CoQ10 deficiency.


Assuntos
Doenças Mitocondriais/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Ubiquinona/análogos & derivados , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Ataxia/diagnóstico , Ataxia/enzimologia , Ataxia/patologia , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/patologia , Debilidade Muscular/diagnóstico , Debilidade Muscular/enzimologia , Debilidade Muscular/patologia , Músculo Quadríceps/enzimologia , Músculo Quadríceps/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Ubiquinona/biossíntese , Ubiquinona/deficiência
18.
Okajimas Folia Anat Jpn ; 89(2): 39-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23117303

RESUMO

In domestic animals, the legs function in both postural maintenance and propulsion. The crural muscles participate in actions of the tarsal and toe joints. Mammalian skeletal muscles consist of myofibers, which are histochemically classified into three myofiber types, slow-twitch/oxidative (SO) or type I, fast-twitch/oxidative/glycolytic (FOG) or type IIA, and fast-twitch/glycolytic (FG) or type IIB myofibers. The histochemical characteristics of myofiber types reflect an aspect of function that myofibers possess. In the present study, we investigated the composition and average diameter of myofiber types of each muscle in crus of sheep and determined their roles in the movement of tarsal and toe joints. The tibialis cranialis muscle was a flat unipennate muscle and not capable to generate a large tension; however, it could function primarily in posture maintenance and play a cooperative role in adjusting standing posture. The flexor hallucis longus and flexor digitorum superficialis muscles were the major muscles that contributed to posture maintenance in leg musculature. These muscles were capable to generate a large tension and participate primarily in standing posture maintenance. The composition and diameter of myofiber types in ovine crural musculature reflected the role of each muscle in posture maintenance and locomotion.


Assuntos
Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Ovinos/anatomia & histologia , Animais , Feminino , Locomoção/fisiologia , Extremidade Inferior , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/fisiologia , Miosinas/metabolismo , Ovinos/fisiologia
19.
J Physiol ; 590(24): 6381-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23070698

RESUMO

Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle ß-adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild-type mice with the ß-receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca(2+) and force generation. In contrast, the enhanced muscle Ca(2+), force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1-S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca(2+) release due to PKA phosphorylation of S2844 in RyR1.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares de Contração Rápida/enzimologia , Fosforilação , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Serina , Fatores de Tempo
20.
J Strength Cond Res ; 26(10): 2616-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22744417

RESUMO

Sixteen healthy untrained women participated in a 6-week progressive resistance training program to compare 2 common methods of classifying fiber types. The women were a subset from a previous study and were randomly divided into 2 groups: traditional strength training (TS, n = 9) and non-exercising control (C, n = 7). The TS group performed 3 lower limb exercises (leg press, squat, and knee extension) using 6-10 repetitions maximum 2 days per week for the first week and 3 days per week for the remaining 5 weeks (17 total workouts). Pre- and posttraining vastus lateralis muscle biopsies were analyzed for fiber type composition using 2 popular methods: myosin adenosine triphosphatase (mATPase) histochemistry and myosin heavy chain (MHC) immunohistochemistry. Six fiber types (I, IC, IIC, IIA, IIAX, and IIX) were delineated using each method separately and in combination. Because of the subjective nature of each method (visual assessment of staining intensities), IIAX fibers expressing a small amount of MHCIIa were misclassified as type IIX using mATPase histochemistry, whereas those expressing a small amount of MHCIIx were misclassified as type IIA using MHC immunohistochemistry. As such, either method used separately resulted in an underestimation of the type IIAX fiber population. In addition, the use of mATPase histochemistry alone resulted in an overestimation of type IIX, whereas there was an overestimation of type IIA using MHC immunohistochemistry. These fiber typing errors were most evident after 6 weeks of resistance training when fibers were in transition from type IIX to IIA. These data suggest that the best approach to more accurately determine muscle fiber type composition (especially after training) is the combination of mATPase histochemical and MHC immunohistochemical methods.


Assuntos
Fibras Musculares de Contração Rápida/classificação , Fibras Musculares de Contração Rápida/citologia , Treinamento Resistido , Biópsia , Feminino , Histocitoquímica , Humanos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/fisiologia , Cadeias Pesadas de Miosina/análise , Miosinas/análise , Músculo Quadríceps/citologia , Músculo Quadríceps/enzimologia , Músculo Quadríceps/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA