Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(8): e5132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39072823

RESUMO

Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.


Assuntos
Proteínas de Bactérias , Cianobactérias , Ficobilinas , Ficocianina , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Isomerismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/genética
2.
Environ Sci Pollut Res Int ; 29(52): 78942-78959, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35705761

RESUMO

Owing to the increase of pollutant sources in oceans, seas, and lakes, there is an expected effect on growth and metabolism of planktonic algae which are considered primary producers in the ecosystem. Therefore, it becomes urgent to carry out laboratory studies to test to what extent these pollutants can affect the growth of algae which is necessary as a food for marine fishes. Spirulina is considered the most important algal species due to its high nutritional value for humans and animals. Therefore, this work investigated the effect of different concentrations of Ni2+, Zn2+, and Cu2+ metal ion pollutants on growth of the blue-green alga Spirulina platensis. EC50 was identified to be around 2 mg/l for the three heavy metals. The suitability of Idku Lake for Spirulina platensis growth was investigated using multi-criteria spatial modeling integrated with remotely sensed data processing. Spatial distribution maps of turbidity, water nutrients, and phytoplankton were the input criteria used to assess Idku Lake's suitability. The results obtained proved that low concentrations of the tested heavy metals stimulated growth and pigment fractions (chlorophyll a, carotenoids, and total phycobilins content) but to different degrees. The inhibitory effect was more prominent in the case of copper ions than zinc and nickel ions with all concentrations used. The overall suitability map of Spirulina platensis in Idku Lake showed that the whole lake is suitable for growth and proliferation except for the northwestern corner due to the high salinity levels. The present paper helps to understand the behavior of algae responding to environmental pollution, which supports environmental planners with the necessary baseline for investigating the fate of pollutants and the potential risk.


Assuntos
Poluentes Ambientais , Metais Pesados , Spirulina , Humanos , Carotenoides/metabolismo , Clorofila A/metabolismo , Cobre/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Íons/metabolismo , Lagos , Metais Pesados/análise , Níquel/metabolismo , Ficobilinas/metabolismo , Ficobilinas/farmacologia , Spirulina/metabolismo , Zinco/metabolismo
3.
Food Funct ; 13(6): 3294-3307, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35244658

RESUMO

Phycocyanin is a typical microalgal active compound with antioxidant and anti-inflammatory efficacy, and the pigment moiety phycocyanobilin has been recently proposed as its active structural component. Here, to explore the structural basis for phycocyanin's intestinal protective action, we evaluated the therapeutic effects and mechanism of action of phycocyanin and phycocyanobilin in dextran sodium sulphate (DSS)-induced colitis mice and in Caco-2 and RAW 264.7 cells. Phycocyanobilin was obtained by solvothermal alcoholysis of phycocyanin and characterized by spectroscopy and mass spectrometry methods. Phycocyanin, phycocyanobilin and a positive drug mesalazine were intragastrically administered to C57BL/6 mice daily for 7 days during and after 4-day DSS exposure. Clinical signs and colon histopathology revealed that phycocyanin and phycocyanobilin had an equivalent anti-colitis efficacy that was even superior to mesalazine. Based on biochemical analysis of colonic tight junction proteins, mucus compositions and goblet cells, and colonic and peripheral proinflammatory cytokines, phycocyanin and phycocyanobilin displayed equivalent intestinal epithelial barrier-protecting and anti-inflammatory potential that was evidently superior to that of mesalazine. Flow cytometry analysis of phycocyanobilin fluorescence in Caco-2 cells unveiled a similar uptake efficacy of phycocyanin and phycocyanobilin by intestinal epithelial cells. According to lactic dehydrogenase release, 2',7'-dichlorodihydrofluorescein fluorescence and methylthiazolyldiphenyl-tetrazolium bromide assay in Caco-2 cells, phycocyanin and phycocyanobilin could equally and effectively protect the intestinal epithelial barrier from oxidant-induced disruption. Phycocyanin and phycocyanobilin also showed equivalent anti-inflammatory effects in tumor necrosis factor-α-stimulated Caco-2 cells and in lipopolysaccharides- and tumor necrosis factor-α-activated RAW264.7 cells. Overall, our results demonstrate the phycocyanobilin-dependent anti-colitis role of phycocyanin via antioxidant and anti-inflammatory mechanisms.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Colite/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Ficobilinas/farmacologia , Ficocianina/farmacologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Células CACO-2 , Colite/fisiopatologia , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Mesalamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ficobilinas/metabolismo , Ficobilinas/uso terapêutico , Ficocianina/metabolismo , Ficocianina/uso terapêutico , Células RAW 264.7
4.
J Biol Chem ; 296: 100031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33154169

RESUMO

Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the ß-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into ß-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.


Assuntos
Isomerases/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Synechococcus/química , Urobilina/análogos & derivados , Sequência de Aminoácidos , Proteínas de Bactérias , Cromatografia Líquida , Isomerases/química , Isomerases/classificação , Biologia Marinha , Ficoeritrina/química , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Espectrometria de Massas em Tandem , Urobilina/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1861(12): 148284, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777305

RESUMO

Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the ß-subunit of PE. MS analyses of the recombinant ß-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on ß-PE.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Cisteína/metabolismo , Liases/metabolismo , Chaperonas Moleculares/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Deleção de Genes , Genes Bacterianos , Proteínas Mutantes/metabolismo , Óperon/genética , Peptídeos/química , Fenótipo , Proteínas Recombinantes/metabolismo
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 236: 118316, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32344374

RESUMO

The binding of C-phycocyanin (CPC), a light harvesting pigment with phycocyanobilin (PCB), a chromophore is instrumental for the coloration and bioactivity. In this study, structure-mediated color changes of CPC from Spirulina platensis during various enzymatic hydrolysis was investigated based on UV-visible, circular dichroism, infra-red, fluorescence, mass spectrometry, and molecular docking. CPC was hydrolyzed using 7.09 U/mg protein of each enzyme at their optimal hydrolytic conditions for 3 h as follows: papain (pH 6.6, 60 °C), dispase (pH 6.6, 50 °C), and trypsin (pH 7.8, 37 °C). The degree of hydrolysis was in the order of papain (28.4%) > dispase (20.8%) > trypsin (7.3%). The sequence of color degradation rate and total color difference (ΔE) are dispase (82.9% and 40.37), papain (72.4% and 24.70), and trypsin (58.7% and 25.43). The hydrolyzed peptides were of diverse sequence length ranging from 8 to 9 residues (papain), 7-12 residues (dispase), and 9-63 residues (trypsin). Molecular docking studies showed that key amino acid residues in the peptides interacting with chromophore. Amino acid residues such as Arg86, Asp87, Tyr97, Asp152, Phe164, Ala167, and Val171 are crucial in hydrogen bonding interaction. These results indicate that the color properties of CPC might associate with chromopeptide sequences and their non-covalent interactions.


Assuntos
Ficobilinas/química , Ficocianina/química , Aminoácidos/química , Dicroísmo Circular , Cor , Enzimas/química , Enzimas/metabolismo , Corantes de Alimentos/química , Corantes de Alimentos/metabolismo , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Peptídeos/análise , Peptídeos/química , Ficobilinas/metabolismo , Ficocianina/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Spirulina/química
7.
Med Hypotheses ; 132: 109326, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421423

RESUMO

The mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, ß-hydroxy-ß-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.


Assuntos
Adipócitos/metabolismo , Caquexia/prevenção & controle , Suplementos Nutricionais , Neoplasias/patologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Biotina/metabolismo , Caquexia/metabolismo , Carnitina/metabolismo , Catequina/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Glicina/metabolismo , Humanos , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Chá/metabolismo
8.
Chembiochem ; 20(21): 2777-2783, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31145526

RESUMO

Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.


Assuntos
Proteínas de Bactérias/química , Fluorescência , Proteínas Luminescentes/química , Ficobilinas/química , Ficobiliproteínas/química , Ficoeritrina/química , Coloração e Rotulagem/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Ficobilinas/genética , Ficobilinas/metabolismo , Ficobiliproteínas/genética , Ficobiliproteínas/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Espectrometria de Fluorescência/métodos , Synechococcus/química , Synechococcus/genética , Synechococcus/metabolismo
9.
J Biol Chem ; 293(46): 17705-17715, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30242127

RESUMO

Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine ß-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Histidina Quinase/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Synechocystis/química
10.
Appl Microbiol Biotechnol ; 100(12): 5375-88, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26860945

RESUMO

In order to investigate the feasibility for the biosynthetic pathway of CpcA conjugated protein to be reconstituted in Escherichia coli and its antioxidant ability and protective effect on the growth of E. coli, the minimal biosynthetic pathway in cyanobacteria leading from heme to the formation of the cysteinyl residue of phycocyanobilin with deprosthetic CpcA was reconstituted in E. coli using a relatively simple and effective method. When the constructed plasmid pETDuet-6 bearing five genes involved in the biosynthesis of CpcA was transformed into E. coli, the screened transformant acquired a pronounced blue color. Visualization of proteins on SDS-PAGE gel showed a 29 kDa distinct band, corresponding to the theoretically calculated molecular weight of CpcA. Upon exposure to Zn(2+) and UV illumination, the CpcA band was fluorescent. Western blot analysis using His-tag monoclonal antibody confirmed the expression of CpcA in the recombinant E. coli. After the optimization of critical medium components by response surface methodology, the recombinant cells produced 22.29 mg/l of CpcA. The recombinant CpcA displayed a strong ability to scavenge three free radicals ·OH, ·DPPH, and O2 (-) to protect against the oxidation of linoleic acid and to restore the growth of E. coli cells injured by DPPH and H2O2 at a relatively low concentration. These results lay a good foundation for the production and future use of CpcA.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ficocianina/biossíntese , Ficocianina/genética , Synechocystis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Eletroforese em Gel de Poliacrilamida , Escherichia coli/crescimento & desenvolvimento , Radicais Livres/metabolismo , Vetores Genéticos , Peróxido de Hidrogênio/metabolismo , Ficobilinas/genética , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Plasmídeos , Proteínas Recombinantes/biossíntese , Synechocystis/metabolismo , Transformação Bacteriana
11.
FEBS J ; 279(1): 40-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22008418

RESUMO

Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max) = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.


Assuntos
Nostoc/química , Fotoquímica , Fotorreceptores Microbianos/metabolismo , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina Quinase , Cinética , Dados de Sequência Molecular , Nostoc/genética , Nostoc/metabolismo , Fotorreceptores Microbianos/química , Ficobilinas/genética , Ficocianina/genética , Fitocromo/genética , Proteínas Quinases/metabolismo
12.
Appl Environ Microbiol ; 76(9): 2729-39, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228104

RESUMO

Phycobiliproteins are water-soluble, light-harvesting proteins that are highly fluorescent due to linear tetrapyrrole chromophores, which makes them valuable as probes. Enzymes called bilin lyases usually attach these bilin chromophores to specific cysteine residues within the alpha and beta subunits via thioether linkages. A multiplasmid coexpression system was used to recreate the biosynthetic pathway for phycobiliproteins from the cyanobacterium Synechococcus sp. strain PCC 7002 in Escherichia coli. This system efficiently produced chromophorylated allophycocyanin (ApcA/ApcB) and alpha-phycocyanin with holoprotein yields ranging from 3 to 12 mg liter(-1) of culture. This heterologous expression system was used to demonstrate that the CpcS-I and CpcU proteins are both required to attach phycocyanobilin (PCB) to allophycocyanin subunits ApcD (alpha(AP-B)) and ApcF (beta(18)). The N-terminal, allophycocyanin-like domain of ApcE (L(CM)(99)) was produced in soluble form and was shown to have intrinsic bilin lyase activity. Lastly, this in vivo system was used to evaluate the efficiency of the bilin lyases for production of beta-phycocyanin.


Assuntos
Proteínas de Bactérias/biossíntese , Cianobactérias/metabolismo , Escherichia coli/metabolismo , Liases/metabolismo , Ficobiliproteínas/biossíntese , Synechococcus/enzimologia , Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Oxirredutases/metabolismo , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo
13.
J Biol Chem ; 284(52): 36405-36414, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19864423

RESUMO

The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300-14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-beta84-bound PCB in biliproteins by PEB.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Chaperonas Moleculares/química , Ficobilinas/química , Ficocianina/química , Ficoeritrina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cinética , Liases/genética , Liases/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ficobilinas/genética , Ficobilinas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Ligação Proteica/fisiologia
14.
J Biol Chem ; 284(43): 29757-72, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19671704

RESUMO

Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C3(1) carbon of the ethylidene side chain and the C4 or C5 carbons in the A-B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb --> Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.


Assuntos
Proteínas de Algas/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Bactérias/química , Cianobactérias/química , Eucariotos/química , Ficobilinas/química , Ficocianina/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Ficobilinas/genética , Ficobilinas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Estrutura Terciária de Proteína/fisiologia
15.
Photosynth Res ; 101(1): 69-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19582591

RESUMO

Chromatic photoacclimation and photosynthesis were examined in two strains of Acaryochloris marina (MBIC11017 and CCMEE5410) and in Synechococcus PCC7942. Acaryochloris contains Chl d, which has an absorption peak at ca 710 nm in vivo. Cultures were grown in one of the three wavelengths (525 nm, 625 nm and 720 nm) of light from narrow-band photodiodes to determine the effects on pigment composition, growth rate and photosynthesis: no growth occurred in 525 nm light. Synechococcus did not grow in 720 nm light because Chl a does not absorb effectively at this long wavelength. Acaryochloris did grow in 720 nm light, although strain MBIC11017 showed a decrease in phycobilins over time. Both Synechococcus and Acaryochloris MBIC11017 showed a dramatic increase in phycobilin content when grown in 625 nm light. Acaryochloris CCMEE5410, which lacks phycobilins, would not grow satisfactorily under 625 nm light. The cells adjusted their pigment composition in response to the light spectral conditions under which they were grown. Photoacclimation and the Q (y) peak of Chl d could be understood in terms of the ecological niche of Acaryochloris, i.e. habitats enriched in near infrared radiation.


Assuntos
Aclimatação , Clorofila/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Fotossíntese/efeitos da radiação , Luz , Ficobilinas/metabolismo
16.
J Biol Chem ; 284(14): 9290-8, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19182270

RESUMO

Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (lambda(max) approximately 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its alpha-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters.


Assuntos
Cromatina/metabolismo , Cianobactérias/metabolismo , Isomerases/metabolismo , Liases/metabolismo , Ficobilinas/biossíntese , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Dicroísmo Circular , Cianobactérias/genética , Evolução Molecular , Estrutura Molecular , Ficobilinas/química , Filogenia , Processamento de Proteína Pós-Traducional , Água do Mar/microbiologia , Especificidade por Substrato
17.
J Mol Biol ; 383(2): 403-13, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18762196

RESUMO

The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B' cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80 degrees relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B' GAF domain can, by itself, complete the Pr --> Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Absorção , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Fitocromo/metabolismo , Estrutura Terciária de Proteína , Rodopseudomonas/metabolismo , Soluções , Synechococcus/metabolismo
18.
Photosynth Res ; 95(2-3): 163-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17912606

RESUMO

The phycobilin: Cysteine-84-phycobiliprotein lyase, CpeS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin attachment to nearly all cysteine-84 (consensus sequence) binding sites of phycoerythrin, phycoerythrocyanin, phycocyanin and allophycocyanin (Zhao et al. (2007) Proc Natl Acad Sci 104:14300-14305). We now show that CpeS1 can bind PCB, as assayed by Ni(2+) chelating affinity chromatography. Binding is rapid, and the chromophore is bound in an extended conformation similar to that in phycobiliproteins but only poorly fluorescent. Upon addition of apo-biliproteins, the chromophore is transferred to the latter much slower ( approximately 1 h), indicating that chromophorylated CpeS1 is an intermediate in the enzymatic reaction. In addition, imidazole is bound to PCB, as shown by mass spectroscopy of tryptic digests of the intermediate CpeS1-PCB complex.


Assuntos
Apoproteínas/metabolismo , Liases/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Biocatálise , Ligação Proteica , Espectrofotometria Ultravioleta
19.
J Biol Chem ; 282(35): 25357-66, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17595164

RESUMO

Biliproteins are post-translationally modified by chromophore addition. In phycoerythrocyanin, the heterodimeric lyase PecE/F covalently attaches phycocyanobilin (PCB) to cysteine-alpha84 of the apoprotein PecA, with concomitant isomerization to phycoviolobilin. We found that: (a) PecA adds autocatalytically PCB, yielding a low absorbance, low fluorescence PCB.PecA adduct, termed P645 according to its absorption maximum; (b) In the presence of PecE, a high absorbance, high fluorescence PCB.PecA adduct is formed, termed P641; (c) PecE is capable of transforming P645 to P641; (d) When in stop-flow experiments, PecA and PecE were preincubated before chromophore addition, a red-shifted intermediate (P650, tau=32 ms) was observed followed by a second, which was blue-shifted (P605, tau=0.5 s), and finally a third (P638, tau=14 s) that yielded the adduct (P641, tau=20 min); (e) The reaction was slower, and P605 was missing, if PecA and PecE were not preincubated; (f) Gel filtration gave no evidence of a stable complex between PecA and PecE; however, complex formation is induced by adding PCB; and (g) A red-shifted intermediate was also formed, but more slowly, with phycoerythrobilin, and denaturation showed that this is not yet covalently bound. We conclude, therefore, that PecA and PecE form a weak complex that is stabilized by PCB, that the first reaction step involves a conformational change and/or protonation of PCB, and that PecE has a chaperone-like function on the chromoprotein.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Liases/química , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Ficobilinas/química , Ficocianina/química , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Fluorescência , Liases/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Desnaturação Proteica , Processamento de Proteína Pós-Traducional/fisiologia
20.
Eur Biophys J ; 36(7): 815-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17522854

RESUMO

Two phytochromes, CphA and CphB, from the cyanobacterium Calothrix PCC7601, with similar size (768 and 766 amino acids) and domain structure, were investigated for the essential length of their protein moiety required to maintain the spectral integrity. Both proteins fold into PAS-, GAF-, PHY-, and Histidine-kinase (HK) domains. CphA binds a phycocyanobilin (PCB) chromophore at a "canonical" cysteine within the GAF domain, identically as in plant phytochromes. CphB binds biliverdin IXalpha at cysteine24, positioned in the N-terminal PAS domain. The C-terminally located HK and PHY domains, present in both proteins, were removed subsequently by introducing stop-codons at the corresponding DNA positions. The spectral properties of the resulting proteins were investigated. The full-length proteins absorb at (CphA) 663 and 707 nm (red-, far red-absorbing P (r) and P (fr) forms of phytochromes) and at (CphB) 704 and 750 nm. Removal of the HK domains had no effect on the absorbance maxima of the resulting PAS-GAF-PHY constructs (CphA: 663/707 nm, CphB: 704/750 nm, P (r)/P (fr), respectively). Further deletion of the "PHY" domains caused a blue-shift of the P (r) and P (fr) absorption of CphA (lambda (max): 658/698 nm) and increased the amount of unproperly folded apoprotein, seen by a reduced capability to bind the chromophore in photoconvertible manner. In CphB, however, it practically impaired the formation of P (fr), i.e., showing a very low oscillator strength absorption band, whereas the P (r) form remains unchanged (702 nm). This finding clearly indicates a different interaction between domains in the "typical", PCB binding and in the biliverdin-binding phytochromes, and demonstrates a loss of oscillator strength for the latter, most probably due to a strong conformational distortion of the chromophore in the CphB P (fr) form.


Assuntos
Cianobactérias/química , Cisteína/química , Fitocromo/química , Dobramento de Proteína , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Cisteína/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/metabolismo , Ligação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA