Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.171
Filtrar
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
2.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Bleomicina , Regulação para Baixo , Morfinanos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteína Smad3/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
3.
Can Respir J ; 2024: 5554886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584671

RESUMO

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Assuntos
Ferroptose , Panax notoginseng , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Ciclo-Oxigenase 2 , Colágeno , Receptores ErbB
4.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
5.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
6.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38613881

RESUMO

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Assuntos
Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Silicose , Umbeliferonas , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , Silicose/tratamento farmacológico , Silicose/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Humanos , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Pneumonia/patologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Masculino , Pulmão/patologia , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Simulação de Acoplamento Molecular
7.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670401

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Assuntos
Transição Epitelial-Mesenquimal , Proteína Forkhead Box O3 , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Extratos Vegetais , Fibrose Pulmonar , Animais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Células A549 , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Proteína Forkhead Box O3/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Bleomicina , Antifibróticos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia
8.
Eur J Pharm Sci ; 197: 106779, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670294

RESUMO

Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 µm (1.79 µm±0.06 µm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-ß1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.


Assuntos
Acetilcisteína , Indóis , Lipossomos , Pulmão , Fibrose Pulmonar , Animais , Indóis/administração & dosagem , Indóis/química , Indóis/farmacocinética , Acetilcisteína/administração & dosagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Administração por Inalação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Masculino , Tamanho da Partícula
9.
Redox Biol ; 72: 103148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603946

RESUMO

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Assuntos
Apoptose , Bleomicina , Fibroblastos , Espécies Reativas de Oxigênio , Ácido Selenioso , Bleomicina/efeitos adversos , Animais , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Ácido Selenioso/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Masculino , Proliferação de Células/efeitos dos fármacos
10.
Eur J Pharmacol ; 974: 176603, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679121

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a group of respiratory diseases that are extremely complex and challenging to treat. Due to its high mortality rate and short survival, it's often referred to as a "tumor-like disease" that poses a serious threat to human health. OBJECTIVE: We aimed validate the potential of Deapioplatycodin D (DPD) to against PF and clarify the underlying mechanism of action of DPD for the treatment of PF based on bioinformatics and experimental verification. This finding provides a basis for the development of safe and effective therapeutic PF drugs based on DPD. METHODS: We used LPS-induced early PF rats as a PF model to test the overall efficacy of DPD in vivo. Then, A variety of bioinformatics methods, such as WGCNA, LASSO algorithm and immune cell infiltration (ICI), were applied to analyze the gene microarray related to PF obtained from Gene Expression Omnibus (GEO) to obtained key targets of PF. Finally, an in vitro PF model was constructed based on BEAS-2B cells while incorporating rat lung tissues to validate the regulatory effects of DPD on critical genes. RESULTS: DPD can effectively alleviate inflammatory and fibrotic markers in rat lungs. WGCNA analysis resulted in a total of six expression modules, with the brown module having the highest correlation with PF. Subsequently, seven genes were acquired by intersecting the genes in the brown module with DEGs. Five key genes were identified as potential biomarkers of PF by LASSO algorithm and validation dataset verification analysis. In the ICI analysis, infiltration of activated B cell, immature B cell and natural killer cells were found to be more crucial in PF. Ultimately, it was observed that DPD could modulate key genes to achieve anti-PF effects. CONCLUSION: In short, these comprehensive analysis methods were employed to identify critical biomarkers closely related to PF, which helps to elucidate the pathogenesis and potential immunotherapy targets of PF. It also provides essential support for the potential of DPD against PF.


Assuntos
Biologia Computacional , Fibrose Pulmonar , Animais , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Ratos , Humanos , Masculino , Ratos Sprague-Dawley , Redes Reguladoras de Genes/efeitos dos fármacos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica
11.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626519

RESUMO

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Assuntos
Curcumina , DNA Metiltransferase 3A , Matriz Extracelular , Fibroblastos , Camundongos Endogâmicos C57BL , MicroRNAs , Mitocôndrias , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , DNA Metiltransferase 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Camundongos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Bleomicina , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Modelos Animais de Doenças
12.
Sci Adv ; 10(13): eadj9559, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552026

RESUMO

Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMß2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Pulmão/patologia , Fibrose , Macrófagos , Técnicas de Cocultura
13.
Inflammopharmacology ; 32(2): 975-989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429613

RESUMO

Fibrosis is a prevailing pathology in chronic diseases and accounts for 45% of deaths in developed countries. This condition is primarily identified by the transformation of fibroblasts into myofibroblasts and the overproduction of extracellular matrix (ECM) by myofibroblasts. Pterostilbene (PTS) is a natural analogue of resveratrol and is most commonly found in blueberries. Research has shown that PTS exerts a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer effects. As a result, PTS has the potential to prevent and cure numerous diseases. Emerging evidence has indicated that PTS can alleviate myocardial fibrosis, renal fibrosis, pulmonary fibrosis, hepatic fibrosis, and colon fibrosis via the inhibition of inflammation, oxidative stress, and fibrogenesis effects in vivo and in vitro, and the potential mechanisms are linked to various pathways, including transforming growth factor-ß1 (TGF-ß1)/small mother against decapentaplegic proteins (Smads) signalling, the reactive oxygen species (ROS)-driven Pitx2c/mir-15b pathway, nuclear factor kappa B (NF-κB) signalling, Kelch-like epichlorohydrin-associated protein-1 (Keap-1)/NF-E2-related factor-2 (Nrf2) cascade, the NLR family pyridine structure domain 3 (NLRP3) pathway, the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and the Src/STAT3 pathway. In this review, we comprehensively summarize the antifibrotic effects of PTS both in vivo and in vitro and the pharmacological mechanisms, pharmacokinetics, and toxicology of PTS and provide insights into and strategies for exploring promising agents for the treatment of fibrosis.


Assuntos
Estresse Oxidativo , Fibrose Pulmonar , Humanos , Fibrose , Fibrose Pulmonar/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Cirrose Hepática/metabolismo
14.
Bioorg Chem ; 146: 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537336

RESUMO

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Bleomicina/efeitos adversos
15.
Int Immunopharmacol ; 131: 111774, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489971

RESUMO

Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.


Assuntos
Amidas , COVID-19 , Pneumonia , Fibrose Pulmonar , Pirazinas , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos , Inflamação/metabolismo , Fibrose , Pneumonia/metabolismo , COVID-19/metabolismo
16.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493696

RESUMO

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Heme Oxigenase-1/metabolismo , Antioxidantes/farmacologia , beta Catenina/metabolismo , PPAR gama/metabolismo , Óxido Nítrico/metabolismo , Pulmão/patologia , Fibrose , Arginina/uso terapêutico
17.
Biomed Pharmacother ; 174: 116431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522238

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening lung disease with high mortality rates. The limited availability of effective drugs for IPF treatment, coupled with concerns regarding adverse effects and restricted responsiveness, underscores the need for alternative approaches. Kefir peptides (KPs) have demonstrated antioxidative, anti-inflammatory, and antifibrotic properties, along with the capability to modulate gut microbiota. This study aims to investigate the impact of KPs on bleomycin-induced pulmonary fibrosis. METHODS: Mice were treated with KPs for four days, followed by intratracheal injection of bleomycin for 21 days. Comprehensive assessments included pulmonary functional tests, micro-computed tomography (µ-CT), in vivo image analysis using MMPsense750, evaluation of inflammation- and fibrosis-related gene expression in lung tissue, and histopathological examinations. Furthermore, a detailed investigation of the gut microbiota community was performed using full-length 16 S rRNA sequencing in control mice, bleomycin-induced fibrotic mice, and KPs-pretreated fibrotic mice. RESULTS: In KPs-pretreated bleomycin-induced lung fibrotic mice, notable outcomes included the absence of significant bodyweight loss, enhanced pulmonary functions, restored lung tissue architecture, and diminished thickening of inter-alveolar septa, as elucidated by morphological and histopathological analyses. Concurrently, a reduction in the expression levels of oxidative biomarkers, inflammatory factors, and fibrotic indicators was observed. Moreover, 16 S rRNA sequencing demonstrated that KPs pretreatment induced alterations in the relative abundances of gut microbiota, notably affecting Barnesiella_intestinihominis, Kineothrix_alysoides, and Clostridium_viride. CONCLUSIONS: Kefir peptides exerted preventive effects, protecting mice against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. These effects are likely linked to modifications in the gut microbiota community. The findings highlight the therapeutic potential of KPs in mitigating pulmonary fibrosis and advocate for additional exploration in clinical settings.


Assuntos
Bleomicina , Microbioma Gastrointestinal , Kefir , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fibrose Pulmonar , Animais , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Kefir/microbiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/tratamento farmacológico , Inflamação/patologia , Masculino , Peptídeos/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
18.
J Pharm Biomed Anal ; 243: 116061, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430615

RESUMO

BACKGROUND: Diabetes mellitus type 2 and pulmonary fibrosis have been found to be closely related in clinical practice. Diabetic pulmonary fibrosis (DPF) is a complication of diabetes mellitus, but its treatment has yet to be thoroughly investigated. Bu Yang Huan Wu Decoction (BYHWD) is a well-known traditional Chinese prescription that has shown great efficacy in treating pulmonary fibrosis with hypoglycemic and hypolipidemic effects. METHODS: The active ingredients of BYHWD and the corresponding targets were retrieved from the Traditional Chinese Medicine Systematic Pharmacology Database (TCMSP) and SymMap2. Disease-related targets were obtained from the GeneCard, OMIM and CTD databases. GO enrichment and KEGG pathway enrichment were carried out using the DAVID database. AutoDock Vina software was employed to perform molecular docking. Molecular dynamics simulations of proteinligand complexes were conducted by Gromacs. Animal experiments were further performed to validate the effects of BYHWD on the selected core targets, markers of oxidative stress, serum lipids, blood glucose and pulmonary fibrosis. RESULTS: A total of 84 active ingredients and 830 target genes were screened in BYHWD, among which 56 target genes intersected with DPF-related targets. Network pharmacological analysis revealed that the active ingredients can regulate target genes such as IL-6, TNF-α, VEGFA and CASP3, mainly through AGE-RAGE signaling pathway, HIF-1 signaling pathway and TNF signaling pathway. Molecular docking and molecular dynamics simulations suggested that IL6-astragaloside IV, IL6-baicalein, TNFα-astragaloside IV, and TNFα-baicalein docking complexes could bind stably. Animal experiments showed that BYHWD could reduce the expression of core targets such as VEGFA, CASP3, IL-6 and TNF-α. In addition, BYHWD could reduce blood glucose, lipid, and MDA levels in DPF while increasing the activities of SOD, CAT and GSH-Px. BYHWD attenuated the expression of HYP and collagen I, mitigating pathological damage and collagen deposition within lung tissue. CONCLUSIONS: BYHWD modulates lipid metabolism disorders and oxidative stress by targeting the core targets of IL6, TNF-α, VEGFA and CASP3 through the AGE-RAGE signaling pathway, making it a potential therapy for DPF.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Transtornos do Metabolismo dos Lipídeos , Fibrose Pulmonar , Saponinas , Triterpenos , Animais , Fator de Necrose Tumoral alfa , Fibrose Pulmonar/tratamento farmacológico , Caspase 3 , Interleucina-6 , Glicemia , Metabolismo dos Lipídeos , Simulação de Acoplamento Molecular , Estresse Oxidativo , Colágeno , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
19.
Biomarkers ; 29(2): 45-54, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38314578

RESUMO

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is the most serious form of interstitial lung disease. We aimed to investigate the effect of Phœnix dactylifera, L. seed oil (DSO) on a murine model of IPF induced by bleomycin (BLM). METHODS: Male Wistar rats were treated with a single intra-tracheal injection of BLM (4 mg/kg) and a daily intraperitoneal injection of DSO (75, 150 and 300 mg/kg) for 4 weeks. RESULTS: Our phytochemical results showed that DSO has an important antioxidant activity with a high content of polyphenols and flavonoids. High-Performance Liquid Chromatography (HPLC) and Gas chromatography/mass spectrometry (GC-MS) analysis revealed a high amount of oleic and lauric acids and a large quantity of vitamins. Histological examination showed a significant reduction in fibrosis score and collagen bands in the group of rats treated with 75 mg/kg of DSO compared to the BLM group. DSO (75 mg/kg) reversed also the increase in catalase and malondialdehyde (MDA) levels while higher doses (150 and 300 mg/kg) are ineffective against the deleterious effects of BLM. We revealed also that DSO has no renal or hepatic cytotoxic effects. CONCLUSION: DSO can play antioxidant and antifibrotic effects on rat models of pulmonary fibrosis at the lowest dose administered.


Assuntos
Phoeniceae , Fibrose Pulmonar , Ratos , Masculino , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Ratos Wistar , Bleomicina/efeitos adversos , Pulmão/patologia , Estresse Oxidativo , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia
20.
Biomed Pharmacother ; 172: 116270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364737

RESUMO

Iron homeostasisis is integral to normal physiological and biochemical processes of lungs. The maintenance of iron homeostasis involves the process of intake, storage and output, dependening on iron-regulated protein/iron response element system to operate tightly metabolism-related genes, including TFR1, DMT1, Fth, and FPN. Dysregulation of iron can lead to iron overload, which increases the virulence of microbial colonisers and the occurrence of oxidative stress, causing alveolar epithelial cells to undergo necrosis and apoptosis, and form extracellular matrix. Accumulated iron drive iron-dependent ferroptosis to exacerbated pulmonary fibrosis. Notably, the iron chelator deferoxamine and the lipophilic antioxidant ferritin-1 have been shown to attenuate ferroptosis and inhibit lipid peroxidation in pulmonary fibrosis. The paper summarises the regulatory mechanisms of dysregulated iron metabolism and ferroptosis in the development of pulmonary fibrosis. Targeting iron metabolism may be a potential therapeutic strategy for the prevention and treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Peroxidação de Lipídeos , Estresse Oxidativo , Células Epiteliais Alveolares , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA